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Abstract

In this paper, we study certain properties of the bit decoding algorithms for the case of

binary linear block codes. Our focus is on the Probability Density Function (pdf ) of the bit

Log-Likelihood-Ratio (LLR). A general channel model with discrete input and discrete or

continuous output is considered. We prove that under a set of mild conditions on the channel,

the pdf of the bit LLR of a specific bit position is independent of the transmitted code-word.

It is also shown that the pdf of a given bit LLR when the corresponding bit takes the values of

zero and one are symmetric with respect to each other (reflection of one another with respect

to the origin). For the case of channels with binary input, a sufficient condition for two bit

positions to have the same pdf is presented.

Index Terms

Bit Decoding, Block Codes, Geometrically Uniform, Log-Likelihood Ratio, Probability

Density Function, Regular Channel, Symmetric Channel.

I. INTRODUCTION

In the application of channel codes, one of the most important problems is to develop

an efficient decoding algorithm for a given code. The class of Maximum Likelihood (ML)
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decoding algorithms are designed to find a valid code-word with the maximum likelihood

value. The ML algorithms are known to minimise the probability of the Frame Error Rate

(FER) under the mild condition that the code-words occur with equal probability.

Another class of decoding algorithms, known as bit decoding, compute the prob-

ability of the individual bits and decide on the corresponding bit values independent

of each other. The straightforward approach to bit decoding is based on summing up

the probabilities of different code-words according to the value of their component in

a given bit position of interest. Reference [2] provides an efficient method (known as

BCJR) to compute the bit probabilities of a given code using its trellis diagram. The

main simplification of BCJR has been the SOVA (Soft Output Viterbi Algorithm) [3],

which is a sub-optimum solution. A reduced-search BCJR algorithm is also proposed

in [4]. There are some special methods for bit decoding based on coset decomposition

principle [5], sectionalised trellis diagrams [6], and using the dual code [7], [8].

Maximum Likelihood decoding algorithms have been the subject of numerous re-

search activities, while bit decoding algorithms have received much less attention in the

past. More recently, bit decoding algorithms have received increasing attention, mainly

due to the fact that they deliver bit reliability information. This reliability information

has been effectively used in a variety of applications including Turbo decoding.

Probability density function (pdf ) of the bit Log-Likelihood-Ratio (LLR) can be

used as a tool for analysis of bit decoding algorithms. A recent work [9] on analysis of

Sum-Product decoding of Low-Density-Parity-Check (LDPC) codes takes advantage of

certain symmetry properties for pdf of bit LLR over binary input channels with Additive

White Gaussian Noise (AWGN) interference. It is shown in [10] that for a binary input,

output − symmetric channel defined in [11] (assuming that the all zero code-word is

transmitted), the bit LLR at each node of the code graph posses a symmetric pdf (refer

to [10] for the definition of symmetry) and this symmetry is preserved under belief

propagation decoding. Note that the definition of “symmetry” in the current article is

different from [10]. In [11], it is shown that for a binary input, output − symmetric
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channel, the conditional probability of error is independent of the transmitted code-word.

We prove a more general result concerning the invariance property of the pdf of the bit

LLR in theorem 1 (note that we also use a more general channel model as compared

to [11]).

This paper is organised as follows. In section II, the model used to analyse the

problem is presented. All notations and assumptions are given in this section. Some

theorems are proved on bit decoding algorithms in section III. We conclude in section IV.

This work is a continuation of [12], in which the case of AWGN channel with Binary

Phase Shift Keying (BPSK) modulation is considered.

II. MODELLING

Assume that a binary linear code C with code-words of length N is given. Notation

ci = (ci
1
, ci

2
, . . . , ciN) is used to refer to the ith code-word and its elements. We partition

the code into a sub-code C0

k and its coset C1

k according to the value of the kth bit position

of its code-words. i.e.,

∀ci ∈ C :











cik = 0 =⇒ ci ∈ C0

k ,

cik = 1 =⇒ ci ∈ C1

k ,
(1)

C0

k ∪ C
1

k = C, C0

k ∩ C
1

k = ∅. (2)

We denote bit wise binary addition of two code-words on the code book as, ci⊕cj .

