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Abstract—Path diversity works by setting up multiple parallel
connections between the end points using the topological path
redundancy of the network. In this paper, Forward Error Cor-
rection (FEC) is applied across multiple independent paths to
enhance the end-to-end reliability. We prove that the probability
of irrecoverable loss (PE) decays exponentially with the number
of paths. Furthermore, the rate allocation (RA) problem across
independent paths is studied. Our objective is to find the optimal
RA, i.e. the allocation which minimizesPE. The RA problem is
solved for a large number of paths. Moreover, it is shown thatin
such asymptotically optimal RA, each path is assigned a positive
rate iff its quality is above a certain threshold. Finally, using
memoization technique, a heuristic suboptimal algorithm with
polynomial runtime is proposed for RA over a finite number of
paths. This algorithm converges to the asymptotically optimal
RA when the number of paths is large. For practical number
of paths, the simulation results demonstrate the close-to-optimal
performance of the proposed algorithm.1

Index Terms—Path diversity, Wireless Mesh Networks, In-
ternet, MDS codes, erasure, forward error correction, rate
allocation, complexity.

I. I NTRODUCTION

A. Motivation

I N recent years,path diversityover packet switched net-
works has received significant attention. This idea is ap-

plied over different types of networks like wireless mesh
networks [2]–[4], the Internet [5]–[7], and Peer-to-peer net-
works [8]. Many studies have shown that path diversity has
the ability to simultaneously improve the end-to-end rate and
reliability [1], [5], [6], [9]–[11]. In order to apply path diversity
over any packet switched network, two problems need to be
addressed: i) setting up multiple independent paths between
the end-nodes (multipath routing) ii) utilizing the given inde-
pendent paths to improve the end-to-end throughput and/or
reliability. In this paper, we focus on the second problem
and try to develop a mathematical analysis of path diversity
which is valid for any type of underlying network. Due
to the inherent flexibility of wireless mesh networks, many
routing protocols can be modified to support multipath routing
over such networks [12]–[18]. Thus, we consider a wireless
network as the underlying network. However, it should be
noted that the results of this work stay valid for any other
underlying network (e.g. path diversity over the Internet)as
long as multiple independent paths are given. Assuming a set
of independent paths, we utilizeForward Error Correction
(FEC) across the given paths and analyze the reliability gain
achieved by path diversity mathematically. Furthermore, the

1This manuscript is an extended version of the conference paper published
in Globecom 2007 [1].

rate allocation (RA) problem across the given paths is ad-
dressed, and a polynomial suboptimal algorithm is introduced
for this purpose.

B. Multipath Routing over Wireless Mesh Networks

In order to exploit path diversity, it is desirable to set multi-
ple independent paths between the end nodes. This problem is
addressed throughput the literature [12]–[20]. A set of paths
are defined to be independent if their corresponding packet
loss patterns are independent. According to the definition,any
set of disjoint paths are independent. Even when the paths are
not completely disjoint, their loss and delay patterns showa
high degree of independence as long as they do not share
any congestion points or bottlenecks [6], [21]–[26]. Many
techniques are proposed to detect the shared congestion points,
such as cross-correlation-based approach [27], entropy-based
approach [28], and wavelet-based approach [29]. Hence, the
independence of a set of paths can be verified by the mentioned
bottleneck detection algorithms.

Many well-known mesh network routing protocols like
AODV [30] and DSR [31] can be modified to support multi-
path routing. Indeed, DSR can find multiple paths naturally
by its flooding behavior [31]. However, it does guarantee
that the found paths are disjoint. The Split Multipath Routing
(SMR) [12] solves this problem as it avoids dropping duplicate
Route Request(RREQ) packets by the intermediate nodes.
Of course, this is achieved at the cost of more RREQs and
higher routing overhead. Similarly, the Multipath Source Rout-
ing (MSR) [18] introduces a multiple path routing protocol
extended from DSR. Based on the measurement of Round-
Trip Times (RTT), MSR also proposes a scheme to distribute
the load among multiple paths. Leunget al. [17] propose
the MP-DSR protocol which focuses on a newly defined
metric for the QoS called theend-to-end reliability. MP-DSR
is an algorithm which selects multiple paths with low fail
probability associated by stable radio links. [16] addresses the
problem of transmitting video with double description in the
case where non of the paths to the destination is significantly
more reliable than the others. The problem is turned into
an optimization which is too complex to have a closed-form
solution. Thus, the authors apply the metaheuristicgenetic
algorithm to find a suboptimal solution. Then, it is shown that
this method can be incorporated into many existing on-demand
routing protocols like DSR [16]. Finally, the Robust Multipath
Source Routing Protocol (RMPSR) is another extension to
DSR to support multipath video communication over wireless
networks.

AMODV [14] is an Ad-hoc On-demand Multipath Dis-
tance Vector routing protocol based on the concept of link
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reversal extending from AODV. In contrast with the DSR-
based multipath routing protocols, AMODV discovers multiple
link-disjoint loopfree paths. AODVM [15] is another exten-
sion to AODV which finds multiple reliable routing paths.
Similarly, AODV-BR [13] introduces an algorithm to find
back up routing paths over Ad hoc networks. [3] proposes
a novel multipath hybrid routing protocol, Multipath Mesh
(MMESH), which effectively discovers multiple paths over
wireless mesh networks. Simulation results show that MMESH
is able to balance the traffic by avoiding hot paths, i.e.,
the paths with higher traffic load. AMTP [19], an ad hoc
multipath streaming protocol for multimedia delivery which
selects multiple maximally disjointed paths with best QoS
to maximize the aggregate end-to-end throughput. AMTP is
able to accurately differentiate between packet losses dueto
different network conditions. In case of a path being broken, it
seamlessly switches to a proper path and therefore maintains
high streaming quality. When there are multiple channels
between the wireless mesh nodes, it is easier to find multiple
independent paths across the network. Reference [2] applies
the idea of multipath routing in such a scenario to increase the
end-to-end throughput. Weiet al. [10] address the problem of
path selection over a wireless network by taking into account
the interference between the wireless links. Their goal is to
minimize thepacket drop probability(PDP). The problem of
optimal multipath selection is shown to be NP-hard. Therefore,
they introduce a heuristic algorithm to find a close-to-optimal
set of paths. A previous work by the same authors [32]
studies video multicast over wireless ad hoc networks. To take
advantage of network path diversity in the multicast case, an
algorithm to find multiple disjoint and near-disjoint treesis
proposed.

C. Path Diversity over the Internet

In the Internet, the end-points have no control over the
path selection process. Indeed, letting the end nodes set the
paths requires modification of the IP routing protocol and extra
signaling between the routers which are extremely costly. To
avoid such an expense,overlay networksare introduced [24],
[25], [33]. The basic idea of the overlay network is to equip
very few nodes (smart nodes) with the desired new functional-
ities while the rest remain unchanged. The smart nodes form
a virtual network connected through virtual or logical links
on top of the physical network. Thus, overlay nodes can be
used as relays to set up independent paths between the end
nodes [7], [34]–[36].

Topology of the underlying physical network is an important
factor in the design of the overlay network. Indeed, improper
design of the overlay network can result in shared bottlenecks
between different virtual links [37]. In such cases, even if
two paths are disjoint in the virtual level, a large degree
of dependency may be observed between them. Hence, a
class of topology-awareoverlay networks are proposed to
maximize independence between the virtual links [37]–[43].
For instance, the overlay nodes can utilize latency [38], [39]
or the underlying IP topological information [37], [40]–[43]
to select the neighbors and form the overlay graph. It is

shown that the topology-aware overlay networks can provide
a satisfactory degree of independence between disjoint paths
(disjoint in the virtual level) [37]. Moreover, distributed al-
gorithms can be utilized to construct and/or maintain overlay
networks. Reference [44] addresses the problem of distributed
overlay network design based on a game theoretical approach,
while [45] studies overlay networks failure detection and
recovery through dynamic probing.

Another issue which may degrade path diversity in overlay
networks is having bottlenecks in the links connecting the
end-nodes to the network. To address this problem, the idea
of multihoming is proposed [7], [46]. In this technique, the
end users are connected to more than oneInternet Service
Providers(ISP’s) simultaneously. It is shown that multihoming
assists overlay networks to set up extra independent paths
between the end-points, i.e. improves the end-to-end reliability
considerably [7].

D. Applications of Path Diversity

Recently, path diversity is utilized in many applications
(see [47]–[52]). Reference [49] combines multiple description
coding and path diversity to improve the quality of service
(QoS) in video streaming. In [9], multiple descriptions of video
are routed throughput different paths across a wireless mesh
network. It is assumed that coding isnon-hierarchicalin the
sense that none of the descriptions is the main description.
Instead, the distortion decreases gradually as the receiver
receives more descriptions of the video. Moreover, non of the
paths has significantly better quality than the others, and each
link is modeled by a 2-state Markov model called the Gilbert
channel. [9] concludes that in this setup, utilizing multiple
paths improves both the rate and reliability.

Packet scheduling over multiple paths is addressed in [53] to
optimize the rate-distortion function of a video stream. Refer-
ence [52] utilizes path diversity to improve the quality of Voice
over IP streams. According to [52], sending some redundant
voice packets through an extra path helps the receiver buffer
and the scheduler optimize the trade-off between the maximum
tolerable delay and the packet loss ratio [52].

In [5], multipath routing of TCP packets is applied to control
the congestion with minimum signaling overhead. When the
underlying network is an ad hoc wireless network, a similar
result is reported [54]. In other words, transmitting videoover
multiple paths is shown to decrease the average congestion
and end-to-end distortion. [55] proposes a multiflow reatime
transport protocol for wireless networks. Through both math-
ematical analysis and comprehensive simulation, it is shown
that partitioning the video packets across multiple paths im-
proves queuing performance of the multimedia data, resulting
is less congestion, smaller delay, and higher utilization of the
bottleneck link bandwidth [55].

Content Distribution Networks(CDN’s) can also take
advantage of path diversity for performance improvement.
CDN’s are a special type of overlay networks consisting of
Edge Servers(nodes) responsible for delivery of the contents
from an original server to the end users [33], [56]. Current
commercial CDN’s like Akamai use path diversity based
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techniques likeSureRouteto ensure that the edge servers
maintain reliable connections to the original server. Video
server selection schemes are discussed in [34] to maximize
path diversity in CDN’s.

E. Contribution and Relation to Previous Works

References [11], [6], and [57] study the RA problem over
multiple independent paths. Assuming each path follows the
leaky bucket model, reference [11] shows that a water-filling
scheme provides the minimum end-to-end delay. On the other
hand, reference [6] considers a scenario of multiple senders
and a single receiver, assuming all the senders share the
same source of data. The connection between each sender
and the receiver is assumed to be independent from others
and follow theGilbert model. In order to benefit from path
diversity, the authors apply FEC across independent paths.A
Maximum Distance Separable(MDS) block code, like Reed-
Solomon code, is used for FEC. [6] proposes a receiver-
driven protocol for packet partitioning and rate allocation. The
packet partitioning algorithm ensures no sender sends the same
packet, while the RA algorithm minimizes the probability of
irrecoverable loss in the FEC scheme [6]. They only address
the RA problem for the case of two paths. A brute-force
search algorithm is proposed in [6] to solve the problem.
Generalization of this algorithm over multiple paths results
in an exponential complexity in terms of the number of
paths. Moreover, it should be noted that the scenario of [6]
is equivalent, without any loss of generality, to the case in
which multiple independent paths connect a pair of end-nodes
as they assume the senders share the same data.

Djukic and Valaee utilize path diversification to provide
low probability of packet loss (PPL) in wireless networks [4].
Similar to our work, they consider each path as an erasure
channel following the multi-state Markov model. Moreover,it
is assumed that the feedback is not fast enough to acknowledge
the receipt of each packet. Thus, an MDS code is applied
across multiple independent paths as a FEC method. The
authors of [4] compare two RA schemes: blind allocation and
optimal allocation. The blind RA is used when the source
has no information about the quality of the paths. Hence, it
distributes the traffic across the paths uniformly. It is shown
that even blind RA outperforms single-path transmission.
When a feedback mechanism periodically provides the source
with information about the quality of each path, the transmitter
has the chance to find the RA which minimizes PPL (optimal
allocation). The authors propose a greedy algorithm for this
purpose.

Most recently, in an independent work, Liet al. have
addressed the RA problem [57]. Same as [4], [6] and our
work, the authors of [57] apply an MDS code for FEC across
multiple independent paths. However, unlike [6], the authors
study the problem for any general number of paths, denoted by
L. Using thediscrete to continuousapproximation, the authors
approximate the total number of lost packets over all paths
with a continuous random variable. Furthermore, assuming
a large number of paths with a large number of packets
over each path, they apply the Central-Limit Theorem (CLT)

[58] to approximate the distribution of the number of lost
packets with theNormal Distribution. Using this distribution,
the authors propose a pseudo-polynomial algorithm, based
on Dynamic Programming, to estimate the optimal RA for
a large number of paths. However, CLT can not be applied
to solve this problem. The reason is that in this case, the
variance of the fraction of lost packets scales asO( 1

L) to
zero. Instead, as we show in this paper, the distribution of
lost packets can be computed usingLarge Deviation Principle
(LDP) which results in a distribution totally different from the
normal distribution. Hence, the pseudo-polynomial algorithm
proposed in [57] can not necessarily approximate the optimal
RA even for large number of paths.

