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Abstract

This article presents a method for the combined Turbo-code and QAM modulation using coset coding. A symbol-

based Turbo-code acting on symbols of size 4 is used to select a coset along each one-D sub-constellation (using

the partition Z��Z). The proposed method satisfies the conditions for the separability of shaping and coding, and

consequently, can be easily integrated with a shaping algorithm. Numerical results are presented which show that the

proposed configuration outperforms the best known techniques in terms of the complexity and BER performance. The

proposed method also demonstrates an excellent performance near the error floor region.

Keywords: Combined Coding and Modulation, Shaping, Turbo-codes, Symbol-based Interleaving

I. INTRODUCTION

A. Combined Coding and Modulation

Coded modulation goes back to 1974, when Massey suggested the notion of improving system

performance by looking at coding and modulation as a combined entity [1]. The most success-

ful step towards implementing Massey’s thoughts was the invention of Trellis-Coded Modulation

(TCM) by Ungerboeck [2]. A distinct feature of TCM is the application of labeling by set parti-

tioning where the constellation is successively binary partitioned into congruent subsets defining a

mapping of binary addresses to the signal points. Almost at the same time and independent of [2],

Imai and Hirakawa [3] proposed Block-Coded Modulation (BCM) using multi-level binary coding.

This is based on using a set of parallel binary block codes to specify different bit values in a given

binary labeling of the constellation points. The basic structure proposed in [3] has been further

studied and generalized in a number of subsequent research works. Reference [4] which is the state

of the art article in this category includes a detailed review of the relevant literature. It is also a well

established fact that such a multi-level coding scheme can approach the maximum theoretically

achievable rate associated with a set of constellation points1 if: (i) the rate of the underlying binary

codes are adjusted properly, and (ii) these codes are decoded sequentially where each decoder takes

advantage of the decoded bit value produced by its earlier stages [4].

It should be also mentioned that some of the generalizations reported in the literature (e.g.,

[5][6][7]) almost remove the thin line of distinction between the above two families of schemes

(namely those emerging from [2] and [3], respectively) and explain all known methods of com-

bined coding and modulation under the same umbrella.
�This is defined as the mutual information across the channel assuming that the constellation points are used with equal probability.
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B. Shaping

Shaping concerns the selection of the boundary of a multi-dimensional signal constellation to

reduce its average energy. It is well known that by using shaping techniques in conjunction with

conventional band-width efficient modulation methods, one can achieve an additional shaping gain

(refer to [8] for definition) of about one dB with a modest increase in the complexity.

In the work of Wei [9], shaping is a side effect of the method employed to transmit a non-integral

number of bits per two dimensions. Forney and Wei generalized this method in [8]. Conway

and Sloane in [10] introduced the idea of the Voronoi constellation based on using the Voronoi

region of a lattice �s as the shaping region. Voronoi constellations are further studied by Forney

in [11]. In [12], Calderbank and Ozarow introduced a shaping method in which the �-D subspaces

are partitioned into equal sized shells of increasing average energy where a shaping code is used

to specify the sequence of the �-D shells. Lang and Longstaff in [13] use an addressing scheme

which first divides the final constellation into energy shells. Then, a point in a shell is found

by successively decomposing the space into lower-dimensional subspaces via generating function

techniques. The addressing scheme of Lang and Longstaff is further discussed and elaborated

in [14]-[18]. The idea of the trellis shaping is introduced in [19]. This is based on using an infinite

dimensional Voronoi region, determined by a convolutional code, to shape the constellation. In

[20], Kschischang and Pasupathy discuss a shaping method which is based on using the �-D points

with non-equal probability. In [16][21][22] some very low complexity addressing schemes are

given which achieve (or closely approximate) points on the optimum tradeoff curves.

The method reported in [21] has been the lowest complexity addressing method for spaces of

dimensionality up to 32, and the method reported in [22] has been the lowest complexity address-

ing method for spaces of higher dimensionality (up to 512). In the current article, we present an

addressing scheme based on the method proposed in [21]. This reference discusses using a lookup

table for non-uniform merging of points into shaping partitions where the final constellation is

formed in a hierarchy of stages involving the Cartesian product of the lower dimension subspaces.

Reference [21], however, does not provide any method for the indexing of the elements of the table.