Note that the sub-code C0

k is closed under binary addition. Each code-word will be

partitioned into L blocks of m bits, assuming N = mL, to be transmitted over a channel

with a discrete input alphabet set composed of 2m elements. Notation Ii
j , i = 1, . . . , |C|,

j = 1, . . . , L, is used for these blocks, which will be called m-blocks hereafter. For

example, code-word ci is composed of (Ii
1
, Ii

2
, . . . , Ii

L). We assume that there exists a one

to one correspondence between the 2m possible m-blocks and the input symbols of the

channel. The set of m-blocks referred as I forms a group under binary addition.
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The channel has 2m discrete input and discrete or continuous output as shown in

Figure 1. For channels with discrete output, O is a set of discrete alphabets and p(.) stands

for the probability mass function (pmf ). For the continuous output channels, O ⊂ <n,

where < is the set of real numbers and p(.) stands for pdf .

Channel ModelI ∈ I

p(x|I)

x ∈ O

Fig. 1. Channel Model

Consider the situation of sending a code-word c̃ = (Ĩ1, . . . , ĨL) through the channel.

Each m-block, Ĩj , j = 1 . . . L, will be transmitted and a symbol xj , j = 1 . . . L, will

be received at the channel output. A common tool to express the bit probabilities in bit

decoding algorithms is based on using the so-called Log-Likelihood-Ratio (LLR). The

LLR of the kth bit position is defined by the following equation,

LLRc̃(k) = log
P (c̃k = 1|x1 . . .xL)

P (c̃k = 0|x1 . . .xL)
, (3)

where c̃k is the value of the kth bit in the transmitted code-word and log stands for natural

logarithm. Assuming,

P (c̃k = 0) = P (c̃k = 1) =
1

2
, (4)

for a memoryless channel we have,

LLRc̃(k) = log

∑

ciεC1

k

p(x1 . . .xL|c
i)

∑

ciεC0

k

p(x1 . . .xL|ci)
= log

∑

ciεC1

k

L
∏

j=1

p(xj|I
i
j)

∑

ciεC0

k

L
∏

j=1

p(xj|Ii
j)

. (5)

We are interested in studying the probabilistic behaviour of the LLR.

Assuming a linear code, we derive a set of conditions on the channel for which the

choice of c̃ does not have any impact on the pdf of LLR(k) as long as the value of the
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kth bit remains unchanged. This is a generalisation of the distance invariance property at

the bit level. It will be also shown that, under the same set of conditions, the pdf of a

given bit LLR when the corresponding bit takes the values of zero and one are symmetric

with respect to each other (reflection of one another with respect to the origin). For the

case of channels with binary input a sufficient condition for the LLR of two bit positions

to have the same pdf is presented.

The following sufficient condition is required to carry out the proofs.

∀Ĩ ∈ I, ∀x ∈ O, ∃y ∈ O : p(x|I⊕ Ĩ) = p(y|I), ∀I ∈ I. (6)

This is obviously equivalent to,

∀Ĩ1, Ĩ2 ∈ I, ∀x ∈ O, ∃y ∈ O : p(x|I⊕ Ĩ1 ⊕ Ĩ2) = p(y|I), ∀I ∈ I, (7)

however, as we will see later the form given in (7) is more convenient to use in the proof

of the theorems.

A. Channels with a Geometrical Representation

We use the notation PIi ∈ <n to refer to the channel input symbols representing

Ii. In this case, the m-blocks are just labels of the points in an Euclidean space. We

assume that the signal set at the channel input is geometrically uniform [13]. This means

that for any given pair of signal points, say P
Ĩ1

and P
Ĩ2

, there exists an isometry which

transforms P
Ĩ1

to P
Ĩ2

while leaving the signal set unchanged. In addition, we assume

that the scenario shown in Figure 2 is valid for the corresponding labels.

It is easy to see that under the following conditions,

(i) y is selected as the image of x under the isometry P
Ĩ1

=⇒ P
Ĩ2

(ii) p(x|P
Ĩ1

) is a function of ‖x−P
Ĩ1
‖, ∀x, ∀P

Ĩ1

the condition given in (7) will be satisfied. A well known example for a channel satisfying

condition (ii), is the AWGN channel.
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P
Ĩ1

P
Ĩ2

x y

P
Ii⊕Ĩ1⊕Ĩ2

‖x− P
Ĩ1
‖ = ‖y − P

Ĩ2
‖

‖x− P
Ii⊕Ĩ1⊕Ĩ2

‖ = ‖y − P
Ii‖

P
Ii

Fig. 2. Mapping of points with an isometry

B. Channels without Geometrical Representation

In this section, we assume that the channel output set is a discrete set composed of

elements xj ∈ O. The Channel is characterised by matrix of transition probabilities, A.