In this work, we utilize path diversity to improve the perfor-
mance of FEC between two end-nodes over a general packet
switched network. The details of path setup process is not
discussed here. Similar to [4], [6], [11], [57], it is assumed that
L independent paths are set up by a smart multipath routing
scheme or overlay network. Moreover, as in [4], [57], [59],
[60], each path is assumed to be an erasure channel modeled
as a continuousM -state extended Gilbert model. It should be
noted that the well-known 2-state Gilbert channel used in [6],
[50], [61]–[63] is a special case of the extended Gilbert model
studied here. Probability of irrecoverable loss (PE) is defined
as the measure of FEC performance. In another work, we have
shown that MDS block codes have the minimum probability of
error over any erasure channel with or without memory [64].
Hence, as in [4], [6], [57], MDS codes are applied for FEC
throughout this paper. The contributions of this paper can be
listed as follows:

• Path diversity is shown to simultaneously achieve an
exponential decay inPE and a linear increase in the
end-to-end rate with respect toL, while the delay stays
fixed. Furthermore, the decaying exponent is analyzed
mathematically based on LDP.

• The RA problem is solved for the asymptotic case (large
values ofL).

• It is proved in the asymptotically optimal RA, each path
is assigned a positive rateiff its quality is above a certain
threshold. Quality of a path is defined as the percentage of
the time it spends in the bad state. This result is important
since for the first time in the literature, an analytical
criterion is proposed to predict whether adding an extra
path improves reliability.

• A heuristic suboptimal polynomial algorithm, based on
the memoization technique, is introduced to solve the RA
problem for any arbitrary number of paths. Unlike the
brute-force search in [6], this algorithm has a polynomial
complexity, in terms ofL.

• The proposed algorithm is proved to converge to the
asymptotically optimal RA asL grows.

• Through the simulation results, the proposed algorithm is
shown to achieve a near-optimal performance for practical
number of paths.

The rest of this paper is organized as follows. Section II
describes the system model. Performance of FEC in two
cases of multiple identical paths, and non-identical pathsare
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TABLE I
IMPORTANT PARAMETERS

Notation Refers to Section
L number of the paths I-E
N length of an FEC block (in packets) II-B
K number of information packets II-B

in an FEC block
α=(N−K)/N FEC overhead II-B

T transmission time of an FEC block II-C
Sreq required end-to-end rate (pkt/sec) II-C
Ni number of packets transmitted on II-C

path i in each FEC block
Si, Wi rate and max. rate of pathi (pkt/sec) II-C

PE probability of irrecoverable loss I-E
xi = Bi/T fraction of bad bursts on pathi during T III

ρi fraction of end-to-end rate assigned to pathi III-A
J number of path types III-B

γj = Lj/L fraction of paths of typej III-B
ηj fraction of the end-to-end rate III-B

allocated to paths of typej, see (7)
η⋆ asymptotically optimal rate allocation vector III-B

ηopt=Nopt/N optimal rate allocation vector III-B
Nj number of packets transmitted on IV

paths of typej in each FEC block
probability of having more thank errors over IV

PN

e (k, j) paths of types1 to j for the allocation vectorN
Qj(n, k) probability of having exactlyk errors out IV

of the n packets sent over paths of typej

Nopt optimum allocation vector IV

P opt
e (n, k, j) PN

opt

e (k, j), i.e., minPE IV
P̂e(n, k, j) lowerbound ofP opt

e (n, k, j), see (16) IV
N̂=(N1,...,NJ) suboptimum allocation vector IV
K=(K1,...,KJ) typical error event IV

analyzed in section III. Section IV studies the RA problem,
and proposes a suboptimal RA algorithm. Finally, section V
concludes the paper.

II. SYSTEM MODELING AND FORMULATION

A. End-to-End Channel Model

From an end to end protocol’s perspective, performance of
the lower layers in the protocol stack can be modeled as a
random channel called theend-to-end channel. Since each
packet usually includes an internal error detection coding(for
instance a Cyclic Redundancy Check), the end-to-end channel
is modeled as an erasure channel.

Numerous measurements studies have suggested that bursty
loss behavior is the most dominant characteristic of the end-
to-end channel over different underlying networks, including
wireless mesh networks and the Internet [4], [60], [65]–[67].
Hence, a variety of models have been proposed to capture
this bursty behavior, including the2-state Gilbert model, the
M -state Extended Gilbert model, and the Hidden Markov
model [59], [60], [65], [68], [69]. This paper assumes the
continuous timeM -state extended Gilbert model for the end-
to-end channel, see Fig. 1. This model achieves a good balance
between model accuracy and simplicity [57], [59], [60]; it is
much more accurate than the 2-state Gilbert Model, while only
requires2(M − 1) parameters to be estimated (as opposed to
M2 parameters in the General Markov Model). It should be
noted that the well-known 2-state Gilbert channel used in [6],
[50], [61]–[63] is a special case of the extended Gilbert model
studied here.

It is worth mentioning that the main results of this paper re-
main valid for any end-to-end channel model. More precisely,

κ1

µb2

B1G B2 BM−1

µg

µb1

µbM−1

κ2 κM−2

Fig. 1. Continuous-timeM -state Extended Gilbert model of the end-to-end
channel

PE still decays exponentially versusL and the asymptotically
optimal RA follows the same formula. However, the decaying
exponent ofPE is a function of the bad burst probability
distribution which should be recomputed according to the
new end-to-end channel model. Moreover, in the proposed
suboptimal RA algorithm, no assumption is made regarding
the end-to-end channel model and/or the bad burst probability
distribution. In other words, the input parameters to the pro-
posed algorithm consist of the probability mass function (pmf)
associated with the number of erasures over different paths.
These input parameters are computed in polynomial time in
appendix H for any general Markov model which obviously
includes the extended Gilbert model as a special case.

The behavior of the continuous time extended Gilbert model
can be described as follows. The channel spends an expo-
nentially distributed random amount of time with the mean
1

µg
in the Good state. Then, it alternates to the firstBad

state,B1, and stays in that state for another random duration
exponentially distributed with the mean 1

µb1
+κ1

. Then, the
channel either goes back to the good state or transits to a
deeper bad state, denoted byB2. Similarly, the channel can
move to deeper bad states consecutively before going back to
the good state. The steady state probability of being in the
good or any of the bad states are denoted byπg and πbi

.
It is easy to observe thatπg = 1

µgΞ and πbi
= 1

(µbi
+κi)Ξ

where Ξ , 1
µg

+
∑M−1

i=1
1

µbi
+κi

. The packets transmitted
during the good state are received correctly, while they are
lost if transmitted during any of the bad states (B1 to BM−1).
Therefore, the average probability of error,πb, is equal to
the steady state probability of being in any of the bad states,
πb =

∑M−1
i=1 πbi

.

B. FEC Model

In real-time applications like video and audio over wireless
mesh networks or IP, due to the delay requirement, conven-
tional retransmission based schemes such as automatic repeat
request (ARQ) are impractical. On the other hand, FEC is
shown to be favorable for such real-time scenarios with tight
QoS requirement [4], [61], [62], [70]–[72]. However, FEC
could be ineffective when bursty packet loss occurs and such
loss exceeds the recovery capability of the FEC codes. To
mitigate this problem via path diversity, this work appliesFEC
across multiple paths.

Each packet is provided with an internal coding such as the
Cyclic Redundancy Check (CRC) which enables the receiver



FASHANDI et al.: PATH DIVERSITY OVER PACKET SWITCHED NETWORKS: PERFORMANCE ANALYSIS AND RATE ALLOCATION 5

to detect an error inside each packet. Hence, the receiver
can consider the end-to-end channel as an erasure channel.
Assuming the length of each packet isr bits, the alphabet size
of the end-to-end channel would beq = 2r. Other than the
coding inside each packet, a FEC scheme is applied between
packets. EveryK packets are encoded to aBlockof N packets
whereN > K to create some redundancy. TheN packets of
each block are distributed across theL available independent
paths, and are received at the destination with some loss
(erasure). The ratio ofα , N−K

N defines the FEC overhead.
It is proved that among all block codes of the same size, any
Maximum Distance Separable(MDS) code, such as the Reed-
Solomon code, provides the minimum probability of error over
an erasure channel (either memoryless or with memory) [64].
Moreover, MDS codes can reconstruct the originalK data
packets at the receiver side ifK or more of theN packets
are received correctly [73]. This property makes MDS codes
favorable FEC schemes over the erasure channels [57], [74]–
[76].

Since MDS codes are used for FEC, the probability of
irrecoverable loss,PE , is adopted as the reliability metric.
An irrecoverable loss occurs when more thanN −K packets
are lost in a block ofN packets. It is shown in [64] that
PE is almost equal to the error probability of the maximum
likelihood decoder for an MDS code,PE . More precisely,PE

can be bounded as

PE ≤ PE ≤

(

1 +
1

q − 1

)

PE

whereq denotes the alphabet size of the MDS code which is
very large in our application. The reasonPE is used as the
measure of system performance is that while many practical
low-complexity decoders for MDS codes work perfectly if
the number of correctly received symbols is at leastK, their
probability of correct decoding is much less than that of
maximum likelihood decoders when the number of correctly
received symbols is less thanK [73]. Thus, in the rest of this
paper,PE is used as a close approximation of decoding error.

C. Rate Allocation Problem

The RA problem is formulated as follows.L independent
paths,1, 2, . . . , L, connect the source to the destination, as
indicated in Fig. 2(a). Information bits are transmitted as
packets, each of a constant lengthr. Each path has a rate
constraint of Wi packets per second. This constraint can
be considered as an upperbound imposed by the physical
characteristics of the path. For a specific application and
FEC scheme, we require the rate ofSreq packets per second
from the source to the destination. Obviously, we should have
Sreq ≤

∑L
i=1 Wi to have a feasible solution. As mentioned in

the previous subsection, the information packets are codedin
blocks of lengthN packets. Hence, it takesT = N

Sreq
seconds

to transmit one block.
The RA vectorN = (N1, . . . , NL) is defined as the number

of packets in one block sent through each path. The objective
of the RA problem is to find the optimal RA vector, i.e. the
RA vector minimizing the probability of irrecoverable loss,
PE , defined in the previous subsection. The RA vector should
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Ni

N1

NL

Path 1

Path i

Si =
Ni

T
=

Ni

N
Sreq ≤ Wi

Source Internet Destination

L
∑

i=1

Ni = N

L
∑

i=1

Si = SreqPath L

Traffic ReassemblerTraffic Allocator

Sreq =
N
T

(a)

T

Ni Packets

1

Si
=

T
Ni

(b)

Fig. 2. RA problem: a block ofN packets is being sent from the source to
the destination throughL independent paths over the network during the time
interval T with the required rateSreq = N

T
. The block is distributed over

the paths according to the vectorN = (N1, . . . , NL) which corresponds to
the RA vectorS = (S1, . . . , SL)

Correctly
Received
Packet

Ei = 3

T

Bi

Lost or
Incorrect
Packet

Bad

Burst

1

Si

Fig. 3. A bad burst of durationBi happens in a block of lengthT . Ei = 3
packets are corrupted or lost during the intervalBi. Packets are transmitted
every 1

Si
seconds, whereSi is the rate of pathi in pkt/sec.

satisfy the constraints
∑L

i=1 Ni = N and Ni

T ≤Wi, ∀ 1 ≤ i ≤
L. The latter constraint follows from the bandwidth constraint,
Si = Ni

T ≤Wi.
The above formulation of RA problem is valid for any finite

number of paths and any chosen values ofN andT . However,
in section III where the performance of path diversity is studied
for a large number of paths, and also in Theorem 2 where
the optimality of the proposed suboptimal algorithm is proved
for the asymptotic case, we assume thatN grows linearly
in terms of the number of paths, i.e.N = n0L, for a fixed
n0. The reason behind this assumption is that whenL grows
asymptotically large, the number of paths eventually exceeds
the block length, ifN stays fixed. Thus,L−N paths become
useless for the values ofN larger thanN . At the same time,
it is assumed that the delay imposed by FEC,T , stays fixed
with respect toL. This model results in a linearly increasing
rate as the number of paths grows.

