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Abstract

In this paper!, we study certain properties of the bit decoding algorithms for the case of linear
binary block codes. Our focus is on the probability distribution function (pdf) of the bit Log-
Likelihood-Ratio (LLR). We consider a general channel model with discrete input and discrete or
continuous output. We prove that under a set of mild conditions on the channel the pdf of the bit
LLR of a specific bit position is independent of the transmitted code-word. It is also shown that, the
pdf of a given bit LLR when the corresponding bit takes the values of zero and one are symmetric
with respect to each other (reflection of one another with respect to the origin). For the case of
channels with single bit input a sufficient condition for two bit positions to have the same pdf is

presented.
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I. INTRODUCTION

In the application of channel codes, one of the most important problems is to
develop an efficient decoding algorithm for a given code. The class of Maximum
Likelihood (ML) decoding algorithms are designed to find a valid code-word with the
maximumn likelihood value. The ML algorithms are known to minimize the probability
of the Frame Error Rate (FER) under the mild condition that the code-words occur
with equal probability. Another class of decoding algorithms, known as bit decoding,
compute the probability of the individual bits and decide on the corresponding bit
values independent of each other. This results in minimizing the value of the Bit
Error Rate (BER). Note that unlike ML algorithms, in the case of the bit decoding
algorithms the collection of decoded bits do not necessarily form a valid code-word.
The straightforward approach to bit (or more generally symbol in the case of non bi-
nary codes) decoding is based on summing up the probabilities of different code-words
according to the value of their component in a given position under consideration. A
number of research works have addressed the problem of finding bit decoding algo-
rithms of a reduced complexity (as compared to an exhaustive method) assuming a
soft decision at the channel output. An optimum symbol decoding rule is proposed
in [1] which is still exhaustive, but uses the set of code-words of the dual code in
the decoding process. This method results in a lower complexity as compared to an
exhaustive search if the dual code has a smaller number of code-words. Two modifi-
cations of the basic exhaustive method are presented in [2]. It gives a set of necessary
and sufficient conditions for achieving minimum symbol error probability decoding
and uses these conditions to derive a non-exhaustive optimum decoding algorithm
of a reduced complexity. Bit-by-bit soft-decision decoding of binary cyclic codes is
considered in [3] where the authors have modified the optimum decoding rule so as
to reduce the complexity while maintaining good performance.

The problem of decoding linear block code used over a binary symmetrical channel
with a given cross over probability is considered in [4-7] where the objective is to
minimize the probability of an information bit error. Reference [4] gives an optimal

rule for selecting coset leaders. Seguin [5] notes that the probability of an information



symbol being in error is a function of the generator matrix chosen when the decoder
is fixed. Seguin shows how to choose the optimal generator matrix when a fixed
standard array code has been selected. A more difficult problem of simultaneously
choosing the generator matrix and decoder that minimizes the probability of an infor-
mation bit error is considered by Dunning [6]. Tolhuizen and van Gils [7] show that
the large number of computations required for Dunning’s procedure can be reduced
somewhat by using the automorphism group of the code. Some authors [8,9] have
considered specific coset leader rules for use when cross over probability of BSC is
small and the encoding is systematic. Elia and Prati [8] give a decoding strategy, and
note that for some codes it outperforms minimum weight coset leaders for small cross
over probability. Montgomery and Vijaya Kumar [9] give another improved (though
still sub-optimal) decoding strategy.

In an early paper Posner examines the information bit error probability obtained
by using a linear block code over an Additive White Gaussian Noise (AWGN) channel
with low signal to noise ratio and hard decision decoding [10]. More recently, in [11]
the performance of linear block codes is examined when used on AWGN channel with
soft decision decoding. Some asymptotic expressions are derived in [12] for bit error
probability under optimum decoding for the AWGN channels. There have been also
some works on bounds and approximation on the bit error probabilities of decoding
convolutional codes [13] and trellis codes [14].