Au×v = [aij], aij = p(xj|Ii), u = 2m = |I|, v = |O|. (8)

We can satisfy the condition given in (7), if after permuting all input symbols by

adding an arbitrary m-block I to them, for each column in Au×v, there exists another

column for which the probability values are shuffled in the same order as the correspond-

ing m-blocks. It appears that our channel model is a Regular channel 1. Reference [14]

defines the concept of the Regular channel as follows. Assume that permutation ψI acts

on the set O with the property,

∀ I1, I2 ∈ I, ∀ xj ∈ O ψI1(ψI2(x
j)) = ψI1⊕I2(x

j). (9)

The channel is called a Regular channel, if the probability p(xj|Ii) only depends on

ψIi(xj). It can be verified easily that a Regular channels is always Symmetric in sense

of Gallager [15], where in [15] the symmetry condition only involves the channel symbols

and not the underlying labelling. For a recent introduction to the Regular channels refer

to [16].
1The authors would like to thank G. D. Forney for his invaluable comments on an earlier version of this article,

including pointing out references [9], [14], [16].
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Here are some examples for the discrete case.

Example 1: For the channel shown in Figure 3 we have,

A =











x1 x2 x3 x4

0 1/2− ε1 ε1 1/2− ε2 ε2

1 ε1 1/2− ε1 ε2 1/2− ε2











(10)

0

1

x1

x3

x4

x2

ε2

ε1

1/2− ε1

1/2− ε2

1/2− ε1

ε2

ε1

1/2− ε2

Fig. 3. Channel model for example 1.

Example 2: For the channel shown in Figure 4 we have,

A =





















x1 x2 x3 x4 x5

00 e0 e1 ε 0 0

01 e1 e0 ε 0 0

10 0 0 ε e0 e1

11 0 0 ε e1 e0





















(11)

where e0 + e1 + ε = 1.
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e1

x
1

x
2

x
3

x
4

x
5

00

01

10

11

e1

ε

ε

ε

ε

e0

e0

e1

e0

e1

e0

Fig. 4. Channel model for example 2.

Example 3: For the channel shown in Figure 5 we have,

A =





















x1 x2 x3 x4 x5 x6 x7 x8

00 e0 e1 e2 e3 e4 e3 e2 e1

01 e2 e1 e0 e1 e2 e3 e4 e3

10 e4 e3 e2 e1 e0 e1 e2 e3

11 e2 e3 e4 e3 e2 e1 e0 e1





















(12)

e1
e3

e2

e4

e1

e2
e3 x8

x1

11

00

x3

x5

x6

x4

x7

x2

01

10

Fig. 5. Channel model for example 3: The values of error probabilities which are not shown follow the same pattern

as the values specified on the figure.

where e0 + 2(e1 + e2 + e3) + e4 = 1. It is easy to see that the required condition for the
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columns of the probability matrix are satisfied in all of the above examples.

III. MAIN RESULTS

Using the above definitions and notations, we have the following theorems.

Theorem 1: The pdf of LLR(k) is not affected by the choice of the transmitted

code-word c̃, as long as the value of the kth bit remains unchanged.

Proof: Consider two code-words, c̃1, c̃2 which have the same value in their kth

bit position. Let us assume that c̃1 is transmitted through the channel and (x1 . . .xL) is

received. This results in a realization of random variable LLRc̃1(k) with a value of,

LLRc̃1(k) = log

∑

ciεC1

k

p(x1 . . .xL|c
i)

∑

ciεC0

k

p(x1 . . .xL|ci)
= log

∑

ciεC1

k

L
∏

j=1

p(xj|I
i
j)

∑

ciεC0

k

L
∏

j=1

p(xj|Ii
j)

, (13)

that occurs with probability p(x1 . . .xL|c̃
1). Noting the c̃1 ⊕ c̃2 ∈ C0

k , it is easy to show

that,

LLRc̃1(k) = log

∑

ciεC1

k

p(x1 . . .xL|c
i ⊕ c̃1 ⊕ c̃2)