D. Discrete to Continuous Approximation

To computePE , we have to find the probability ofki

packets being lost out of theNi packets transmitted through
path i, for all 1 ≤ i ≤ L, 0 ≤ ki ≤ Ni. Let us denote the
number of erroneous or lost packets over the pathi with the
random variableEi. Any two subsequent packets transmitted
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TABLE II
MAIN ASSUMPTIONS

Assumption Comments
L independent paths justified in subsection I-B and I-C

used in sections III and IV
discrete to continuous justified in subsection II-D

approximation used in section III
justified in subsection II-A

Extended Gilbert Model used in section III
results valid without this assumption

see subsections II-A and III-A for details

over the pathi are 1
Si

seconds apart in time, whereSi is
the transmission rate over thei’th path. Now, we define the
continuous random variableBi as the duration of time that
path i spends in the bad state in a block duration,T . It
is easily observed that the probabilityP{Ei ≥ ki} can be
approximated with the continuous counterpartP{Bi ≥

ki

Si
}

when the inter-packet interval is much shorter than the average
bad burst duration. According to the extended Gilbert model,
the average bad burst duration can be lower-bounded by

1
µb1

+κ1
. Therefore, as long as we have

1

Si
≪

1

µb1 + κ1
, the

discrete to continuous approximation is valid (see Fig. 3).
The necessity of this condition can be justified as follows.

In case this condition does not hold, any two consecutive
packets have to be transmitted on two independent states of
the channel. Thus, no gain would be achieved by applying
diversity over multiple independent paths. The continuous
approximation is just used in section III. On the other hand,
section IV studies the RA problem in the original discrete
format.

E. Notation and System Parameters

Table II summarizes the main assumptions made in our
network model and problem formulation. The important pa-
rameters which are used throughout the paper are summarized
in Table I. Moreover, the following mathematical notations
are used in the rest of the paper.P{.} and E{.} are defined
as the probability and expected value operators, respectively.
The notationPE

.
= e−u(α)L meanslimL→∞−

log PE

L = u(α).
f(L) = o(g(L)) is equivalent tolimL→∞

f(L)
g(L) = 0, and

f(L) = O(g(L)) means that∃L0, M > 0 : ∀L >
L0, |f(L)| < M |g(L)|.

III. PERFORMANCEANALYSIS OF FEC ON MULTIPLE

PATHS

According to the discrete to continuous approximation in
subsection II-D, when theNi packets of the FEC block are
sent over pathi, the loss count can be written asBi

T Ni. Hence,
the total ratio of lost packets is equal to

L
∑

i=1

BiNi

TN
=

L
∑

i=1

Biρi

T

where ρi , Si

Sreq
, 0 ≤ ρi ≤ 1, denotes the portion of the

bandwidth assigned to pathi. xi , Bi

T is defined as the portion
of time that pathi has been in the bad state (0 ≤ xi ≤ 1).

Hence, the probability of irrecoverable loss for an MDS code
is equal to

PE = P

{

L
∑

i=1

ρixi > α

}

. (1)

In order to find the optimum rate allocation,PE has to be
minimized with respect to the allocation vector (ρi’s), subject
to the following constraints:

0 ≤ ρi ≤ min

{

1,
Wi

Sreq

}

,

L
∑

i=1

ρi = 1 (2)

where Wi is the bandwidth constraint on pathi defined in
subsection II-C.

A. Identical Paths

When the paths are identical and have equal bandwidth
constraints2 (Wi = W for ∀ 1 ≤ i ≤ L), due to the
symmetry of the problem, the uniform RA (ρi = 1

L ) is
obviously the optimum solution. Of course, the solution is
feasible only when we have1L ≤

W
Sreq

. Then, the probability
of irrecoverable loss can be simplified as

PE = P

{

1

L

L
∑

i=1

xi > α

}

. (3)

Let us defineQ(x) as the probability density function of
x. Sincex is defined asx = B

T , clearly we haveQ(x) =
TfB(xT ), where fB(t) is the probability density function
(pdf) of B. Defining E{} as the expected value operator
throughout this paper,E{x} can be computed based on
Q(x). We observe that in (3), the random variablexi’s are
bounded and independent. Hence, the following well-known
upperbound in large deviation theory [77] can be applied

PE ≤ e−u(α)L

u(α) =

{

0 for α ≤ E{x}
λα− log(E{eλx}) otherwise

(4)

where thelog function is computed in Neperian base, andλ
is the solution of the following non-linear equation, whichis
shown to be unique by Lemma 1.

α =
E{xeλx}

E{eλx}
. (5)

Sinceλ is unique, we can definel(α) = λ. Even though being
an upperbound, inequality (4) is exponentially tight for large
values ofL [77]. More precisely

PE
.
= e−u(α)L (6)

where the notation
.
= means lim

L→∞
−

log PE

L
= u(α). Note that

u(α) depends on the pdf ofB, fB(t), which is computed in
appendix A. Of course, equation (6) is valid regardless of the
pdf of B.

Next, we state the following lemmas which are required for
the analysis of the next subsection. The proofs can be found
in the appendices B and C, respectively.

2The case whereWi’s are different is discussed in Remark 4 of subsec-
tion III-B
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Fig. 4. (a)PE vs. L for different values ofα. (b) The exponent (slope) of
plot (a) for different values ofα: experimental versus theoretical values.

Lemma 1. u(α) and l(α) have the following properties:

1) ∂
∂α l(α) > 0

2) l (α = 0) = −∞
3) l (α = E{x}) = 0
4) l (α = 1) = +∞
5) ∂

∂αu(α) = l(α) > 0 for α > E{x}

Lemma 2. Defining y = 1
L

∑L
i=1 xi, where xi’s are i.i.d.

random variables as already defined, the probability density
function ofy satisfiesfy(α)

.
= e−u(α)L, for all α > E{x}.

Remark1. A special case is when the block code uses all
the bandwidth of the paths. In this case, we haveN = LWT ,
whereW is the maximum bandwidth of each path, andT is the
block duration. Assumingα > E{x} is a constant independent
of L, we observe that the information packet rate is equal to
K
T = (1− α)WL, and the error probability isPE

.
= e−u(α)L.

This shows using MDS codes over multiple independent
paths provides an exponential decay in the irrecoverable loss
probability and a linearly growing end-to-end rate in termsof
the number of paths, simultaneously.

Example 1. Consider the scenario of transmitting a video

stream with the DVD quality (using either MPEG-2 or MPEG-
4) over multiple identical paths. The bitrate per path is selected
to be 1 Mbps. The number of paths varies fromL = 1 to
L = 6. Hence, the end-to-end video bitrate varies in the
range of 1 − 6 Mbps, in accordance with [78]–[82]. The
block transmission time isT = 200 ms which imposes an
acceptable end-to-end delay for the video stream. The payload
of each video packet is assumed to be4 kb. Accordingly, the
block length equals toN = n0L where n0 can be written

as n0 =
1 Mbps
4 kb

T = 50. The end-to-end channel follows

a 2-state Gilbert model with 1
µg

= 2500 ms and 1
µb

= 52
ms, in accordance with [6], [50]. Coding overhead is changed
from α = 0.16 to α = 0.48. Figure 4 compares the result
of (6) with the simulation results.PE is plotted versusL in
semilogarithmic scale in Fig. 4(a) for different values ofα.
We observe that asL increases,log PE decays linearly which
is expected noting equation (6). Also, Fig. 4(b) compares the
slope of each plot in Fig. 4(a) withu(α). Figure 4 shows a
good agreement between the theory and the simulation results
for practical number of paths. Moreover, it verifies the fact
that the stronger the FEC code is (largerα), the higher is the
gain we achieve through path diversity (larger exponent).

B. Non-Identical Paths

Now, let us assume there areJ types of paths between the
source and the destination, consisting ofLj identical paths of
typej (

∑J
j=1 Lj = L). Without loss of generality, we assume

that the paths are ordered according to their associated type,
i.e. the paths from1 +

∑j−1
k=1 Lk to

∑j
k=1 Lk are of typej.

We denoteγj =
Lj

L . According to the i.i.d. assumption, it is
obvious thatρi has to be the same for all paths of the same
type.ηj andyj are defined as

ηj =
∑

Pj−1
k=1 Lk<i≤

Pj

k=1 Lk

ρi

yj =
ηj

Lγj

∑

Pj−1
k=1 Lk<i≤

Pj

k=1 Lk

xi. (7)

Following Lemma 2, we observe thatfyj
(βj)

.
= e

−γjuj(
βj
ηj

)L
.

We define the setsSI , SO andST as

SI =







(β1, β2, · · · , βJ) |0 ≤ βj ≤ 1,

J
∑

j=1

βj > α







SO =







(β1, β2, · · · , βJ) |0 ≤ βj ≤ 1,

J
∑

j=1

βj = α







ST =







(β1, β2, · · · , βJ) |ηjE {xj} ≤ βj ,

J
∑

j=1

βj = α









8 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , 2009

respectively. Hence,PE can be written as

PE = P







J
∑

j=1

yj > α







=

∫

SI

J
∏

j=1

fyj
(βj)dβj

.
=

∫

SI

e

−L

J
∑

j=1

γjuj(
βj

ηj
) J
∏

j=1

dβj

(a).
= e

−L min
β∈SI∪SO

J
∑

j=1

γjuj

(

βj

ηj

)

(b).
= e

−L min
β∈SO

J
∑

j=1

γjuj

(

βj

ηj

)

(c).
= e

−L min
β∈ST

J
∑

j=1

γjuj

(

βj

ηj

)

(d).
= e

−L

J
∑

j=1

γjuj

(

β⋆
j

ηj

)

(8)

where (a) follows from Lemma 3, (b) follows from the
fact that uj(α) is a strictly increasing function ofα, for
α > E{xj}, and(c) can be proved as follows. Let us denote
the vector which minimizes the exponent over the setSO as
β̂

⋆
. SinceST is a subset ofSO, β̂

⋆
is either in ST or in

SO − ST . In the former case,(c) is obviously valid. When
β̂

⋆
∈ SO − ST , we can prove that0 ≤ β̂⋆

j ≤ ηjE{xj},
for all 1 ≤ j ≤ J , by contradiction. Let us assume the
opposite is true, i.e., there is at least one index1 ≤ j ≤ J
such that0 ≤ β̂⋆

j ≤ ηjE{xj}, and at least one other index
1 ≤ k ≤ J such thatηkE{xk} < β̂⋆

k. Then, knowing
that the derivative of ofuj(α) is zero for α = E{xj} and
strictly positive for α > E{xj}, a small increase in̂β⋆

j

and an equal decrease in̂β⋆
k reduces the objective function,

∑J
j=1 γjuj

(

βj

ηj

)

, which contradicts the assumption thatβ̂
⋆

is a minimum point. Knowing that0 ≤ β̂⋆
j < ηjE{xj}, for

all 1 ≤ j ≤ J , it is easy to show that the minimum value
of the objective function is zero overSO, andST has to be
an empty set. Defining the minimum value of the positive
objective function as zero over an empty set (ST ) makes(c)
valid for the latter case wherêβ

⋆
∈ SO−ST . Finally, applying

Lemma 4 results in(d) whereβ⋆ is defined in the lemma.

Lemma 3. For any continuous positive functionh(x) over a
convex setS, and definingH(L) as

H(L) =

∫

S

e−h(x)Ldx

we have

lim
L→∞

−
log(H(L))

L
= inf

S
h(x) = min

cl(S)
h(x)

where cl(S) denotes the closure ofS (refer to [83] for the
definition of the closure operator).

Proof of Lemma 3 can be found in appendix D.

Lemma 4. There exists a unique vectorβ
⋆ with the elements

β⋆
j = ηj l

−1
j

(

νηj

γj

)

which minimizes the convex function
∑J

j=1 γjuj(
βj

ηj
) over the convex setST , whereν satisfies the

following condition

J
∑

j=1

ηj l
−1
j

(

νηj

γj

)

= α. (9)

l−1() denotes the inverse of the functionl() defined in sub-
section III-A.

Proof of Lemma 4 can be found in appendix E.
Equation (8) is valid for any fixed value ofη. To achieve

the most rapid decay ofPE , the exponent must be maximized
over η.

lim
L→∞

−
logPE

L
= max

0≤ηj≤1

J
∑

j=1

γjuj

(

β⋆
j

ηj

)

(10)

whereβ⋆ is defined for any value of the vectorη in Lemma 4.
Theorem 1 solves the maximization problem in (10) and
identifies the asymptotically optimum RA. The proof can be
found in appendix F.

Theorem 1. Consider a point-to-point connection over the
network with L independent paths from the source to the
destination, with a large enough bandwidth constraint3. The
paths are fromJ different types,Lj paths from the type
j. Assume a block FEC of size[N, K] is sent during a
time interval T . Let Nj denote the number of packets in a
block of sizeN assigned to the paths of typej, such that
∑J

j=1 Nj = N . The RA vectorη is defined asηj =
Nj

N .

For fixed values ofγj =
Lj

L , n0 = N
L , k0 = K

L , T and
asymptotically large number of pathsL, the optimum rate
allocation vectorη⋆ equals to

η⋆
j =



























0 if α ≤ E{xj}

γj lj(α)
J
∑

i=1, α>E{xi}

γili(α)

otherwise (11)

if there is at least one1 ≤ j ≤ J for which α > E{xj}. Fur-
thermore, the probability of irrecoverable loss corresponding
to η⋆ decays as

PE
.
= e−L

PJ
j=1 γjuj(α). (12)

In the case whereα ≤ E{xj} for 1 ≤ j ≤ J , PE
.
= 1

independent of the allocation vectorη.