In the current article, we present a very simple and practical method based on the enumeration of

the terminal nodes in a binary Huffman tree for this purpose. This technique is explained by a

detailed example. This clarifies the details of the underlying addressing algorithm which offers a

lower complexity as compared to all the methods reported in the literature.
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C. Turbo-code

In 1993, a new class of channel codes, called Turbo-codes, were announced which have an as-

tonishing performance with a reasonable complexity [23]. The basic idea of Turbo-codes is to

make use of some convolutional component codes which are connected in parallel through pseudo-

random interleavers. There have been a number of successful research works addressing the prob-

lem of band-width efficient modulation in conjunction with Turbo-codes [24]-[58].

One class of methods for combining Turbo-codes with multi-level modulation is based on a direct

mapping of the output bits of a Turbo encoder to the constellation points via an interleaver [24]-

[35]. In these schemes, Turbo decoding is achieved in two stages. First, the reliability values cor-

responding to the bits are extracted by adding up the probability of the corresponding constellation

points. Then, these bit reliability values are passed to a conventional Turbo-decoder for iterative

decoding. The complexity of these methods grows with the size of the constellation (spectral effi-

ciency) due to the step required in extracting the reliability values. In addition, the extra interleaving

stage required between the binary encoder and the constellation (to reduce the dependency between

the adjacent bits mapped to the same constellation) adds to the overall system complexity. These

methods perform well for small values of spectral efficiency, however, it is well known that the

corresponding coding gain drops as the spectral efficiency increases (this drop in the coding gain is

due to the dependency between bits) [24][28].

References [36]-[55] present structures based on parallel concatenation of trellis-coded modu-

lation (TCM) schemes. References [36]-[53] are based on binary component codes, while refer-

ences [54][55] are based on codes constructed from rings. In [36][37][51]-[53], the interleaver

operates on bits, while in [38]-[50][54][55] the interleaver operates on symbols. The use of symbol

interleaving has the dis-advantage of reducing the effective interleaving gain, however, it offers

some distinct advantages in terms of performance [46][47][60]-[62]. This usually results in a net

gain for symbol vs. bit interleaving. In addition, in [46][47], it is shown that using a symbol-based

interleaver with two bits interleaving also results in a reduction in the size of the memory required

for Turbo decoding.

A class of methods for combining Turbo-codes with multi-level modulation has initiated from

the work of [39]-[41] and continued in [43]-[45]. In these methods, to produce a systematic en-

coder, the interleaver maps even symbol positions to even symbol positions and odd ones to odd.

The output of the second encoder is de-interleaved and the output symbols from each encoder are
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punctured alternatively. This odd-to-odd and even-to-even interleaving (first introduced in [59]) is

equivalent to using two independent interleavers of half the original length, operating on the even

and odd positions. This structure further reduces the effective length and consequently the inter-

leaving gain of these schemes, as is also observed in [43]. A solution to remove this constraint is

proposed in [43].

Note that the trellis branching factor in [38]-[40][42][46]-[50][54][55] depends on the number of

constellation points and consequently the complexity of the soft output decoder for the underlying

trellis can be substantially higher than the standard binary Turbo code. This problem is solved

in [41][52][53] and in the current article by allowing for some uncoded bits. In this case, the

underlying binary component codes operate on the cosets (and not on the individual constellation

points), and consequently, the decoding complexity does not grow with the size of the constellation.

Reference [57] presents a multi-level Turbo-coded modulation scheme where different labeling

bits of a signal constellation are assigned to different Turbo-codes of appropriate code rates. The

code rates are selected using information theoretic arguments involving channel cutoff rate and

are implemented by a puncturing of a basic binary Turbo-code structure. This scheme requires

binary codes of different rates to be implemented over different labeling bits, and consequently, it

is not practically easy to implement. This configuration also results in a reduction in the effective

code-word length, and consequently, a reduction in the achievable interleaver gain.

The above references discuss a variety of successful techniques to combine Turbo-codes with

multi-level modulation. Many of these schemes perform fairly close to the maximum rate achiev-

able for their underlying signaling scheme2. However, some of these schemes have certain short-

comings, including: (i) can not be easily scaled (i.e., their complexity increases with an increase

in the spectral efficiency)[24]-[35][38]-[40][46]-[51][54][55], and/or (ii) performance drops with

an increase in the spectral efficiency[24]-[35], and/or (iii) show an early error floor [48][49] (and

to some extent [39]-[41]), and/or (iv) impose certain restrictions on the structure of the interleaver

reducing the effective interleaver length and the corresponding interleaving gain [39]-[41][57].