∑

ciεC0

k

p(x1 . . .xL|ci ⊕ c̃1 ⊕ c̃2)
= log

∑

ciεC1

k

L
∏

j=1

p(xj|I
i
j ⊕ Ĩ1

j ⊕ Ĩ2

j)

∑

ciεC0

k

L
∏

j=1

p(xj|Ii
j ⊕ Ĩ1

j ⊕ Ĩ2

j)

, (14)

where Ĩ1

j , Ĩ
2

j , I
i
j are the jth m-blocks of the code-words c̃1, c̃2, ci, respectively.

If c̃2 is transmitted, assuming condition (7) is satisfied, there exists a y = (y1 . . .yL) ∈

O such that,

p(yj |̃I
2

j) = p(xj |̃I
1

j). (15)

Noting that the channel is memoryless, from (15), we conclude that,

L
∏

j=1

p(yj |̃I
2

j) =
L

∏

j=1

p(xj |̃I
1

j), (16)

p(y1 . . .yL|c̃
2) = p(x1 . . .xL|c̃

1). (17)
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This (y1 . . .yL) results in a realization of random variable LLRc̃2(k) with a value

of,

LLRc̃2(k) = log

∑

ciεC1

k

p(y1 . . .yL|c
i)

∑

ciεC0

k

p(y1 . . .yL|ci)
= log

∑

ciεC1

k

L
∏

j=1

p(yj|I
i
j)

∑

ciεC0

k

L
∏

j=1

p(yj|Ii
j)

. (18)

Using condition (7), we conclude that (14) and (18) are equal to each other. This

means for each realization of the random variable LLRc̃1(k), there exists a realization

of the random variable LLRc̃2(k) with the same value and occurring with the same

probability, i.e., p(y1 . . .yL|c̃
2) = p(x1 . . .xL|c̃

1). This completes the proof that the

random variables LLRc̃1(k) and LLRc̃2(k) have the same pdf .

Theorem 2: The pdf of LLR(k) for value of bit k = 0 or 1 are the reflections of

one another through the origin.

Proof: Consider two code-words, c̃1, c̃2 which have different values in their kth

bit position. Let us assume that c̃1 is transmitted through the channel and (x1 . . .xL) is

received. This results in a realization of random variable LLRc̃1(k) with a value of,

LLRc̃1(k) = log

∑

ciεC1

k

p(x1 . . .xL|c
i)

∑

ciεC0

k

p(x1 . . .xL|ci)
= log

∑

ciεC1

k

L
∏

j=1

p(xj|I
i
j)

∑

ciεC0

k

L
∏

j=1

p(xj|Ii
j)

, (19)

that occurs with probability p(x1 . . .xL|c̃
1). Noting the c̃1 ⊕ c̃2 ∈ C1

k , it is easy to show

that,

LLRc̃1(k) = log

∑

ciεC0

k

L
∏

j=1

p(xj|I
i
j ⊕ Ĩ1

j ⊕ Ĩ2

j)

∑

ciεC1

k

L
∏

j=1

p(xj|Ii
j ⊕ Ĩ1

j ⊕ Ĩ2

j)

= − log

∑

ciεC1

k

L
∏

j=1

p(xj|I
i
j ⊕ Ĩ1

j ⊕ Ĩ2

j)

∑

ciεC0

k

L
∏

j=1

p(xj|Ii
j ⊕ Ĩ1

j ⊕ Ĩ2

j)

, (20)

where Ĩ1

j , Ĩ
2

j , I
i
j are the jth m-blocks of the code-words c̃1, c̃2, ci, respectively.

Assuming condition (7) is satisfied and noting that the channel is memoryless, using

the same approach as theorem 1, it is easy to show that if c̃2 is transmitted, there exists
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a y = (y1 . . .yL) ∈ O occurring with probability p(y1 . . .yL|c̃
2) = p(x1 . . .xL|c̃

1), and

resulting in a realization of random variable LLRc̃2(k) with a value of,

LLRc̃2(k) = log

∑

ciεC1

k

p(y1 . . .yL|c
i)

∑

ciεC0

k

p(y1 . . .yL|ci)
= log

∑

ciεC1

k

L
∏

j=1

p(yj|I
i
j)

∑

ciεC0

k

L
∏

j=1

p(yj|Ii
j)

. (21)

Using condition (7), we conclude that (20) and (21) are only different in their

signs. This means for each realization of the random variable LLRc̃1(k), there exists

a realization of the random variable LLRc̃2(k) with the same magnitude and different

sign which occurs with the same probability, i.e., p(y1 . . .yL|c̃
2) = p(x1 . . .xL|c̃

1). This

completes the proof that the pdf of random variables LLRc̃1(k) and LLRc̃2(k) are the

reflections of one another through the origin.