Remark 2. Theorem 1 can be interpreted as follows. For
large values ofL, adding a new type of path contributes to

3By the term ‘large enough’, we mean the bandwidth constrainton a path
of type j, Wj , satisfies the condition

ηjn0

Tγj
≤ Wj . The reason is thatηj

must satisfy both conditions of0 ≤ ηj ≤ 1 and
Nj

TLj
=

ηjn0L

TγjL
≤ Wj ,

simultaneously. WhenWj is large enough such that
ηjn0

Tγj
≤ Wj , the latter

condition is automatically satisfied, and the optimizationproblem can be
solved.



FASHANDI et al.: PATH DIVERSITY OVER PACKET SWITCHED NETWORKS: PERFORMANCE ANALYSIS AND RATE ALLOCATION 9

2 3 4 5 6 7 8
10

−5

10
−4

10
−3

10
−2

10
−1

Number of Paths (L)

P
E

(a)

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Paths (L)

η 1

 

 

η
1
opt

η
1
*

(b)

Fig. 5. (a)PE versusL for the combination of two path types, half from
type I and half from type II. (b) The normalized aggregated weight of type
I paths in the optimal rate allocation (ηopt

1 ), compared with the value ofη1

which maximizes the exponent of equation (10) (η⋆
1 ).

the path diversityiff the path satisfies the quality constraint
α > E{x}, wherex is the percentage of time that the path
spends in the bad state during the time interval[0, T ]. Only in
this case, adding the new type of path exponentially improves
the performance of the system in terms of the probability of
irrecoverable loss.

Remark3. Observing the exponent coefficient corresponding
to the optimum allocation vectorη⋆, we can see that the typical
error event occurs when the ratio of the lost packets on all
types of paths is the same as the total fraction of the lost
packets,α. However, this is not the case for any arbitrary RA
vectorη.

Remark4. An interesting extension of Theorem 1 is the case
where all types have identical erasure patterns (uj(x) = uk(x)
for ∀ 1 ≤ j, k ≤ J and ∀x), but different bandwidth con-
straints. Adopting the notation of Theorem 1, the bandwidth
constraint onηj can be written asηjn0L

TγjL ≤Wj , whereWj is
the maximum bandwidth for a path of typej. Let us define
η̃⋆ as the allocation vector which maximizes the objective

function of equation (10), and satisfies the bandwidth con-
straints too.η⋆ is the maximizing vector for the unconstrained
problem, defined in Theorem 1. According to equation (11),
we haveη⋆

j = γj for ∀1 ≤ j ≤ J . It is obvious that̃η⋆ = η⋆ if
η⋆

j ≤
γjWjT

n0
for all j. In caseη⋆

j does not satisfy the bandwidth
constraint for somej, η̃⋆ can be found by the water-filling
algorithm. More accurately, we have

η̃⋆
j =











γjWjT

n0
if η̃⋆

j ≤ γjΥ

γjΥ if η̃⋆
j <

γjWjT

n0

(13)

whereΥ can be found by imposing the condition
∑J

j=1 η̃⋆
j =

1. Figure 6 depicts water-filling among identical paths with
four different bandwidth constraints. Proof of equation (13)
can be found in appendix G.

Example 2. Consider the scenario of transmitting a video
stream with the DVD quality (using either MPEG-2 or MPEG-
4) over multiple paths of two types. The number of paths for
each type are equal, i.e.γ1 = γ2 = 0.5. The total number
of paths varies fromL = 2 to L = 8. Both type of paths
are modeled as2-state Gilbert channels with1µg

= 2500 ms,
in accordance with [6], [50]. Furthermore, the average bad
burst duration are equal to1µb1

= 50 ms for the first type and
1

µb2
= 100 ms for the second type. The block transmission

time is T = 200 ms which imposes an acceptable end-to-
end delay for the video stream. The payload of each video
packet is assumed to be5 kb. The end-to-end rate increases
linearly with L such thatSreq

L = 1 Mbps. Hence, the block
length equals toN = 40L. The coding overhead isα = 0.3.
Figure 5(a) showsPE of the optimum RA versusL. The
optimal RA, ηopt, is found by exhaustive search among all
possible allocation vectors. The figure depicts a linear behavior
in semi-logarithmic scale with the exponent of0.9137, which
is comparable to0.9256 predicted by (11).

In this scenario, let us denoteη⋆
1 as the value of the

first element ofη⋆, given in equation (11). Obviously,η⋆
1

does not depend onL. Moreover, ηopt
1 is defined as the

normalized aggregated weight of type I paths in the optimal
RA. Figure 5(b) comparesηopt

1 with η⋆
1 for different number

of paths. It is observed thatηopt
1 converges rapidly toη⋆

1 asL
grows.

IV. SUBOPTIMAL RATE ALLOCATION

In order to compute the complexity of the RA problem,
we focus our attention on the original discrete formulationin
subsection II-C. According to the model of subsection III-B,
we assume the available paths are fromJ types, Lj paths
from typej, such that

∑J
j=1 Lj = L. Obviously, all the paths

from the same type should have equal rate. Therefore, the RA
problem is turned into finding the vectorN = (N1, . . . , NJ)
such that

∑J
j=1 Nj = N , and 0 ≤ Nj ≤ LjWjT for all j.

Nj denotes the number of packets assigned to all the paths of
type j. Let us temporarily assume that all paths have enough
bandwidth such thatNj can vary from0 to N for all j. There
are
(

N+J−1
J−1

)

L-dimensional non-negative vectors of the form
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Fig. 6. WaterFilling algorithm over identical paths with four different
bandwidth constraints.

(N1, . . . , NJ) which satisfy the equation
∑J

j=1 Nj = N each
representing a distinct RA. Hence, the number of candidates
is exponential in terms ofJ .

First, we prove the RA problem is NP [84] in the sense that
PE can be computed in polynomial time for any candidate
vector N = (N1, . . . , NJ). Let us definePN

e (k, j) as the
probability of having more thank errors over the paths of
types1 to j for a specific allocation vectorN. We also define
Qj(n, k) as the probability of having exactlyk errors out of the
n packets sent over the paths of typej. In appendices H and I,
Qj(n, k)’s are computed for any generalM -state Markov
channel model with polynomial complexity. Hence, we can
assume thatQj(n, k)’s are precomputed and stored for alln
and k and path types. Then, the following recursive formula
holds forPN

e (k, j)

PN
e (k, j) =











Nj
∑

i=0

Qj(Nj , i)P
N
e (k − i, j − 1) if k ≥ 0

1 if k < 0

PN
e (k, 1) =

N1
∑

i=k+1

Q1(N1, i). (14)

To computePN
e (K, J) by the above recursive formula, we

apply a well-known technique in the theory of algorithms
called memoization[85]. Memoization works by storing the
computed values of a recursive function in an array. By keep-
ing this array in the memory, memoization avoids recomputing
the function for the same arguments when it is called later.
To computePN

e (K, J), an array of sizeO(KJ) is required.
This array should be filled with the values ofPN

e (k, j) for
0 < k ≤ K, and 1 ≤ j ≤ J . ComputingPN

e (k, j) requires
O(K) operations assuming the values ofPN

e (i, j − 1) and
Qj(Nj , i) and

∑Nj

i=k+1 Qj(Nj , i) are already computed for
0 ≤ i ≤ k. Thus, PN

e (K, J) can be computed with the
complexity of O(K2J) if the values ofQj(Nj , k) are given
for all Nj and 0 ≤ k ≤ K. Following appendix I, we note
that for eachj, Qj(Nj , k) for 0 ≤ k ≤ K is computed offline

with the complexity ofO(K2Lj)+O
(

M2 Nj

Lj
K
)

. Hence, the

total complexity of computingPN
e (K, J) adds up to

O(K2J) +
J
∑

j=1

O

(

K2Lj + M2 Nj

Lj
K

)

(a)
= O(K2J) +

J
∑

j=1

O
(

K2Lj + M2NjK
)

(b)
= O

(

K2L + M2KN
)

(15)

where(a) follows from the fact thatNj

Lj
< Nj , and the term

O(K2J) is omitted in(b) since we know thatJ < L.
Now, we propose a suboptimal polynomial time algorithm

to estimate the best path allocation vector,Nopt. Let us define
P opt

e (n, k, j) as the probability of having more thank errors
for a block of lengthn over the paths of types1 to j
minimized over all possible RA’s (N = Nopt). First, we find
a lowerboundP̂e(n, k, j) for P opt

e (n, k, j) from the following
recursive formula

P̂e(n, k, j) =



























min
0≤nj≤min {n,⌊LjWjT⌋}

nj
∑

i=0

Qj(nj , i)·

P̂e(n− nj , k − i, j − 1) if k > 0

1 if k ≤ 0

P̂e(n, k, 1) =

n
∑

i=k+1

Q1(n, i). (16)

Using memoization technique, we need an array of size
O(NKJ) to store the values of̂Pe(n, k, j) for 0 < n ≤ N ,
0 < k ≤ K, and1 ≤ j ≤ J . According to the recursive defini-
tion above, computinĝPe(n, k, j) requiresO(NK) operations
assuming the values ofQj(nj , i) andP̂e(n− nj, k− i, j − 1)
and

∑nj

i=k+1 Qj(nj , i) are already computed for alli and
nj . Thus, it is easy to verify that̂Pe(N, K, J) can be com-
puted with the complexity ofO(N2K2J) when the values of
Qj(nj , i) are given for all0 < nj ≤ N and 0 ≤ i ≤ nj .
According to appendix I, for each1 ≤ j ≤ J , Qj(nj , i) can
be computed for all0 < nj ≤ N and 0 ≤ i ≤ nj with
the complexity ofO(N3Lj) + O(M2 N2

Lj
). Thus, computing

Qj(nj , i) for all 1 ≤ j ≤ J , and0 < nj ≤ N , and0 ≤ i ≤

nj , has the complexity of
∑J

j=1 O(N3Lj) + O(M2 N2

Lj
) =

O(N3L + M2N2J). Finally, P̂e(N, K, J) can be computed
with the total complexity ofO(N2K2J + N3L + M2N2J).

The following lemma guarantees thatP̂e(n, k, j) is in fact a
lowerbound forP opt

e (n, k, j). The proof is given in appendix J.

Lemma 5. P opt
e (n, k, j) ≥ P̂e(n, k, j).

Algorithm 1 recursively finds a suboptimum allocation
vectorN̂ based on the lowerbound of Lemma 5.

Intuitively speaking, the proposed suboptimal algorithm
recursively finds the typical error event (Kj ’s) which has the
maximum contribution to the error probability, and assignsthe
RA (N̂j ’s) such that the estimated typical error probability
(P̂e) is minimized. Indeed, Lemma 5 shows that the estimate
used in the algorithm (̂Pe) is a lower-bound for the minimum
achievable error probability (P opt

e ). Comparing (16) and the
while loop in Algorithm 1, we observe that the values of
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Algorithm 1 Proposed Suboptimal RA Algorithm

Input: N, K, J, (L1, . . . , LJ), Qj(·, ·), P̂e(·, ·, ·)
Output: (N̂1, . . . , N̂J)

Initialize j ← J ; n← N ; k ← K;
while j > 1 andk ≥ 0 do

N̂j ← argmin
0≤nj≤min {n,⌊LjWjT⌋}

nj
∑

i=0

P̂e(n−nj, k− i, j−1) ·

Qj(nj , i);
Kj ← argmax

0≤i≤N̂j

Qj(N̂j , i)P̂e(n− N̂j , k − i, j − 1);

Updaten← n− N̂j ; k ← k −Kj ; j ← j − 1;
end while
for m = 1 to j do

N̂m ← ⌊
n

j
⌋;

end for
for m = 1 to (n mod j) do

N̂m ← N̂m + 1;
end for
return (N̂1, . . . , N̂J);

N̂j andKj can be found inO(1) during the computation of
P̂e(N, K, J). Hence, complexity of the proposed algorithm
is the same as that of computinĝPe(N, K, J) which is
O(N2K2J + N3L + M2N2J).

The following theorem guarantees that the output of the
above algorithm converges to the asymptotically optimal RA
introduced in Theorem 1 of section III-B, and accordingly, it
performs optimally for large number of paths. The proof can
be found in appendix K.