This article presents methods for the combined Turbo-code and QAM modulation using coset

coding where the underlying binary code is a symbol-based Turbo-code which operates on the basis

of two-bits by two-bits interleaving (regardless of the size of the constellation). The use of two-bits
�This means that the effect of shaping is neglected and the maximum achievable rate is computed assuming that the constellation

points are used with equal probability.
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by two-bits interleaving results in reducing the size of the required memory as discussed in [46][47].

The proposed method satisfies the conditions for the separability of shaping and coding in [8],

and consequently, can be easily integrated with a shaping algorithm. The only prior work which

discuses the application of shaping to Turbo-codes is reference [50] which is based on a direct

mapping of bits (same category of work as reported in [24]-[35]) to the points of a a nonuniform

constellation. However, the shaping gain achievable using the method proposed in [50] is limited

to about 0.2 dB. In addition, the signal constellations with non-uniform positioning of points may

not be easy to implement. The problem of shaping in conjunction with Turbo-codes is also briefly

mentioned in [4].

II. PROPOSED METHOD

A common approach to Turbo-coded modulation is based on a direct mapping of the output

bits of a binary Turbo-code to the points of a base constellation via an interleaver (the role of the

interleaver is to reduce the dependency between the bits mapped to the points of the base constella-

tion) [24]-[35]. In this configuration, the channel can be considered as m binary input, continuous

output channels (the output of each such binary channel is the corresponding bit LLR), where �m is

the number of points in the base constellation. These binary channels are not necessarily identical

and also their outputs are dependent on each other. As we will see in the following, this dependency

between the bits plays a crucial role in the achievable performance.

The value of the achievable rate over the equivalent binary channels, namely the value of the mu-

tual information associated with different bits, can be easily computed as explained in [4]. Figure 1

shows an example of such calculation for a 4-point one-dimensional constellation using both Gray

and Natural labeling. Referring to Fig. 1, we observe that there is a substantial gap of about 1.5dB

between the overall achievable rate of the underlying binary channels using the two methods of

labeling. This may appear in contradiction with the result of [4] which using chain rule of mutual

information shows that the overall achievable rate is independent of the labeling and is indeed equal

to the mutual information associated with the 4-point constellation. Note that the method explained

in [4] requires that the underlying binary channels are decoded sequentially where each decoder

takes advantage of the decoded bit value produced by its earlier stages. It is also observed that this

gap becomes smaller for higher values of signal-to-noise ratio. Referring to Fig. 1, we also observe

that there exists a noticeable difference between the achievable rate associated with different bits.
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Fig. 1. Achievable rate over the binary channels associated with the bit labels in a one-D constellation with four points

(assuming independent decoding).

Figure 2 shows different configurations for the overall achievable rate of a 4-point one-dimensional

constellation. This figure also contains the capacity of an AWGN channel for the sake of compar-

ison. The two curves labeled as “binary independent channels” are simply obtained by adding the

mutual information associated with the corresponding equivalent binary channels. This indicates

the achievable rate if the underlying binary channels are decoded independent of each other. The

curve labeled as “4-point constellation with equal probability of points” is the mutual information

associated the original constellation when the constellation points are used with equal probabil-

ity. This is indeed the sum of the achievable rates of the underlying binary channels if these are

coded independently (using different code rates for the underlying binary channels), but decoded

sequentially where each decoder takes advantage of the decoded bit value produced by its previous

decoders. The difference between this curve and the two curves labeled as “binary independent

channels” accounts for the effect of the memory between underlying binary channels (note that this

difference is substantially higher for the Natural labeling). We intent to improve the performance

by finding a method to exploit this dependency between bits in the decoding process. The curve

labeled as “4-point constellation with optimum probability of points” is the mutual information
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associated with the 4-point constellation maximized over the input probability assignment. The

difference between this curve and those labeled as “4-point constellation with equal probability of

points” accounts for the effect of shaping (using the constellation points with non-equal probabil-

ity). Note that the shaping gain here is limited to about 0.5dB because the number of constellation

points is small.
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Fig. 2. Achievable rates in a one-D constellation with four points using different configurations, as well as the maxi-

mum achievable rate in an AWGN channel.