Maximum Likelihood decoding algorithms have been the subject of numerous re-
search activities, while bit decoding algorithms have received much less attention in
the past. The reason being that the bit decoding algorithms are known to offer a
BER performance very close to that of ML algorithms, while they have a substan-
tially higher level of decoding complexity. More recently bit decoding have received
increasing attention, mainly due to the fact that they deliver soft output decision
(reliability information) which can be advantageously exploited in both uncoded and
coded systems. In 1993, a new class of channel codes, called Turbo-codes [15], were
announced which have an astonishing performance and at the same time allow for a

simple bit decoding algorithm. Due to the importance of Turbo-codes, there has been



a growing interest among communication researchers to work on the bit decoding al-
gorithms. Reference [16] provides a method (known as BCJR) to compute the bit
probabilities of a given code using its trellis diagram. An efficient exact APP decod-
ing algorithm based on coset decoding principle proposed in [17]. There are also some
special optimum methods for bit decoding of linear block codes based on sectionalized
trellis diagrams [18] and based on using the code-words of the dual code [19]. The
main simplification of BCJR has been the SOVA (soft output Viterbi Algorithm)
of Hoeher and Hagenauer [20] which is a sub-optimum solution. A reduced-search
BCJR algorithm is also proposed in [21]. Other researches have been done on reducing
complexity of bit decoding like early detection and trellis splicing in [22].

More recently, in [23], Abedi and Khandani present an analytical method for per-
formance evaluation of binary linear block codes using an AWGN channel model with
Binary Phase Shift Keying (BPSK) modulation. The computation is based on using
the probability distribution function of the bit LLR which is expressed in terms of
the Gram-Charlier series expansion. This expansion requires knowledge of the sta-
tistical moments of the bit LLR. An analytical method is presented for calculating
these moments using some straight-forward recursive calculations involving certain
weight enumerating functions of the code. It is shown that the estimate of the bit
error probability provided by the proposed method will asymptotically converge to
the true bit error performance. Numerical results are provided for the (15,11) Cyclic
code which demonstrate close agreement with the simulation results.

This paper is organized as follows, in section II the model used to analyze the prob-
lem is presented. All notations and assumptions are in this section. Some examples
of our general channel model are presented in section III. We prove some theorems

on bit decoding algorithms in section IV. This work is a continuation of [24] in which

the case of AWGN channel with BPSK modulation is considered.



II. MODELING

Assume that a binary linear code C with code-words of length N is given. Using
notation ¢' = (c},c},...,cy) to refer to a code-word and its elements, we partition
the code into a sub-code CP and its coset C} according to the value of k™ bit position

of its code-words c'.

Ve'eCif ¢, =0=c"¢€ C} (1)
if ¢=1=c€ C}
CRUC, =C, CNC,=2

We define bit wise binary addition of two code-words on our code book as, ¢’ & ¢’.
Note that the sub-code C} is closed under binary addition and all code-words are
equally probable to be sent. Each code-word will be partitioned into L blocks of m
bits, i.e., N = mL, to be transmitted over a channel with a discrete input alphabet
set composed of 2™ elements. Notation I;, i=1,...,C|, 7 = 1,...,L, is used for
these blocks which will be called m-blocks hereafter. For example code-word ¢ is
composed of (I}, I, ..., I;). Note that it is not necessary to partition the code-words
into blocks of equal length. In other words, channels with different number of inputs
can be used in subsequent block transmissions. The only crucial condition is that the
channels in different transmissions should be independent of each other (memoryless
channel). For simplicity of modeling, we use fixed length m-blocks in our following
discussions and assume that there exists a one to one correspondence between the 2™
possible m-blocks and the input symbols of the channel. The set of m-blocks referred
as Z form a group under binary addition.

The channel has 2™ discrete input and discrete or continuous output as shown in
Figure 1. For the continuous output channels, O C R", where R is the set of real
numbers and small p(.) stands for pdf. For channels with discrete output, O is a set
of discrete alphabets and small p(.) stands for probability mass function (pmf) 2.

Consider the situation of sending a code-word ¢ through the channel. Each m-

block of the code-word ¢ will be transmitted and a symbol x; will be received at each

2Note that without loss of generality we have combined modulation and channel into a new channel model.
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Fig. 1. Channel Model

channel use.