Theorem 2. Consider a point-to-point connection over the
network with L independent paths from the source to the
destination, each with a large enough bandwidth constraint.
The paths are fromJ different types,Lj paths from the typej.
Assume a block FEC of the size[N, K] is sent during an inter-
val timeT . For fixed values ofγj =

Lj

L , n0 = N
L , k0 = K

L , T
and asymptotically large number of paths (L) we have

1) P̂e(N, K, J)
.
= P opt

e (N, K, J)
.
= e−L

PJ
j=1 γjuj(α)

2)
N̂j

N
= η⋆

j + o(1)

3) Kj

N̂j
= α + o(1) for α > E{xj}.

where α = k0

n0
and uj() are defined in subsections III-A

and III-B. P̂e(N, K, J) is the lowerbound forP opt
e (n, k, j)

defined in equation(16). N̂j is the total number of packets
assigned to the paths of typej by the suboptimal rate alloca-
tion algorithm.η⋆

j is the asymptotically optimal RA given in
equation(11). Kj is also defined in Algorithm 1.

Example3. The proposed algorithm is compared with four
other allocation schemes overL = 4 and L = 3 paths in
Fig. 7. The optimal method uses exhaustive search over all
possible allocations. ‘Best Path Allocation’ assigns everything
to the best path only, ignoring the rest. ‘Equal Distribution’
scheme distributes the packets among all paths equally. Finally,
the ‘Asymptotically Optimal’ allocation assigns the rates based
on equation (11). A DVD-quality video stream with the end-

to-end rate ofSreq = 3.2 Mbps is studied in both scenarios
of Fig. 7. The block transmission time isT = 250 ms which
imposes an acceptable end-to-end delay for the video stream.
The payload of each packet is adopted to be4 kb. Accordingly,
the block length would be equal toN = SreqT = 200 packets.
The FEC coding overhead is fixed atα = 0.2. The paths
follow the2-state Gilbert model with1

µg
= 2500 ms. However,

quality of the paths are different as they have different average
bad burst durations:(a) In the case of3 paths, the average bad
burst of the paths (1µb

’s) are listed as[75 ms, 75 ms±∆]; (b)
In the case of4 paths, the average bad burst of the paths
( 1
µb

’s) are listed as[75 ms± ∆
2 , 75 ms± 3∆

2 ]; As observed,
the median of 1

µb
of paths is fixed at75 ms in both scenarios.

∆ represents a measure of deviation from this median.∆ = 0
describes the case where all the paths are identical. The larger
is ∆, the more variety we have among the paths and the more
diversity gain might be achieved using a judicious RA.

As seen, our suboptimal algorithm tracks the optimal al-
gorithm so closely that the corresponding curves are not
easily distinguishable in most cases. However, the ’Asymp-
totically Optimal’ RA results in lower performance since
L is relatively small which makes the asymptotic analysis
assumptions invalid. Comparing Fig. 7(a) and Fig. 7(b), it is
observed that increasingL from 3 to 4 paths reduces the gap
between the ’Asymptotically Optimal’ RA and the optimal RA
considerably.

When ∆ = 0, the ‘Equal Distribution’ scheme obviously
coincides with the optimal allocation. This scheme eventually
diverges from the optimal algorithm as∆ grows. However, it
still outperforms the best path allocation method as long as
∆ is not too large. For very large values of∆, the best path
dominates all the other ones, and we can ignore the rest of the
paths. Hence, the best path allocation eventually converges to
the optimal scheme when∆ increases.

V. CONCLUSION

In this work, we have studied the performance ofForward
Error Correctionover a block of packets sent through multiple
independent paths. Adopting MDS codes, the probability of
irrecoverable loss (PE) is shown to decay exponentially with
the number of paths. Furthermore, therate allocation (RA)
problem across independent paths is studied. It is shown that in
the asymptotically optimal RA, each path is assigned a positive
rate iff its quality is above a certain threshold. Finally, the
RA problem is studied for any arbitrary number of paths. A
heuristic suboptimal algorithm is proposed which computesa
near-optimal allocation in polynomial time. For large values of
L, the result of this algorithm is shown to converge to the opti-
mal RA. Simulation results verify the validity of the theoretical
analyses in several practical scenarios and also show the near-
optimal performance of the proposed suboptimal algorithm.

APPENDIX A
PROBABILITY DISTRIBUTION OF Bi

First, we compute the distribution ofBi for the 2-state
Gilbert model. We denote the values ofBi with the parameter
t to emphasize that they are expressed in the unit of time.
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Fig. 7. Optimal and suboptimal RA’s are compared with equal distribution
and best path allocation schemes for different values of∆: (a) L = 3, (b)
L = 4.

Here, we focus on one path, for example path 1. Therefore, the
indexi can be temporarily dropped in analyzing the probability
density function (pdf) ofBi.

We define the eventsg and b, respectively, as the channel
being in the good or bad states at the start of a block. Then,
the pdf ofB can be written as

fB(t) = fB|b(t)πb + fB|gπg. (17)

Let N T
s denote the number of consecutive states the channel

experiences during the intervalT . For instance,N T
s = 3

means that the channel switches its state twice in a block
transmission time. Now, we definefm

B|b(t) as

fm
B|b(t) = lim

δ→0

P
{

t ≤ B < t + δ & N T
s = m|b

}

δ
. (18)

fm
B|g(t) can be defined similarly.
Form = 1, due to the memoryless nature of the exponential

distribution, we have

f1
B|b(t) = δ(t− T )e−µbT

f1
B|g(t) = δ(t)e−µgT . (19)

For odd values ofm > 1, let τ1 to τm denote the times the
channel spends in different states. If the channel starts from the

bad state, we have
∑

m+1
2

i=1 τ2i−1 = t and
∑

m−1
2

i=1 τ2i = T − t.
Thusfm

B|b(t) can be written as

fm
B|b(t) =

∫

D

µbe
−µbτ1µge

−µgτ2 . . . µge
−µgτm−1e−µbτm

m−2
∏

i=1

τi

= µ
m−1

2

b µ
m−1

2

b e−µbte−µg(T−t)△m−1
2

(t)△m−3
2

(T − t)

(20)

whereD and△k(t) are defined as

D ,







(τ1, . . . , τm)

∣

∣

∣

∣

∣

∣

∀i : τi > 0,

m+1
2
∑

i=1

τ2i−1 = t,

m−1
2
∑

i=1

τ2i = T − t







,

△k(t) ,

∫

zi>0

. . .

∫

P

k
i=1 zi≤t

dz1 . . . dzk.

It is easy to observe that△k(t) is the volume of ak-
dimensional simplex with the edge of lengtht. By mathe-
matical induction onk, it can be shown that△k(t) = tk

k! .
Therefore, making similar arguments for the even values of
m, we have

fm
B|b(t)=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

µg
(µbt)

m−1
2 (µg (T − t))

m−3
2

`

m−1
2

´

!
`

m−3
2

´

!
e−µbte−µg(T−t)

for m odd

µb

(µbtµg (T − t))
m
2

−1

`

m
2

− 1
´

!
`

m
2

− 1
´

!
e−µbte−µg(T−t)

for m even

Based on similar arguments,fm
B|g(t) can be written as

fm
B|g(t)=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

µb

(µbt)
m−3

2 (µg (T − t))
m−1

2

`

m−3
2

´

!
`

m−1
2

´

!
e−µbte−µg(T−t)

for m odd

µg
(µbtµg (T − t))

m
2

−1

`

m
2

− 1
´

!
`

m
2

− 1
´

!
e−µbte−µg(T−t)

for m even

Having fm
B|b(t) andfm

B|g(t) for all m, we can write

fB|b(t) =

∞
∑

m=1

fm
B|b(t)

fB|g(t) =
∞
∑

m=1

fm
B|g(t). (21)

Combining the above equations with (17),fB(t) can be
computed. Noting the factorial terms in the denominator of
fm

B|b(t) andfm
B|g(t) and the fact thatmax{t, T − t} = T for

0 ≤ t ≤ T , it can be verified that bothfm
B|b(t) and fm

B|g(t)

decrease very rapidly form−3
2 > max{µbT, µgT }. Therefore,

in the practical cases, we do not need to compute an infinte
summation to get a close approximation offB(t).

For the Extended Gilbert model, the pdf ofB can be
computed as follows. Here, equation (17) should be replaced
with fB(t) = fB|g(t)πg +

∑M−1
i=1 fB|bi

(t)πbi
. Moreover,
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for any specific sequence of state transitions(τ1, . . . , τm) of
lengthm, similar to the argument of equation (20), it can be
shown thatfB|bi

(τ1, . . . , τm) only depends on the summation
of τi’s which belong to the same state. Accordingly, similar
to (21), fB|bi

(t) andfB|g(t) can be recomputed by summing
over all lengthsm and all state transition sequences of length
m.

APPENDIX B
PROOF OFLEMMA 1

1) We define the functionv(λ) as

v(λ) =
E{xeλx}

E{eλx}
. (22)

Then, the first derivative ofv(λ) will be

∂

∂λ
v(λ) =

E{x2eλx}E{eλx} − [E{xeλx}]2

[E{eλx}]2
. (23)

According to Cauchy-Schwarz inequality, the following state-
ment is always true for any two functions off() andg()

(∫

x

f(x)g(x)dx

)2

<

∫

x

f2(x)dx

∫

x

g2(x)dx (24)

unlessf(x) = Kg(x) for a constantK and all values ofx.
If we choosef(x) =

√

x2Q(x)exλ and g(x) =
√

Q(x)exλ,
they can not be proportional to each other for all values of
x. Therefore, the numerator of equation (23) has to be strictly
positive for allλ. Since the functionv(λ) is strictly increasing,
it has an inversev−1(α) which is also strictly increasing.
Moreover, the non-linear equationv(λ) = α has a unique
solution of the formλ = v−1(α) = l(α).

2) To show thatl(α = 0) = −∞, we prove an equivalent
statement of the formlimλ→−∞ v(λ) = 0. Sincex is a random
variable in the range[0, 1] with the probability density function
Q(x), for any0 < ǫ < 1, we can write

lim
λ→−∞

v(λ) = lim
λ→−∞

∫ ǫ

0
xQ(x)exλdx +

∫ 1

ǫ
xQ(x)exλdx

∫ 1

0
Q(x)exλdx

≤ lim
λ→−∞

∫ ǫ

0
xQ(x)exλdx

∫ ǫ

0
Q(x)exλdx

+

∫ 1

ǫ
xQ(x)dx

∫ ǫ

0
Q(x)e(x−ǫ)λdx

(a)
= lim

λ→−∞

∫ ǫ

0
xQ(x)exλdx

∫ ǫ

0
Q(x)exλdx

(b)
= lim

λ→−∞

x1Q(x1)e
λx1

Q(x2)eλx2
(25)

for somex1, x2 ∈ [0, ǫ]. (a) follows from the fact that for
x ∈ [0, ǫ], (x − ǫ)λ → +∞ when λ → −∞, and (b) is a
result of the mean value theorem for integration [86]. This
theorem states that for every continuous functionf(x) in the
interval [a, b], we have

∃ x0 ∈ [a, b] s.t.

∫ b

a

f(x)dx = f(x0)[b − a]. (26)

Equation (25) is valid for any arbitrary0 < ǫ < 1. If we
chooseǫ → 0, x1 and x2 are both squeezed in the interval
[0, ǫ]. Thus, we have

lim
λ→−∞

v(λ) ≤ lim
λ→−∞

lim
ǫ→0

x1Q(x1)e
λx1

Q(x2)eλx2
= lim

ǫ→0
x1 = 0 (27)

Based on the distribution ofx, v(λ) is obviously non-negative
for any λ. Hence, the inequality in (27) can be replaced by
equality.

3) By observing thatv(λ = 0) = E{x}, it is obvious that
l(α = E{x}) = 0.

4) To show thatl(α = 1) = +∞, we prove the equivalent
statement of the formlimλ→+∞ v(λ) = 1. For any0 < ǫ < 1
andx ∈ [1− ǫ, 1], (x−1+ ǫ)λ→ +∞ whenλ→ +∞. Then,
definingζ = 1− ǫ, we have

lim
λ→+∞

∫ ζ

0 xQ(x)exλdx
∫ 1

0
Q(x)exλdx

≤ lim
λ→+∞

∫ ζ

0 xQ(x)dx
∫ 1

ζ
Q(x)e(x−ζ)λdx

= 0.

(28)
Since the fraction in (28) is obviously non-negative for allλ,
this inequality can be replaced by an equality. Similarly, we
have

lim
λ→+∞

∫ ζ

0 Q(x)exλdx
∫ 1

ζ
xQ(x)exλdx

≤ lim
λ→+∞

∫ ζ

0 Q(x)dx
∫ 1

ζ
xQ(x)e(x−ζ)λdx

= 0.