In general, to apply shaping, the points in the base sub-constellations are partitioned into a set of

shaping partitions of increasing average energy where the shaping algorithm uses part of the input

bits to select a sequence of shaping partitions in the Cartesian product of the base sub-constellations.

Similarly, to apply channel coding, the set of the points in the base sub-constellations are divided

into a set of coding partitions where the channel coding algorithm selects a sequence of the coding

partitions in the Cartesian product of the base sub-constellations. It is well known that the shaping

and the coding algorithms can operate independent of each other under the condition that each

shaping partition contains an equal number of points from each coding partition [8]. In this case,

the shaping block will use a subset of input bits to select a shaping partition along each base sub-

7



constellation and then the channel coding part will use the rest of the bits to select a point within

each of the selected shaping partitions. Note that a major assumption to have independence between

shaping and coding algorithms is that the shaping bits are not channel coded.

The case of two bit interleaving (used in the current article) is especially attractive because the

number of branches starting from each state will be equal to four, resulting in two branches per

bit. As a result, the computational complexity (per bit) of the forward-backward algorithm on the

resulting trellis will be the same as the standard case of single bit interleaving, while the effective

length of the trellis reduces by a factor of two, reducing the memory required to store the state

probabilities in the forward-backward algorithm by a factor of two [47]. As an example, in Fig. 4,

a 16-point constellation is decomposed into 4 cosets using the partition chain Z��Z . These cosets

are labeled by two bits using Gray labeling and are selected by the output bits of a symbol-based

Turbo-code with m � �. For larger values of m, the complexity of the resulting trellis for the

symbol-based interleaving increases exponentially with m, making it infeasible.

In conventional shaping algorithms used with TCM, the shaping partitions are created by using

a set of concentric circles in 2-D sub-constellations. In this case, the coset decomposition required

for channel coding is also applied in 2-D by partitioning of Z� using its subsets obtained by scaling

and/or 45 degrees rotation. However, in our case, the shaping and coding partitions are applied to

the one-D sub-constellations. The reason is that we would like to have a 4-way partition to apply

a symbol-based Turbo-code with four symbols. However, it turns out that using a 4-way partition

in 2-D results in a small minimum distance within cosets which will be problematic in our case.

Figure 4 shows such a structure for the 16 points constellation satisfying the separability condi-

tion. The achievable shaping gain for this constellation can be computed using the technique given

in [16]. The result for a constellation of dimension 32 as a function of Constellation Expansion

Ratio (refer to [8] for definition) and for 4 one-D shaping partitions is shown in Fig. 3. The same

graph also contains the shaping gain achievable in 32 dimensions, as well as the shaping gain in an

infinite dimensional space assuming continuous approximation [15]. It is observed that by using

4 one-D shaping partitions, one can achieve most of the available shaping gain in 32 dimensions.

Note that the curves corresponding to optimum shaping in 32 or � dimensions are based on cir-

cular 2-D sub-constellations (conventional shaping) and consequently start from a shaping gain of

0.2 dB (gain of a circle in 2-D), while the curve corresponding to the method proposed here stars

from zero dB. It should be added that in all three curves the CER is measured in two dimensions.
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Such a coset decomposition of a large constellation results in the complexity of the symbol-based

decoder to be independent of the number of constellation points (i.e., determined by the number

of cosets). The decoding proceeds by: (i) detecting the sequence of cosets by decoding the Turbo-

code (recovering part of the input bits), then (ii) detecting a point within the selected cosets, and

finally, (iii) recovering the second sequence of bits using the inverse of the addressing scheme used

for shaping. The probability values required to initialize the Turbo decoder are computed by adding

the probability of points within each coset, and then the conventional iterative decoding procedure

follows.