Note that for the above two theorems, it is not necessary to partition the code-words

into blocks of equal length. In other words, channels with different number of inputs can

be used in subsequent block transmissions. The only condition is that the channels in

different transmissions should be independent of each other.

We will now concentrate on the conditions for two bit positions to have the same

pdf for their bit LLR. These conditions are presented for a memoryless channel with

binary input. Note that unlike in the previous two theorems, here, we require that the

channel remains the same in subsequent transmissions.

Let C be a binary linear code of length N . We can define a permutation P which

permutes the elements of each code-word. The set of permutations which map the code-

book C onto itself forms a group called Auto-morphism group of code C.

Theorem 3: Consider two bit positions of a code-word, a, b such that 1 ≤ a, b ≤

N , a 6= b. The channel model is assumed to be memoryless and time invariant with

binary input. If there exists a permutation P within Auto-morphism group of code C

which transfers bit position a to b,

fc̃a
(y) = fc̃b

((−1)c̃a⊕c̃by), (22)
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where fc̃j
(y), j = 1, . . . , N , denotes the pdf of random variable Y corresponding to

LLRc̃(j).

Proof: From theorem 1, we know that pdf of the bit LLR is independent of the

transmitted code-word. For simplicity, let us consider the situation of sending the all-zero

code-word bit by bit and receiving xj for bit Ĩj in the jth transmission. This results in

a realization of random variable LLRc̃=0(a) with a value of,

LLRc̃=0(a) = log

∑

ciεC1
a

N
∏

j=1

p(xj|I
i
j)

∑

ciεC0
a

N
∏

j=1

p(xj|Ii
j)

. (23)

Permutation P acts on each code-word ci as follows,

P : C0

a −→ C0

b , (24)

P : C1

a −→ C1

b . (25)

In memoryless time invariant channels for each (x1 . . .xL) there exists a (y1 . . .yL)

with the conditional probability P (y1 . . .yL|P(c̃)) = P (x1 . . .xL|c̃) , where P(c̃) is the

code-word obtained by applying permutation P to c̃ and vector y is obtained by applying

permutation P to elements of vector x. Noting this fact and applying the permutation

P to the terms of summations in (23), reveals the one to one correspondence between

terms within the summations in LLRc̃=0(a) and LLRc̃=0(b) as seen in (23) and (26),

LLRc̃=0(b) = log

∑

ciεC1

b

N
∏

j=1

p(yj|I
i
j)

∑

ciεC0

b

N
∏

j=1

p(yj|Ii
j)

. (26)

The rest of the proof follows similar to the proof of theorem 1. This means for

c̃a = c̃b, we have fc̃a
(y) = fc̃b

(y). Using theorem 2, for the case of c̃a 6= c̃b, it easily

follows that fc̃a
(y) = fc̃b

(−y), which completes the proof.

We apply this result to the class of Cyclic codes as a good example for checking

the existence of the desired permutation. Transferring bit position a to b (a ≤ b) in a
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Cyclic code is achievable by cyclic shifting elements of the code-words b−a times to the

right. It is the property of Cyclic codes that any such shift results in another code-word.

Hence, this permutation in Auto-morphism group of the code C exists for the case of

Cyclic codes.

IV. SUMMARY

In this paper the probabilistic behaviour of the bit LLR has been investigated over a

general channel model with discrete input and discrete or continuous output. We proved

that under certain symmetry conditions on the channel, the pdf of the bit LLR for a

specific bit position is independent of the transmitted code-word, if the value of that bit

position remains unchanged. It is also shown that a change in the value of a bit position

makes the pdf of that bit LLR reflect through the origin. Finally, a sufficient condition

for two bit positions to have the same pdf for their bit LLR is presented.
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