(29)
which can also be replaced by equality. Now, the limit ofv(λ)
is written as

lim
λ→+∞

v(λ) = lim
λ→+∞

∫ ζ

0
xQ(x)exλdx +

∫ 1

ζ
xQ(x)exλdx

∫ 1

0
Q(x)exλdx

(a)
= lim

λ→+∞

∫ 1

ζ
xQ(x)exλdx

∫ 1

0
Q(x)exλdx

(b)
=



 lim
λ→+∞

∫ ζ

0
Q(x)exλdx +

∫ 1

ζ
Q(x)exλdx

∫ 1

ζ
xQ(x)exλdx





−1

(c)
=

(

lim
λ→+∞

∫ 1

ζ
Q(x)exλdx

∫ 1

ζ xQ(x)exλdx

)−1

(d)
=

(

lim
λ→+∞

Q(x1)e
x1λ

x2Q(x2)ex2λ

)−1

(30)

for somex1, x2 ∈ [1 − ǫ, 1]. (a) follows from equation (28),
and(b) is valid since the final result shows thatlimλ→+∞ v(λ)
is finite and non-zero [86].(c) follows from equation (29), and
(d) is a result of the mean value theorem for integration. If
we chooseǫ→ 0, x1 andx2 are both squeezed in the interval
[1− ǫ, 1]. Then, equation (30) turns into

lim
λ→+∞

v(λ) =

(

lim
λ→+∞

lim
ǫ→0

Q(x1)e
x1λ

x2Q(x2)ex2λ

)−1

=

(

lim
ǫ→0

1

x2

)−1

= 1.

5) According to equations (4) and (5), the first derivative of
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u(α) is

∂u(α)

∂α
= l(α) + α

∂l(α)

∂α
−

E{xeλx}

E{eλx}

∂l(α)

∂α
= l(α).

APPENDIX C
PROOF OFLEMMA 2

Based on the definition of probability density function, we
have

lim
L→∞

−
1

L
log (fy(α))

= lim
L→∞

−
1

L
log

(

lim
δ→ 0

P{y > α} − P{y > α + δ}

δ

)

(a)
= lim

δ→ 0
lim

L→∞
−

1

L
log

(

P{y > α} − P{y > α + δ}

δ

)

≥ lim
δ→ 0

lim
L→∞

1

L
(− log (P{y > α}) + log δ)

(b)
= u(α) (31)

where(a) is valid sincelog is a continuous function, and both
limitations do exist and are interchangeable.(b) follows from
equation (6). The exponent offy(α) can be upper-bounded as

lim
L→∞

−
1

L
log (fy(α))

(a)
= lim

δ→ 0
lim

L→∞

− log (P{y > α} − P{y > α + δ}) + log δ

L
(b)

≤ lim
δ→ 0

lim
L→∞

− log
(

e−L(u(α)+ǫ) − e−L(u(α+δ)−ǫ)
)

+ log δ

L

= lim
δ→ 0

lim
L→∞

u(α) + ǫ−
log
(

1− e−Lχ
)

L
(c)
= u(α) + ǫ (32)

where χ = u(α + δ) − u(α) − 2ǫ. Sinceu(α) is a strictly
increasing function (Lemma 1), we can makeχ positive by
choosingǫ small enough.(a) is valid sincelog is a continuous
function, and both limits do exist and are interchangeable.(b)
follows from the definition of limit if L is sufficiently large,
and (c) is a result ofχ being positive. Selectingǫ arbitrarily
small, results (31) and (32) prove the lemma.

APPENDIX D
PROOF OFLEMMA 3

According to the definition of infimum, we have

lim
L→∞

−
log(H(L))

L

≥ lim
L→∞

−
1

L
log

(

e
−L inf

S
h(x)

∫

S

dx

)

(a)
= inf

S
h(x). (33)

where(a) follows from the fact thatS is a bounded region.
Sinceh(x) is a continuous function, it has a minimum in the
bounded closed setcl(S) which is denoted byx⋆. Due to the
continuity ofh(x) atx⋆, for anyǫ > 0, there is a neighborhood
B(ǫ) centered atx⋆ such that anyx ∈ B(ǫ) has the property

of |h(x)− h(x⋆)| < ǫ. Moreover, sinceS is a convex set, we
have vol(B(ǫ) ∩ S) > 0 . Now, we can write

lim
L→∞

−
log(H(L))

L

≤ lim
L→∞

−
1

L
log

(

∫

S∩B(ǫ)

e−Lh(x)dx

)

≤ lim
L→∞

−
1

L
log

(

e−L(h(x⋆)+ǫ)

∫

S∩B(ǫ)

dx

)

= h(x⋆) + ǫ. (34)

Selectingǫ to be arbitrarily small, (33) and (34) prove the
lemma.

APPENDIX E
PROOF OFLEMMA 4

According to Lemma 1,uj(x) is increasing and convex
for ∀1 ≤ j ≤ J . Thus, the objective functionf(β) =
∑J

j=1 γjuj(
βj

ηj
) is also convex, and the regionST is de-

termined byJ convex inequality constraints and one affine
equality constraint. Hence, in this case, KKT conditions are
both necessary and sufficient for optimality [87]. In other
words, if there exist constantsφj andν such that

γj

ηj
lj(

β⋆
j

ηj
)− φj − ν = 0 ∀1 ≤ j ≤ J (35)

φj

[

ηE{xj} − β⋆
j

]

= 0 ∀1 ≤ j ≤ J (36)

then the pointβ⋆ is a global minimum.
Now, we prove that eitherβ⋆

j = ηjE{xj} for all 1 ≤ j ≤ J ,
or β⋆

j > ηjE{xj} for all 1 ≤ j ≤ J . Let us assume the
opposite is true, and there are at least two elements of the
vector β⋆, indexed withk and m, which have the values of
β⋆

k = ηkE{xk} and β⋆
m > ηmE{xm}, respectively. For any

arbitraryǫ > 0, the vectorβ⋆⋆ can be defined as below

β⋆⋆
j =







β⋆
j + ǫ if j = k

β⋆
j − ǫ if j = m

β⋆
j otherwise.

(37)

Then, we have

lim
ǫ→0

f(β⋆⋆)− f(β⋆)

ǫ

= lim
ǫ→0

1

ǫ

{

γkuk

(

β⋆
k + ǫ

ηk

)

+ γmum

(

β⋆
m − ǫ

ηm

)

−γmum

(

β⋆
m

ηk

)}

(a)
= lim

ǫ→0

γk

ηk
lk

(

β⋆
k + ǫ′

ηk

)

−
γm

ηm
lm

(

β⋆
m + ǫ′′

ηm

)

= −
γm

ηm
lm

(

β⋆
m

ηm

)

< 0 (38)

where ǫ′, ǫ′′ ∈ [0, ǫ], and (a) follows from the Taylor’s
theorem. Thus, moving fromβ⋆ to β

⋆⋆ decreases the function
which contradicts the assumption ofβ⋆ being the global
minimum.

Out of the remaining possibilities, the case whereβ⋆
j =

ηjE{xj} (∀1 ≤ j ≤ J) obviously agrees with Lemma 4 for
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the special case ofν = 0. Therefore, the lemma can be proved
assumingβ⋆

j > ηjE{xj} (∀1 ≤ j ≤ J). Then, equation (36)
turns intoφj = 0 (∀1 ≤ j ≤ J). By rearranging equation (35)
and using the condition

∑J
j=1 βj = α, Lemma 4 is proved.

APPENDIX F
PROOF OFTHEOREM 1

Sketch of the proof: First, it is proved thatη⋆
j > 0 if

E{xj} < α. At the second step, we prove thatη⋆
j = 0, if

E{xj} ≥ α. Then, KKT conditions [87] are applied for the
indices1 ≤ k ≤ J whereE{xk} < α to find the maximizing
allocation vector,η⋆.

Proof: The parameterν is obviously a function of the vector
η. Differentiating equation (9) with respect toηk results in

∂ν

∂ηk
= −

vk

(

νηk

γk

)

+
νηk

γk
v′k

(

νηk

γk

)

J
∑

j=1

η2
j

γj
v′j

(

νηj

γj

)

(39)

where vj(x) = l−1
j (x), and v′j(x) denotes its derivative

with respect to its argument. The objective function can be
simplified as

g(η) ,

J
∑

j=1

γjuj(
β⋆

j

ηj
) =

J
∑

j=1

γjuj

(

vj(
νηj

γj
)

)

. (40)

ν⋆ is defined as the value ofν corresponding toη⋆. Next, we
show thatν⋆ > 0. Let us assume the opposite is true, i.e.,
ν⋆ ≤ 0. Then, according to Lemma 1, we havevj(

ν⋆ηj

γj
) ≤

E{xj} for all j which results ing(η⋆) = 0. However, it is
possible to achieve a positive value ofg(η) by settingηj = 1
for the one vector which has the property ofE{xj} < α, and
settingηj = 0 for the rest. Thus,η⋆ can not be the maximal
point. This contradiction proves the fact thatν⋆ > 0.

At the first step, we prove thatη⋆
j > 0 if E{xj} < α.

Assume the opposite is true for an index1 ≤ k ≤ J . Since
∑J

j=1 η⋆
j = 1, there should be at least one indexm such that

η⋆
m > 0. For any arbitraryǫ > 0, the vectorη⋆⋆ can be defined

as below

η⋆⋆
j =







ǫ if j = k
η⋆

j − ǫ if j = m
η⋆

j otherwise.
(41)

ν⋆⋆ is defined as the corresponding value ofν for the vector
η⋆⋆. Based on equation (39), we can write

∆ν =

ν⋆⋆ − ν⋆ = (42)

vm

(

ν⋆η⋆
m

γm

)

+
ν⋆η⋆

m

γm
v′m

(

ν⋆η⋆
m

γm

)

− E{xk}

J
∑

j=1

η⋆2
j

γj
v′j

(

ν⋆η⋆
j

γj

)

ǫ + O(ǫ2).

Then, we have

lim
ǫ→0

g(η⋆⋆)− g(η⋆)

ǫ

= lim
ǫ→0

1

ǫ

{

ν⋆2η⋆
k

γk
v′k

(

ν⋆η⋆
k

γk

)

ǫ−
ν⋆2η⋆

m

γm
v′m

(

ν⋆η⋆
m

γm

)

ǫ

+ ν⋆∆ν

J
∑

j=1

η⋆2
j

γj
v′j

(

ν⋆η⋆
j

γj

)

+ O(ǫ2)







(a)
= ν⋆

{

vm

(

ν⋆η⋆
m

γm

)

− E{xk}

}

(43)

where(a) follows from (42). If the value of (43) is positive for
an indexm, moving in that direction increases the objective
function which contradicts with the assumption ofη⋆ being
a maximal point. If the value of (43) is non-positive for all
indexesm whoseη⋆

m > 0, we can write

E{xk} ≥
J
∑

m=1

η⋆
mvm

(

ν⋆η⋆
m

γm

)

= α (44)

which obviously contradicts the assumption ofE{xk} < α.
At the second step, we prove thatη⋆

j = 0 if E{xj} ≥ α.
Assume the opposite is true for an index1 ≤ r ≤ J . Since
∑J

j=1 η⋆
j = 1, we should haveη⋆

s < 1 for all other indicess.
For any arbitraryǫ > 0, the vectorη⋆⋆⋆ can be defined as

η⋆⋆⋆
j =







η⋆
j − ǫ if j = r

η⋆
j + ǫ if j = s

η⋆
j otherwise.

(45)

ν⋆⋆⋆ is defined as the corresponding value ofν for the vector
η⋆⋆⋆. Based on equation (39), we can write

∆ν = ν⋆⋆⋆ − ν⋆

=
ǫ

J
∑

j=1

η⋆2
j

γj
v′j

(

ν⋆η⋆
j

γj

)

{

vr

(

ν⋆η⋆
r

γr

)

+
ν⋆η⋆

r

γr
v′r

(

ν⋆η⋆
r

γr

)

−vs

(

ν⋆η⋆
s

γs

)

−
ν⋆η⋆

s

γs
v′s

(

ν⋆η⋆
s

γs

)}

+ O(ǫ2). (46)

Then, we have

lim
ǫ→0

g(η⋆⋆⋆)− g(η⋆)

ǫ

= lim
ǫ→0

1

ǫ

{

ν⋆2η⋆
s

γs
v′s

(

ν⋆η⋆
s

γs

)

ǫ−
ν⋆2η⋆

r

γr
v′r

(

ν⋆η⋆
r

γr

)

ǫ

+ ν⋆∆ν

J
∑

j=1

η⋆2
j

γj
v′j

(

ν⋆η⋆
j

γj

)

+ O(ǫ2)







(a)
= ν⋆

{

vr

(

ν⋆η⋆
r

γr

)

− vs

(

ν⋆η⋆
s

γs

)}

(47)

where(a) follows from (46). If the value of (47) is positive
for an indexs, moving in that direction increases the objective
function which contradicts with the assumption ofη⋆ being
a maximal point . If the value of (47) is non-positive for all
indicess whoseη⋆

s > 0, we can write

E{xr} < vr

(

ν⋆η⋆
r

γr

)

≤
J
∑

s=1

η⋆
svs

(

ν⋆η⋆
s

γs

)

= α (48)
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which obviously contradicts the assumption ofE{xr} ≥ α.
Now that the boundary points are checked, we can safely use

the KKT conditions [87] for all1 ≤ k ≤ J , whereE{xk} < α,
to find the maximizing allocation vector,η⋆.