A common tool to express the bit probabilities in the bit decoding algorithms is
based on using the so-called Log-Likelihood-Ratio (LLR). The LLR of the k' bit is
defined by the following equation.

S p(et|xy ... xr1)

p(ék = 1|X1 e XL) CiECi
LLR(k)=1o — =lo . 2
(k) =log e O x1) S plepa %) 2)
cieC?

where ¢, is the value of k** bit in the transmitted code-word, €. For the case of

equally likely code-words, we have,

. L .
> p(x1...xg|c’) > 11 p(x;11)
cieCl cieCl J=1
LLR(k) = log = log - (3)

ci;g Pl x/e) ci% Jl;IIP(XjH;)

Given the value of bit LLR, decision on the value of bit k£ is made by comparing
the LLR with a threshold of zero. We are interested in studying the probabilistic
behavior of the LLR. Assuming a linear code, we derive a set of conditions on the
channel for which the choice of € does not have any impact on the resulting probability

distribution as long as the value of the k* bit remains unchanged.

We consider two different channel models both with discrete input alphabet:

o Channels with Geometrical Representation

o Channels without Geometrical Representation



We define an endomorphism ¢, on code C which permutes the code-words by adding

code-word ¢ to them,

b :C—C (4)

be: € — ' @e

This mapping also change each m-block within a code-word to another m-block.

The following sufficient conditions are required to carry out the proofs.

VI’ €Z, Vxe O, Iy O: (5)
pxIaT @1%) = p(y|l), VIEZ

In the following subsections we inspect the above mentioned different channel mod-

els.

A. Channels with Geometrical Representation

In this section, we consider channels for which input and output symbols belong to
R™. We use the notation Pp; € R” to refer to the channel input symbols representing
I

In other words, the m-blocks are just labels of the points in the Euclidean space.
We assume that the signal set at the channel input is geometrically uniform [25].
This means that for any given pair of signal points, say Pj; and Pj., there exists
an isometry which transforms Pj; to Pj. while leaving the signal set unchanged. In
addition, we assume that the scenario shown in Figure 2 is valid for the corresponding
labels.

It is easy to see that under the following conditions, the condition given in 5 will be

satisfied, if

(1) y is selected as the image of x under the isometry

P‘il — P‘i2
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Fig. 2. Mapping of points with an isometry

(ii) p(x|Ps1) is a function of ||x — Py ||

A good example for a channel satisfying condition (ii) is the AWGN channel.

B. Channels without Geometrical Representation

In this section, we assume that the channel output set is a discrete set composed
of elements x? € 0. We define matrix A whose elements a;; are conditional pdf of

channel output given its input.
Auo = 0], aij =p(xX'|l'), u=2"=|I|, v= 0] (6)

We can satisfy the condition given in (5) if after shuffling all input symbols by
adding an arbitrary m-block I to them, for each column in A,y,, there exists an-
other column for which the probability values are shuffled in the same order as the

corresponding m-blocks.



ITI. EXAMPLES OF DISCRETE CHANNEL MODEL
In this section, we present some examples of the discrete channel models which
satisfy the required condition stated in (5).

Example 1: For the channel shown in Figure 3 we have,
‘ x! x? x? x*
A=1[0(1/2—¢ €1 1/2 — e € (7)
1 €1 1/2 — ¢ € 1/2 — e

O x!

10

1/2—62

€2

Ox*

Fig. 3. Channel model for example 1.

Example 2: For the channel shown in Figure 4, we have,

x! x? x? x* x°

00|e e € 0 O
A=1|01|le e € 0 0 (8)
100 0 € e e
1110 0 € e e

where eg + ¢; + € = 1. This matrix has the required symmetry properties stated in

(5)-



Example 3: For the channel shown in Figure 5, we have,

00 x!

€1 €1

01

10 O

11 ‘o x°

Fig. 4. Channel model for example 2.