0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2

10 10 101001 01 0101000000 00

0110 1000 01 1100 00 1101 101100101101

Shaping labels

Coding labels

Shaping symbols

Coding symbols

11 1111 11

3 3 2 2 1 11 33220 0 0 01

Fig. 4. A one-D constellation of 16 points divided into 4 cosets with related coding and shaping labels.
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As far as coding within a coset is concerned, in many situations, one does not need any extra level

of error protection because the distance between the points is already very large. For example, in

the constellation in Fig. 4, the square distance with a coset is 16 times larger than the distance of

the original constellation. However, in the case of using Turbo-code with large coding redundancy,

due to the large gain of these codes, the distance within a coset may not be sufficient to guarantee

the desired probability of error (requiring a second level of error protection within the cosets). The

corresponding coding scheme is composed of two independent coders, one symbol-based Turbo-

code (using four symbols) of an appropriate rate selecting the sequence of cosets and a second coder

selecting a point within the coset. Decoding proceeds by first detecting the sequence of cosets by

decoding the Turbo-code (recovering part of the input bits). Then, knowing the sequence of cosets,

the decoder for the second channel code will find the final point within the coset and recovers the

sequence of shaping bits using the inverse of the addressing scheme. We refer to this method as

the sequential decoding. Using the results of [4], we know that using the method of sequential

decoding, one can exploit the full achievable rate over the corresponding constellation. Figure 5

shows the achievable rate in a 16-point one-D constellation divided into 4 cosets for sequential

decoding. It is observed that for a redundancy of about one bit per one-D (or lower) in the coding

of cosets (point specified by a circle on Fig. 5), the achievable rate for the signaling within cosets is

already well in its saturation region (flat portion of the curve), meaning that the underlying channel

requires negligible coding redundancy to achieve reliable transmission. This means that the coding

within cosets is in most cases not needed. Note that coding redundancies in excess of 1 bit per

one-D are very unlikely to be used in practice due to requiring a signal constellation of a large size.

The above claim is supported by the fact the minimum square distance with the cosets is equal to

16 indicating a gain of 12 dB in square distance.

In general, one can use any lattice or Trellis code for coding within cosets. It is usually sufficient

to use a simple lattice code, for example based on the lattice Dn, for coding within cosets. Lattice

Dn is based on the single parity check code and results in doubling the minimum square distance

within a coset. LatticeDn also enjoys a very simple soft decision decoding algorithm using Wagner

rule. This decoding rule is based on performing a hard decision along each co-ordinate and accept-

ing the resulting point if the parity is satisfied, or selecting the next closets point (of a different

parity) along the co-ordinate for which the initial hard decision is least reliable. This operation will

flip the overall parity, resulting in a valid element of the Dn lattice.
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The major drawback for using an extra level of channel coding within cosets is that it can not

be easily integrated with a shaping algorithm. This means that the desirable situation of having

independence between the channel coding and the shaping which results in some simplification is

not valid any more. In the following, we explain a solutions for this problem corresponding to the

configuration shown in Fig. 6.

The proposed solution corresponding to the configuration in Fig. 6 will add the channel coding

redundancy to the sequence of points at the output of the shaping block (without applying shaping

to the symbols corresponding to the channel coding redundancy). Note that the proposed configu-

ration based on using a lattice code is compatible with this configuration. In this case, the receiver

side will first recover the sequence of points and pass the result to the block inverting the addressing

operation to recover the shaping bits. This means that the operation of the corresponding channel

decoder for decoding within cosets will not be affected by the presence of shaping. This configu-

ration will obviously result in some loss in the achievable shaping gain, but as the redundancy is

usually quite small, the degradation will be negligible. For example, if the shaping gain is equal

to 1dB, having a code of rate ����� (corresponding to lattice D��) within cosets will reduce the

shaping gain to ����dB. Note that this configuration for encoding/decoding within cosets has no
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Fig. 6. Block diagram for coding/shaping.

impact on the operation of the main channel coding component and different coding/shaping parts

will function in harmony.

A second method for exploiting the dependency between the binary channels (appropriate for

methods based on a direct mapping of coded bits to the constellation points [24]-[35]) is to in-

corporate the constellation as a component in the iterative loop. We have implemented such an

algorithm and the experiment was not very successful (resulted in a marginal improvement in BER

performance).

III. A SIMPLE AND EFFECTIVE SHAPING ALGORITHM USING A LOOKUP TABLE

In the following, we present an efficient addressing scheme for shaping in a 32-dimensional

space. First, the one-D sub-constellations are partitioned into 4 shaping partitions as shown in

Fig. 4. This results in 16 shaping partitions (using Cartesian product) in the 2-D sub-constellations.