ζ =
ν⋆2η⋆

k

γk
v′k

(

ν⋆η⋆
k

γk

)

+ ν⋆
J
∑

j=1

η⋆2
j

γj
v′j

(

ν⋆η⋆2
j

γj

)

∂ν

∂ηk
|ν=ν⋆

(a)
= −ν⋆vk

(

ν⋆η⋆
k

γk

)

(49)

where ζ is a constant independent ofk, and (a) follows
from (39). Using the fact that

∑J
j=1 ηj = 1 together with

equations (9) and (49) results in

ζ = −αν⋆

ν⋆ =
∑

E{xj}<α

γj lj(α). (50)

Combining equations (49) and (50) results in equation (11)
andg(η⋆) =

∑J
j=1 γjuj(α).

APPENDIX G
PROOF OFREMARK 4

Based on the arguments similar to the ones in appendix F,
it can be shown that̃η⋆

j = 0 iff E{xj} ≥ α. Since all the
types are identical here, this meansη̃⋆

j > 0 for all j. Similar
to equation (49), applying KKT conditions [87], gives us

vj

(

ν̃⋆η̃⋆
j

γj

)

=



















−ζ if η̃⋆
j <

γjWjT

n0

−ζ − σj if η̃⋆
j =

γjWjT

n0

(51)

where σj ’s are non-negative parameters [87]. PuttingΥ =
lj(−ζ)

ν̃⋆ proves equation (13).

APPENDIX H
DISCRETEANALYSIS OF ONE PATH

Q(n, k, l) is defined as the probability of having exactly
k errors out of then packets sent over the pathl. To
computeQ(n, k, l) for any generalM -state Markov model,
the following parameters are required: 1) aM ×M matrix Π

with the elementsπs′|s which represents the channel transition
behavior.πs′|s is the probability of the channel being in the
states′ provided that it has been in the states when the last
packet was transmitted; 2) a vectorq = (q1, . . . , qM ) where
qs denotes the probability of having erasure conditioned on
being in the states.

For ∀ s ∈ {1, . . . , M}, πs is defined as the steady state
probability of being in the states. Obviously, the steady state
probability vectorπ = (π1, . . . , πM ) can be computed using
the equation setπ = Ππ and

∑M
s=1 πs = 1.

Depending on the initial state of the pathl, Ps(n, k, l) is
defined as the probability of havingk errors out of then
packets sent over this path when we start the transmission in
the states. It is easy to see that

Q(n, k, l) =

M
∑

s=1

πsPs(n, k, l). (52)

Ps(n, k, l) can be computed from the following recursive
equation

Ps(n, k, l) =

M
∑

s′=1

qsπs′|sPs′ (n− 1, k − 1, l) +

M
∑

s′=1

(1− qs) πs′|sPs′(n− 1, k, l) (53)

with the initial conditions

Ps(n, k, l) = 0 for k > n

Ps(n, k, l) = 0 for k < 0

Ps(n, k, l) = 1 for k = n = 0. (54)

According to the recursive equations in (53), to compute
Ps(n, k, l) by memoization technique, the functionsPs()
should be calculated at the following set of points denoted
asS(n, k)

S(n, k) = {(n′, k′) | 0 ≤ k′ ≤ k, n′ − n + k ≤ k′ ≤ n′} .

Cardinality of the setS(n, k) is of the order|S(n, k)| =
O (k (n− k)). SinceO(M) operations are needed to compute
the recursive functionsPs() at each point andM functions
Ps(n, k, l) (s = 1, . . . , M ) have to be computed,Ps(n, k, l) is
computable with the complexity ofO

(

M2k (n− k)
)

which
give us Q(n, k, l) according to equation (52). It is worth
mentioning that if theM -state extended Gilbert model is
adopted, the computational complexity of obtainingQ(n, k, l)
would be reduced toO (Mk (n− k)).

APPENDIX I
DISCRETEANALYSIS OF ONE TYPE

When there aren packets to be distributed overLj identical
paths of typej, uniform distribution is obviously the optimum.
However, since the integern may be indivisible byLj , theLj

dimensional vectorN is selected as

Nl =



















⌊
n

Lj
⌋+ 1 for 1 ≤ l ≤ Rem(n, Lj)

⌊
n

Lj
⌋ for Rem(n, Lj) < l ≤ Lj

(55)

where Rem(a, b) denotes the remainder of dividinga by b. N

represents the closest integer vector to a uniform distribution.
EN(k, l) is defined as the probability of having exactlyk

erasures among then packets transmitted over the identical
paths 1 to l with the allocation vectorN. According to
the definitions ofQj(n, k) and EN(k, l), it is obvious that
Qj(n, k) = EN(k, Lj). EN(k, l) can be computed recursively
as

EN(k, l) =

k
∑

i=0

EN(k − i, l− 1)Q(Nl, i, l)

EN(k, 1) = Q(N1, k, 1) (56)

whereQ(Nl, i, l) is given in appendix H. Since all the paths
are assumed to be identical here,Q(Nl, k, l) is the same
for all path indices,l. According to the recursive equations
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in (53), the values ofQ(Nl, i, l) for all 0 ≤ i ≤ k and
1 ≤ l ≤ Lj can be calculated with the complexity of

O(M2Nlk) = O
(

M2 n
Lj

k
)

. According to the recursive equa-

tions in (56), computingEN(k, l) requires memoization over
an array of sizeO(kl) whose entries can be calculated with
O(k) operations each. Thus,EN(k, l) is computable with the
complexity ofO(k2l) if Q(Nl, i, l)’s are already given. Finally,
noting thatQj(n, k) = EN(k, Lj), we can computeQj(n, k)

with the overall complexity ofO(k2Lj) + O
(

M2 n
Lj

k
)

.

APPENDIX J
PROOF OFLEMMA 5

The lemma is proved by induction onj. The case ofj = 1
is obviously true aŝPe(n, k, 1) = P opt

e (n, k, 1). Let us assume
this statement is true forj = 1 to J − 1. Then, forj = J , we
have

P̂e(n, k, J)

(a)

≤
NJ
∑

i=0

QJ(Nopt
J , i)P̂e(n−Nopt

J , k − i, J − 1)

(b)

≤
NJ
∑

i=0

QJ(Nopt
J , i)P opt

e (n−Nopt
J , k − i, J − 1)

(c)

≤
NJ
∑

i=0

QJ(Nopt
J , i)PNopt

e (k − i, J − 1)

(d)
= PNopt

e (k, J) = P opt
e (n, k, J)

where Nopt denotes the optimum allocation ofn packets
among theJ types of paths such that the probability of having
more thank lost packets is minimized.(a) follows from the
recursive equation (14), and(b) is the induction assumption.
(c) comes from the definition ofP opt

e (n, k, l), and (d) is a
result of equation (16).

APPENDIX K
PROOF OFTHEOREM 2

Sketch of the proof: First, the asymptotic behavior of
Qj(n, k) is analyzed, and it is shown that for large values of
Lj (or equivalentlyL), equation (60) computes the exponent
of Qj(n, k) versusL. Next, we prove the first part of the
theorem by induction onJ . The proof of this part is divided
to two different cases, depending on whetherK

N is larger than
E{xJ} or vice versa. Finally, the second and the third parts
of the theorem are proved by induction onj while the total
number of path types,J , is fixed. Again, the proof is divided
into two different cases, depending on whetherK

N is larger
thanE{xj} or vice versa.

Proof: First, we compute the asymptotic behavior of
Qj(n, k) for k > nE{xj}, andn growing proportionally to
Lj, i.e. n = n′Lj . Here, we can apply Sanov’s Theorem [77],
[88] asn andk are discrete variables andn′ is a constant.

Sanov’s Theorem. Let X1, X2, . . . , Xn be i.i.d. dis-
crete random variables from an alphabet setX with
the size |X | and probability mass function (pmf)Q(x).
Let P denote the set of pmf’s inR|X |, i.e. P =

{

P ∈ R
|X || P (i) ≥ 0,

∑|X |
i=1 P (i) = 1

}

. Also, let PL de-
note the subset ofP corresponding to all possible empir-
ical distributions ofX in L observations [88], i.e.PL =
{P ∈ P| ∀i, LP (i) ∈ Z}. For any dense and closed set [83]
of pmf’sE ⊆ P , the probability that the empirical distribution
of L observations belongs to the setE is equal to

P {E} = P {E ∩ PL}
.
= e−LD(P⋆||Q) (57)

where P⋆ = argmin
P∈E

D(P||Q) and D(P||Q) =

∑|X |
i=1 P (i) log P (i)

Q(i) .

Focusing our attention on the main problem, assume thatP

is defined as the empirical distribution of the number of errors
in each path, i.e. for∀i, 1 ≤ i ≤ n′, P (i) shows the ratio of
the total paths which contain exactlyi lost packets. Similarly,
for ∀i, 1 ≤ i ≤ n′, Q(i) denotes the probability of exactlyi
packets being lost out of then′ packets transmitted on a path
of type j. The setsE andEout are defined as follows

E = {P ∈ P|
n′

∑

i=0

iP (i) ≥ β} (58)

Eout = {P ∈ P|
n′

∑

i=0

iP (i) = β}

where β =
k

n
. Noting E and Eout are dense sets, we can

computeQj(n, k) as

Qj(n, k)
(a)
= P {Eout}

(b).
= e

−Lj min
P∈Eout

D (P||Q)
(59)

where (a) follows from the definition ofQj(n, k) as the
probability of having exactlyk errors out of then packets
sent over the paths of typej given in section IV, and(b)
results from Sanov’s Theorem.

Knowing the fact that the Kullback Leibler distance,
D(P||Q), is a convex function ofP andQ [89], we conclude
that its minimum over the convex setE either lies on an
interior point which is a global minimum of the function over
the whole setP or is located on the boundary ofE. However,
we know that the global minimum of Kullback Leibler distance
occurs atP = Q /∈ E. Thus, the minimum ofD(P||Q) is
located on the boundary ofE. This results in

Qj(n, k)
(a).
= e

−Lj min
P∈Eout

D (P||Q)

= e
−Lj min

P∈E
D (P||Q) (b).

= e
−γjLuj(

k

n
)

(60)

where(a) and(b) follow from equations (59) and (6), respec-
tively.

1) We prove the first part of the theorem by induction onJ .
WhenJ = 1, the statement is correct for both cases ofK

N >

E{x1} and K
N ≤ E{x1}, recalling the fact that̂Pe(n, k, 1) =

P opt
e (n, k, 1) and u1(x) = 0 for x ≤ E{x1}. Now, let us

assume the first part of the theorem is true forj = 1 to J−1.
We prove the same statement forJ as well. The proof can be
divided into two different cases, depending on whetherK

N is
larger thanE{xJ} or vice versa.
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1.1)
K

N
> E{xJ}

According to the definition, the value
of P̂e(N, K, J) is computed by minimizing
∑nJ

i=0 QJ(nJ , i)P̂e(N − nJ , K − i, J − 1) over nJ (see
equation (16)). Now, we show that for any value ofnJ , the
corresponding term in the minimization is asymptotically at
least equal toP opt

e (N, K, J). nJ can take integer values in
the range0 ≤ nJ ≤ N . We split this range into three non-
overlapping intervals of0 ≤ nJ ≤ ǫL, ǫL ≤ nJ ≤ N(1 − ǫ),
and N(1 − ǫ) < nJ ≤ N for any arbitrary constant
ǫ ≤ min

{

γj , 1−
K
N

}

. The reason is that equation (60) is
valid in the second interval only, and we need separate
analyses for the first and last intervals.

First, we show the statement forǫL ≤ nJ ≤ N(1 − ǫ).
Defining iJ = ⌊nJ

K
N ⌋, we have

iJ
nJ

=
K

N
+ O(

1

L
),

K − iJ
N − nJ

=
K

N
+ O(

1

L
) (61)

asǫ is constant, andK = O(L), N = O(L). Hence, we have

nJ
∑

i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , iJ)P̂e(N − nJ , K − iJ , J − 1)

(a).
= e

−L

J
∑

j=1

γjuj

(

K

N
+ O

(

1

L

))

(b).
= e

−L

J
∑

j=1

γjuj

(

K

N

)

(62)

where (a) follows from (60) and the induction assumption,
and (b) follows from the fact thatuj()’s are differentiable
functions according to Lemma 1 in subsection III-A.

For 0 ≤ nJ ≤ ǫL, since ǫ < γj , the number of packets
assigned to the paths of typeJ is less than the number of
such paths. Thus, one packet is allocated tonJ of the paths,
and the rest of the paths of typeJ are not used. Definingπb,J

as the probability of a path of typeJ being in the bad state,
we can write

QJ(nJ , nJ ) = πnJ

b,J = e
−nJ log

 

1

πb,J

!