X1 X2 X3 X4 X5 X6 X7 X8
00 €y €1 €y €3 €4 €3 €9 €1
01 €y €1 €gp €1 €9 €3 €4 €3
10 €4 €3 €2 €1 €y €1 €y €3
11 €y €3 €4 €3 €2 €1 €y €1

10

Fig. 5. Channel model for example 3: The values of error probabilities which are not shown follow

the same pattern as the values specified on the figure.

where eg+2(e1 4 €2+ e3) + e4 = 1. In this example the signal points are labeled using

Ungerboeck set partitioning [26]. It is easy to see that the required condition for the

columns of the probability matrix can be satisfied.
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IV. MAIN RESULTS

Using the above definitions and notation, we have the following theorems.
Theorem 1: The probability distribution of LLR(k) is not affected by the choice of
the transmitted code-word €, as long as the value of the k** bit remains unchanged.
Proof: If we take two different code-words ¢!, ¢? and transmit them over the
channel by partitioning them to (i}, . i}:) and (if, . ,i%), we will receive (X3 ...Xz,)

and (yi...yr), respectively. We form their bit LLR for the k™ bit position using
(3),

L

> 1 p(x5]T5)
cieCl j=1

LLR'(E) = log = (10)

LLR*(k) = log ——* (11)

where I; are m-blocks of ¢'. As long as the value of the k™ bit remains unchanged
both €', €* are in the same subset namely C} or C}. No matter they are in which
subset, €' @ ¢? will be in sub-code C}. Noting that &' @ &? € CP, we use dg gz as

defined in (4), to map the sub-code C} onto itself as seen in Figure 6.

e e Cz? — CIS (12)

¢él@é2 . Cl — Cl @ 61 @ 62

Consider this mapping applied to the denominator of (10).

S IIrim) — > [l eI e 1) (13)

cteC?) J=1 cteC?) Jj=1
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be
o co
¢l % ¢l
c € Cg

Fig. 6. Mapping of C onto itself

where i; fant i? is the m-block which is added to each m-block of ¢! as a direct result
of the mapping ¢z gz2. Assuming that the properties of channel defined in section II
hold, there exists a y; such that,

p(y; L) = p(x;| T & Th & T3) (14)

This means,

L L
> I — > eyl (15)

cieC? j=1 cieC? j=1
The right hand side expression is the denominator of (11). Applying the mapping
¢eigez to the numerator of (10), the elements of coset shuffle with the same permu-
tation and the numerator of (10) will be mapped to the numerator of (11). From (5)

we obtain,
p(x;1T}) = p(y;[12) (16)

Noting that each transmission is independent of the others we conclude that,

L L
[1pxiT) = ][ p(viIT2) (17)
7=1 j=1

p(Xl...XL|ii...i}:):p(Y1---YL|i%---i%) (18)
p(x1...x|¢") = p(y:...yr|e?) (19)

Note that the value of LLR' (k) is uniquely determined by vector (x;...xr) and
the value of LLR?(k) is uniquely determined by vector (y;...yr). It is shown that

for each (x;...xz) there exists a (y1...yr) with the same conditional probability as
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given in (19) which preserves the value of LLR. This means (10), (11) posses the
same pdf independent of the transmitted code-word. [
The following theorem explains the effect of a change in the specific value taken by
bit & on the probability distribution of LLR(k).
Theorem 2: The probability distribution of LLR(k) for value of bit k =0 or 1
are the reflections of one another through the origin (threshold point).

Proof:  Having chosen two different code-words ¢!, €? (which have different
values in their kth bit position), we form their bit LLR for the k' bit position as
given in (10),(11). Assume that the elements of C? are mapped by adding a code-
word ¢! @ €2 to them which contains a 1 in position k. This will change the value
of bit k from zero to one. This operation results in each component in the set of
the code-words ¢’ € CP, to be exchanged with a counterpart element within the set
of the code-words ¢! € C}. In this case, we exchange the values of numerator and
denominator. Changing the value of the k' bit means &', &% are in two different
subsets. No matter which one is in which subset, ¢' @ ¢* will be in coset C’,i. Noting
that ¢' & €% € C}, we use ¢ga gz as defined in (4), to map the sub-code C} onto coset

C} as seen in Figure 7.