We assume that addressing is achieved in a hierarchy of stages which each stage involves the Carte-

sian product of two (similar) lower dimensional sub-spaces. This results in 5 stages to reach to di-

mension 32 starting from 2-D sub-spaces. This hierarchy is shown in Fig. 7. This number of one-D

shaping partitions is enough to realize most of the achievable shaping gain in 32-D (refer to Fig. 3).

Note that in all our discussions, addressing refers to selecting a 2-D shaping partition within each

2-D sub-constellation. Obviously, if each such 2-D shaping partition contains �r signal points, then

one will need another r bits per 2-D to select the final point with the selected 2-D shaping partition
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(in each sub-constellation). We do not discuss the effect of these extra bits because these are simply

extracted from the input bit stream.

Assuming 16 shaping partitions in 2-D, we obtain 	� � 	� � �
� elements in the Cartesian

product of the 2-D sub-constellations in 4-D sub-spaces. In general, we refer to the elements formed

in the Cartesian product of the lower dimensional shaping partitions as Clusters. The 4-D clusters

are ordered according to their average energy, and 	� subsequent clusters are merged into a 4-D

shaping partition. This results in 	� shaping partitions of equal cardinality in the 4-D sub-spaces.

Again, the Cartesian product of the 4-D shaping partitions (resulting in �
� clusters in each 8-D

sub-space) are ordered according to their average energy and subsequent clusters are merged into

8-D shaping partitions. To reduce the addressing complexity, the merging at this stage is achieved

using non-equal number of clusters in subsequent 8-D shaping partitions. In specific, the number of

clusters (in the order of increasing average energy) merged into subsequent 8-D shaping partitions

are equal to f	�� 	�� ��� ��� ��� ��� ��� ��g, respectively. This results in � shaping partitions in 8-D

sub-spaces. Following that, we obtain 64 clusters in the 16-D sub-spaces (which are not merged)

and ���� clusters in the 32-D space (which are not merged). Note that the cardinalities of the

16-D and 32-D clusters are not equal (these cardinalities are all an integer power of two). The

final constellation is selected from the 32-D clusters of least energy such that the overall bit rate

is 54. Note that without shaping, the bit rate would be 	� � � � ��. This means that the shaping

redundancy is equal to � bits/32-D, resulting in,

CER �
	�

������
� 	��


The addressing at the highest level of the hierarchy is achieved using a Huffman tree as shown

in Fig. 8. The first step is to decide if the selected 32-D cluster belongs to Set I, Set II or Set III.

This is achieved by assuming that the 	�� clusters are labeled by the binary number obtained by

assigning zero to the left branch and one to the right branch at each node of the tree. Then, the

label of each final node (corresponding to a cluster) is obtained by concatenating the binary labels

of its branches (where the most significant bits correspond to values closer to the top of the tree).

This will result in the labels of the final nodes to be ordered increasingly from left to right. Note

that the label of the final nodes are composed of � bits (for Set I), � bits (for Set II), and � bits (for

Set III). In this case, to select a 32-D cluster, we extract � bits from the input stream and compare

its numerical value with the threshold T� which is the label of the last cluster in Set I. If the label
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is smaller or equal to T�, then we are within Set I, and have another 
� � � � 
� bits to proceed

with the addressing within the selected cluster. Otherwise, we extract one more bit from the input

stream, resulting in an � bit label. We compare the numerical value of the resulting �-bit label with

the threshold value T� which is the label of the last node in Set II. Again, if the label turns out to

be smaller or equal, we proceed with the addressing within Set II using the remaining bits (in this

case, �� bits are left). If the label turns out to be larger than T�, then we extract one more it from

the input stream and use the resulting � bits to select an element within Set III (in this case, we are

left with �� bits to select an element within Set III).

After selecting one of the 	�� clusters in 32-D (as explained above), to proceed with the ad-

dressing within the selected cluster, we assume that there exists a look-up table with 	�� memory

locations each of � � � � 	� bits, where the 3-bit address sections point to the 8-D shaping parti-

tions building a given 32-D cluster (note that each 32-D cluster is simply the Cartesian product of

four 8-D shaping partitions). This results in 	��� � 	� � ���� bits of ROM.