. (63)

Therefore, for0 ≤ nJ ≤ ǫL, we have

nJ
∑

i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , nJ)P̂e(N − nJ , K − nJ , J − 1)

.
= e

−L

J−1
∑

j=1

γjuj

(

K − nJ

N − nJ

)

− nJ log

(

1

πb,J

)

(a)

≥ e

−L

J−1
∑

j=1

γjuj

(

K

N

)

− Lǫ log

(

1

πb,J

)

(b).
= e

−L

J−1
∑

j=1

γjuj

(

K

N

)

≥ e

−L

J
∑

j=1

γjuj

(

K

N

)

(64)

where (a) follows from the fact thatK−nJ

N−nJ
≤ K

N , and (b)
results from the fact that we can selectǫ arbitrarily small.

Finally, we prove the statement for the casenJ > N(1−ǫ).
In this case, we have

nJ
∑

i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , K)P̂e(N − nJ , 0, J − 1)

(a)

≥ e
−LγJuJ

(

K

N (1− ǫ)

)

(b)

≥̇ e

−L

J
∑

j=1

γjuj

(

K

N

)

(65)

where (a) follows from the fact thatǫ < 1 − K
N and

P̂e(n, 0, j) = 1, for all n andj. Settingǫ small enough results
in (b).

Inequalities (62), (64), and (65) result in

P̂e(N, K, J) ≥̇ e

−L

J
∑

j=1

γjuj (α)

(66)

Combining (66) with Lemma 5 proves the first part of Theo-
rem 2 for the case whenKN > E{xJ}.

1.2)
K

N
≤ E{xJ}

Similar to the case of
K

N
> E{xJ} in subsection 1.1, we

show that for any value of0 ≤ nJ ≤ N , the corresponding
term of the minimization in equation (16) is asymptotically
at least equal toP opt

e (N, K, J). Again, the range ofnJ is
partitioned into three non-overlapping intervals.

For any arbitrary0 < ǫ < min
{

γJ , 1− K
N , 1

K

}

, and for all
nJ in the range ofǫL < nJ ≤ N(1 − ǫ), we defineiJ as
iJ = ⌈nJE{xJ}⌉. We have

iJ
nJ

= E{xJ}+ O

(

1

L

)

≥ E{xJ}

K − iJ
N − nJ

<
K

N
+ O

(

1

L

)

(67)
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Hence,
nJ
∑

i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , iJ)P̂e(N − nJ , K − iJ , J − 1)

(a).
= e

−LγJuJ

(

iJ
nJ

)

− L

J−1
∑

j=1

γjuj

(

K − iJ
N − nJ

)

(b)

≥ e
−LγJuJ

(

E{xJ}+ O

(

1

L

))

·

e

−L

J−1
∑

j=1

γjuj

(

K

N
+ O

(

1

L

))

(c).
= e

−L

J
∑

j=1

γjuj

(

K

N

)

(68)

where (a) follows from (60) and the induction assumption,
and(b) is based on (67).(c) results from the facts thatuj()’s
are differentiable functions, and we haveuJ (E{xJ}) = 0,
both according to Lemma 1 in subsection III-A.

For 0 ≤ nJ ≤ ǫL, the analysis of section 1.1 and
inequality (64) are still valid. FornJ > (1 − ǫ)N , we set
iJ = ⌈E {xJ}nJ⌉. Now, we have

iJ ≥ nJE{xJ} > (1 − ǫ)NE{xJ} ≥ (1− ǫ)K. (69)

The above inequality can be written as

K − iJ < ǫK < 1 (70)

sinceǫ < 1
K . Noting thatK and iJ are integer values, it is

concluded thatK ≤ iJ . Now, we can write
nJ
∑

i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , iJ)P̂e(N − nJ , K − iJ , J − 1)
(a)
= QJ(nJ , iJ)

≥̇ e
−LγJuJ

(

E {xJ}+
1

nJ

)

(b)

≥̇ e
−LγJuJ

(

E {xJ}+
1

(1− ǫ)N

)

.
= e

−LγJuJ

(

E {xJ}+ O

(

1

L

))

(c).
= 1 (71)

where (a) follows from the fact that K ≤ iJ , and
P̂e(n, k, j) = 1, for k ≤ 0. (b) and (c) result from nJ >
(1− ǫ)N anduJ (E{xJ}) = 0, respectively.

Hence, inequalities (64), (68), and (71) result in

P̂e(N, K, J) ≥̇ e

−L

J
∑

j=1

γjuj (α)

(72)

which proves the first part of Theorem 2 for the case ofK
N ≤

E{xJ} when combined with Lemma 5.

2) We prove the second and the third parts of the theorem by
induction onj while the total number of types,J , is fixed.

The proof of the statements for the base of the induction,
j = J , is similar to the proof of the induction step, fromj +1
to j. Hence, we just give the proof for the induction step.
Assume the second and the third parts of the theorem are true
for m = J to j + 1. We prove the same statements forj.
The proof is divided into two different cases, depending on
whetherK

N is larger thanE{xj} or vice versa.
Before we proceed further, it is helpful to introduce two

new parametersN ′ andK ′ as

N ′ = N −
J
∑

m=j+1

N̂j

K ′ = K −
J
∑

m=j+1

Kj .

According to the above definitions and the induction assump-
tions, it is obvious that

K ′

N ′
=

K

N
+ o(1) = α + o(1). (73)

2.1)
K

N
> E{xj}

First, by contradiction, it will be shown that for small
enough values ofǫ > 0, we haveN̂j > ǫN ′. Let us assume
the opposite is true, i.e.̂Nj ≤ ǫN ′. Then, we can write

P̂e(N
′, K ′, j)

(a)
=

N̂j
∑

i=0

P̂e(N
′ − N̂j , K

′ − i, j − 1)Qj(N̂j , i)

≥ P̂e(N
′ − N̂j, K

′ − N̂j , j − 1)Qj(N̂j , N̂j)

(b).
= Qj(N̂j , N̂j)e

−L

j−1
∑

r=1

γrur

(

K ′ − N̂j

N ′ − N̂j

)

(c)

≥ e

−Ln0



1−
J
∑

r=j+1

ηr



 ǫ log

(

1

πb,j

)

·

e

−L

j−1
∑

r=1

γrur

(

K ′

N ′

)

(d)

>̇ e

−L

j
∑

r=1

γrur (α)

(74)

where(a) follows from equation (16) and step (2) of our sub-
optimal algorithm,(b) results from the first part of Theorem 2,
and (c) can be justified using arguments similar to those of
inequality (64).(d) is obtained assumingǫ is small enough
such that the corresponding term in the exponent is strictly
less thanLγjuj

(

K′

N ′

)

and also the fact thatK
′

N ′
= α + o(1).

The result in (74) is obviously in contradiction with the first
part of Theorem 2, proving that̂Nj > ǫN ′.

Now, we show that ifN̂j > (1− ǫ)N ′ for arbitrarily small
values ofǫ, we should haveE {xr} > α for all 1 ≤ r ≤ j−1.

In such a case, we observeN̂j

N ′
= 1+o(1), proving the second



20 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , 2009

statement of Theorem 2. To show this, let us assumeN̂j >
(1− ǫ)N ′. Hence,

P̂e(N
′, K ′, j) =

N̂j
∑

i=0

P̂e(N
′ − N̂j, K

′ − i, j − 1)Qj(N̂j , i)

≥̇ P̂e(N
′ − N̂j, 0, j − 1)Qj(N̂j , K

′)
(a)

≥̇ e
−Lγjuj

“

K′

(1−ǫ)N′

” (b).
= e−Lγjuj(α+o(1)) (75)

where(a) follows from the fact thatP̂e(n, 0, j) = 1, for all
values ofn and j, and the fact thatN̂j ≥ (1 − ǫ)N ′. (b) is
obtained by makingǫ arbitrarily small and using equation (73).
Applying (75) and knowing the fact that̂Pe(N

′, K ′, j)
.
=

e−L
Pj

r=1 γrur(α), we conclude thatE {xr} > α, for all values
of 1 ≤ r ≤ j − 1.

P̂e(N
′, K ′, j) can be written as

P̂e(N
′, K ′, j)

= min
0≤Nj≤N ′

Nj
∑

i=0

P̂e(N
′ −Nj, K

′ − i, j − 1)Qj(Nj , i)

(a).
= min

ǫN ′≤Nj≤(1−ǫ)N ′

max
0≤i≤Nj

P̂e(N
′ −Nj , K

′ − i, j − 1)Qj(Nj , i)
(b).
= min

ǫN ′≤Nj≤(1−ǫ)N ′

max
E{xj}Nj<i≤Nj

e

−Lγjuj

(

i

Nj

)

− L

j−1
∑

r=1

γrur

(

K ′ − i

N ′ −Nj

)

.
= e

−L max
ǫN ′≤Nj≤(1−ǫ)N ′

min
E{xj}Nj<i≤Nj

Md(i, Nj)

(c).
= e

−L max
ǫ≤λj≤(1−ǫ)

min
E{xj}λj<βj≤λj

Mc(βj , λj)
. (76)

whereMd(i, Nj) andMc(βj , λj) are defined as

Md(i, Nj) = γjuj

(

i

Nj

)

+

j−1
∑

r=1

γrur

(

K ′ − i

N ′ −Nj

)

Mc(βj , λj) = γjuj

(

βj

λj

)

+

j−1
∑

r=1

γrur

(

α− βj

1− λj

)

.

In (76),(a) follows from the fact thatN̂j is bounded asǫN ′ ≤
N̂j ≤ (1 − ǫ)N ′. (b) results from equation (60),̂Pe(n, k, j)
being a decreasing function ofk, and the fact that we have
Qj(Nj , i) ≤ 1

.
= Qj(Nj , E {xj}Nj) for i < E {xj}Nj . βj

andλj are defined asβj = i
N ′

andλj =
Nj

N ′
. (c) is a result of

havingMc(βj , λj) = Md(i, Nj)+O
(

1
L

)

. Hence, the discrete
to continuous relaxation is valid.

Let us define
(

β∗
j , λ∗

j

)

as the values of(βj , λj) which solve
the max-min problem in (76). DifferentiatingMc(βj , λj) with

respect toβj andλj results in

0=
γj

λ∗
j

lj

(

β∗
j

λ∗
j

)

−

j−1
∑

r=1,
E{xr}<ζ

γr

1− λ∗
j

lr (ζ)

0=















−
γjβ

∗
j

λ∗2
j

lj

(

β∗
j

λ∗
j

)

+

j−1
∑

r=1,
E{xr}<ζ

γr(α− β∗
j )

(1− λ∗
j )

2
lr (ζ)

+









γj

λ∗
j

lj

(

β∗
j

λ∗
j

)

−

j−1
∑

r=1,
E{xr}<ζ

γr

1− λ∗
j

lr (ζ)









∂β∗
j

∂λj
|λj=λ∗

j















where ζ =
α− β∗

j

1− λ∗
j

. Solving the above equations gives the

unique optimum solution(β∗
j , λ∗

j ) as

β∗
j = αλ∗

j

λ∗
j =

γj lj(α)
j
∑

r=1,α>E{xr}

lr(α)

(77)

Hence, the integer parametersKj , N̂j defined in the subop-

timal algorithm have to satisfyKj

N ′
= β∗

j + o(1) and N̂j

N ′
=

λ∗
j + o(1), respectively. Based on the induction assumption, it

is easy to show that

N ′

N
=

j
∑

r=1,E{xr}<α

γrur(α)

J
∑

r=1,E{xr}<α

γrur(α)

(78)

which completes the proof for the case ofE {xj} < K
N .

2.2)
K

N
≤ E{xj}

In this case, we show thatN̂j

N = o(1). Defining ij =

⌈E{xj}N̂j⌉, we have

K ′ − ij

N ′ − N̂j

= α− (E{xj} − α)
N̂j

N ′ − N̂j

+ o(1) (79)

using equation (73). Now, we have

P̂e(N
′, K ′, j)

=

N̂j
∑

i=0

P̂e(N
′ − N̂j , K

′ − i, j − 1)Qj(N̂j , i)

≥ P̂e(N
′ − N̂j, K

′ − ij , j − 1)Qj(N̂j , ij)
(a).
= e−Lγjuj (E{xj}+ o(1)) ·

e

−L

j−1
∑

r=1

γrur

(

α− (E{xj} − α)
N̂j

N ′ − N̂j

)

.
= e

−L

j−1
∑

r=1

γrur

(

α− (E{xj} − α)
N̂j

N ′ − N̂j

)

(80)
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where(a) follows from the first part of Theorem 2 and (60).
On the other hand, according to the result of the first part of
Theorem 2, we know that

P̂e(N
′, K ′, j)

.
= e

−L

j−1
∑

r=1

γrur (α)

. (81)

According to Lemma 1,ur(β) is an increasing function ofβ
for all 1 ≤ r ≤ j − 1. Thus,

∑j−1
r=1 γrur (β) is also a one-to-

one increasing function ofβ. Noting this fact and comparing
(80) and (81), we conclude thatN̂j

N ′
= o(1) asE {xj} − α is

strictly positive. Noting (78), we haveN̂j

N = o(1) which proves
the second part of Theorem 2 for the case ofK

N ≤ E{xj}.
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