¢51@é2 : Cl? — Cli (20)

¢51®é2 ¢ — ' P El ) 62

cp c?
| >< k
Ck Ck

cECi

Fig. 7. Mapping of C} onto C}
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Consider this mapping applied to the denominator of (10).

L L
> IIeelE) — > e ol o) (21)
cteCY j=1 cteC} j=1

Assuming that the properties of channel defined in section II hold, there exists y;
such that,

ply;|L) = p(x; | & T & 1) (22)

This means,

> IIeeim) — > []eviiL) (23)

cieC? j=1 cieCl j=1
The right hand side expression is the numerator of (11). Applying the mapping ¢g gz
to the numerator of (10), the elements of coset shuffle with the same permutation and
the numerator of (10) will be mapped to the denominator of (11).

It is shown that for each (x;...xz) there exists a (y;...yr) with the same con-
ditional probability as given in (19) which exchanges the value of numerator and
denominator of LLR'(k). This means (10), (11) posses the same pdf independent of
the transmitted code-word, while their values are different only in their signs. Under
these conditions, it is easy to see that, the given value of LLR(k) if k'"bit = 0 oc-
curs with the same probability as —LLR(k) if k'"bit = 1, and vice versa. Therefore,
changing the value of bit k in the transmitted code-word is equivalent to inverting
the sign of the random variable corresponding to LLR(k).

[

We will now concentrate on the conditions for two bit positions to have the same
pdf for their bit LLR. These conditions are presented for a memoryless channel with
binary input (no other conditions of the form given in 5 are required). Note that
unlike in the previous two theorems, here, we require that the channel remains the
same in subsequent transmissions.

Let C be a binary linear code of length N. We define a permutation P which simply

permutes the elements of each code-word. The set of permutations which maps the

code-book C onto itself form a group called Automorphism group of code C.
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Theorem 3: Consider two bit positions of a code-word, a,b such that 1 < a,b <
N , a # b. If there exists a permutation P within Automorphism group of code
C which transfers bit position a to b, then LLR(a) and LLR(b) possess the same
probability distribution.

Proof: Consider the situation of sending ¢' bit by bit and receiving x; for bit

I}. The permutation mentioned in the theorem will be used as follows,

P — & (24)
P.(IL,... 1) — (3,....12) (25)
Pi(x1,y...,x) — (¥1,--.,¥1) (26)

Using the permutation P, the arguments of the summation in the numerator of (10)
will be mapped to the arguments of the summation in the numerator of (11), and
similarly the arguments of the summation in the denominators of (10) and (11) will
be mapped to each other. Noting that the channel is memoryless and is not changing

with time, we have,

L L
[ pilT) = T p(vilE) (27)
7=1 7=1

The rest of the proof follows similar to theorem 1. [

Note that set of permutations form a group, it is clear that inverse of P exists
and transfers bit position b to a. The existence of the permutation to yield two bit
positions with the same probability distribution for their LLR is our next concern.
We apply this result to the class of cyclic codes as a good example for checking the
existence of the desired permutation.

Theorem 4: The permutation mentioned in theorem 3 exists for the class of cyclic
codes.

Proof: Transferring bit position a to b (a < b) is achievable by shifting elements
of the code-words b — a times to the right. It is the property of cyclic codes that any
such shift results in another code-word. Hence, this permutation in automorphism

group of the code C exists for the case of cyclic codes. [
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V. CONCLUSION

In this paper the probabilistic behavior of bit LLR has been investigated over a
general channel model with discrete input and discrete or continuous output. We
proved that under certain symmetry conditions on the channel the pdf of the bit
LLR of a specific bit position is independent of the transmitted code-word, if the
value of that bit position remains unchanged. It is also shown that a change in value
of a bit position will not change the shape of the pdf of that bit LLR, while make
it reflect through the origin. Some examples have been provided for channels with
discrete input and output which have the required symmetry properties. For the
case of channels with binary input, it is shown that a sufficient condition for two
bit positions, a, b, to have the same pdf is the existence of a permutation in the
automorphism group of the code which can transfer bit position a to b. We showed

that this permutation exists for the class of cyclic codes.
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