To proceed with the addressing within 8-D shaping partitions, we note that the selected 8-D

shaping partition is composed of 	�� ��, or �� of 8-D clusters (corresponding to �� 
� � bits, respec-

tively). In this case, we extract another �� � or � bits from the input (for each 8-D sub-space) to

bring the total number of bits per 8-D to � bits. We use these 8-bit addresses to select an 8-D cluster

in each 8-D sub-space. To do this, we assume that there exists a look-up table with 256 memory

locations each of �� � � � bits, where each 4-bit section of these 8-bit addresses points to the 4-D

shaping partitions construing a given 8-D cluster. These bits are used to select one 4-D shaping

partition in each 4-D sub-space.

To proceed with the addressing within 4-D shaping partitions, we assume that there exists a look

up table of �
� memory locations each of � � � � � bits, where each 4-bit section of these 8-bit

addresses points to the 2-D shaping partitions construing a given 4-D cluster. These bits are used to

select one 2-D shaping partition in each 2-D sub-space. As mentioned before, there will be another

group of input bits (depending on the number of signal points within each 2-D shaping partition)

which will be used to select the final point within each 2-D sub-constellation. The total memory

requirement for the proposed addressing scheme is equal to,

Mtotal � ���� � ���� � ���� � ���� bits � ���� K

This means the overall complexity of this addressing scheme is 0.73 K bytes (8 bits) of ROM and a
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negligible number of comparisons. This scheme has been simulated and the shaping gain achieved

is about 1 dB.

Note that the clusters always happen in pair (of equal energy), say A�B and B �A, unless the

two constituent lower dimensional components are the same, say A�A. This property can be used

to reduce the size of the required memory by a factor of close to two at the price of a very small

number of comparisons (comparing the labels to some anchor points corresponding to the label of

the clusters with identical components).

Example: Assume that each 1-D sub-constellation is composed of 16 points (divided into 4

shaping partitions). The input is composed of a total of 57 shaping bits plus another 64 bits. We are

only concerned with the operation of the selection of the shaping partitions using the 57 shaping

bits. The selection of the final points within the shaping partitions is a trivial task. The same

procedure will apply to any other scenario where the number of 1-D points is different from 16

while the number of 1-D shaping partitions is 4. Let us consider the following cases for the 57

shaping bits:

Case I: 0010010... The first 7 bits are 0010010 with the value of 18 that is less than T� � ��.

In this case, the selection will be within Set I in Fig. 2. This value of 18 will point to a location

in the corresponding look up table which contains 4 pointers each of 3 bits specifying the related

8-D clusters (there are 4 of these 8-D clusters). After knowing the 8-D clusters, we proceed with

the addressing within each of those 8-D clusters by extracting an appropriate number of bits from

the remaining input bits in a sequential manner and using those bits to select their related elements

within the 4-D and subsequently 2-D sub-spaces by referring to the related look-up tables used for

the addressing within 4-D and 2-D sub-spaces.

Case II: 1010010 0 100100... The first 7 bits are 1010010 which is equal to 82 and is greater than

T� � ��. To proceed, we extract one more bit from the input which is equal to 0. Then, the first 8

bits, namely, 10100100 with the value of 164 is compared to T� � ���. As the label is smaller than

T�, then we are within the Set II. In this case, we are left with 49 shaping bits to proceed with the

selection of the 8-D clusters.

Case III: 1111011 1 100100... The first 7 bits are 1111011 with the value 123 which is larger

than 69 and the first 8 bits, namely 11110111 are of value 247, so we are within Set II and we use

the first 8 bits for the addressing in Set II.

Case IV: 1111110 1 100100... The value of the first 7 bits is larger than T�=69 and the value of
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the first 8 bits is larger than T� � ���, so we are with Set III and we extract the first 9 bits for the

addressing with Set III

For the sake of comparison, in [63][64] (adopted for TIU-T telephone line modem standard) an

addressing scheme based on direct shell mapping [13] is given where the overall complexity in a

	�-D space is about �� multiply-adds/�-D together with a few divisions and a memory of about

��
 kilo-bytes and achieves nearly optimum tradeoff with a CER up to 	�
. In [18], an example for

N ��� is given which needs 1440 multiply-adds (assuming a 16 bit processor) and a memory of

1.5 kilo-bytes to achieve a tradeoff point with �s � 	�	
 dB, CER�	�
. For N ���, an algorithm

is given in [22] which can achieve �s�	�	� dB, CER�	�
 using 	�� additions, 4 multiplications

and ��� kilo-bytes of memory. As an alternative, reference [22] can achieve the same tradeoff point

using about one multiply-add per �-D and a memory of 	�� kilo-byte. As another example, refer-

ence [22] can achieve �s�	�� dB for N ���, CER�	��
 using 	�� additions, � multiplications

and 	�	 kilo-bytes of memory. It is observed that the algorithm presented in the current article is

substantially less complex as compared to the above methods.

Keep 194 elements
Total rate=121 bits

64

4096

8 8 8

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

8

64

Fig. 7. Tree structure of the hierarchy used for addressing 32 dimensions.

IV. NUMERICAL RESULTS

Figure 9 shows the BER performance of the proposed scheme for a spectral efficiency of 4,6

bits/sec/Hz where the coding redundancy is equal to 2 bits per two dimensions. Block length is

2048 symbols and the code has 4 memory elements, the interleaver (of size 2048 symbols) is S-
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T1

T2

Rate/element=50 bits

70 nodes @ depth=7

108 nodes @ depth=8

Rate/element=49 bits

16 nodes @ depth=9

Rate/element=48 bits

Set I:

Set II:

Set III:

Fig. 8. Structure of the Huffman tree used for addressing.

random with S � 	� [65] (all the interleavers used in different numerical simulations are selected

to maximize the value of S). In these curves, the system is simulated based on a partitioning of a

one-D constellation of 8,16 points, respectively, into 4 cosets. An appropriate puncturing is applied

to the parity streams of the symbol-based Turbo-code acting on the cosets to adjust the rate at 	��.

The puncturing patterns for the two parity sequences is of the form 	�	� � � � and �	�	 � � � where 1

means transmission and zero means puncturing. The simulation is conducted without shaping, then

a gain of 0.95 dB is included to reflect the effect of shaping.

Reference [53] is also based on using a set of uncoded bits to avoid the growth of the complexity

with the number of constellation points. This reference is one of the few works reported in the lit-

erature which studies constellations with higher values of spectral efficiency appropriate for ADSL

applications. Note that reference [53] takes advantage of bit interleaving (unlike the current work)

in conjunction with a special labeling method. Reference [53] is motivated by the observation that

“the very large constellation sizes used in ADSL systems make both conventional bit-level Turbo-

coded QAM and symbol-level Turbo TCM very complicated to decode in the receiver side”. The

best result of [53] (without shaping) for a scheme with a spectral efficiency of 4 bits/sec/Hz (using

a 64 QAM) requires an Eb�N� of about 8.4 dB (refer to Fig. 9 for comparison). In [53], another
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example for a spectral efficiency of 12 bits/sec/Hz is given which is about 2.7 dB away from the

Shannon limit, while the distance o Shannon limit in our case is mostly about 1 dB. Note that the

basic structure of the encoder in [53] (use of uncoded bits and bit interleaving) is similar to [52].

As another example of schemes with high spectral efficiency, reference [28] reports results (with-

out shaping) for a scheme with a spectral efficiency of 6 bits/sec/Hz (using a 256 QAM) which

requires an Eb�N� of about 14 dB [28] (refer to Fig. 9 for comparison). Note that reference [28]

is based on a direct mapping of bits to the constellation points (same category of work as reported

in [24]-[35]).

To study the effect of coding redundancy, Fig. 11 shows the BER performance of the proposed

scheme for a spectral efficiency 5,7 bits/sec/Hz when the coding redundancy is equal to 1 bits per

two dimensions. All system parameters are the same as in Fig. 9 except that the puncturing patterns

for the two parity sequences is of the form 	�����	�����	� � � � and ���	�����	� � � � resulting in

a code rate of 3/4 for the symbol-based Turbo-code acting on cosets.

Figure 11 provides comparison with the method of [24]-[35] for 2 bits/sec/Hz (without shaping).

The block length is 4096 bits and the code rate is 1/2 with 16 QAM. The symbol-based interleaver

of size 2048 is S-random with S � 	�. The other method requires two interleavers of size 4096

and 8192 (the second interleaver is used to shuffle the bits prior to mapping to the constellation

points). These two interleavers are also S-random with S � �� and S � ��, respectively. Note that

the difference in energy between these curves is very close to the difference between the curves

labeled as “4-point constellation with equal probability of points” and the one labeled as “binary

independent channels” with Gray labeling (for a spectral efficiency of 1 bit/dimension) in Fig. 2.
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