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Abstract—Path diversity works by setting up multiple parallel
connections between the end points using the topological e
redundancy of the network. In this paper, Forward Error Cor-
rection (FEC) is applied across multiple independent paths to
enhance the end-to-end reliability. We prove that the probaility
of irrecoverable loss (Pr) decays exponentially with the number
of paths. Furthermore, the rate allocation (RA) problem across
independent paths is studied. Our objective is to find the opmal
RA, i.e. the allocation which minimizes Pg. The RA problem is
solved for a large number of paths. Moreover, it is shown thain
such asymptotically optimal RA, each path is assigned a pdsie
rate iff its quality is above a certain threshold. Finally, using
memoization technique, a heuristic suboptimal algorithm vith
polynomial runtime is proposed for RA over a finite number of
paths. This algorithm converges to the asymptotically optnal
RA when the number of paths is large. For practical number
of paths, the simulation results demonstrate the close-toptimal
performance of the proposed algorithm.*

Index Terms—Path diversity, Wireless Mesh Networks, In-
ternet, MDS codes, erasure, forward error correction, rate
allocation, complexity.

|I. INTRODUCTION
A. Motivation

N recent yearspath diversityover packet switched net-
works has received significant attention. This idea is a
plied over different types of networks like wireless mes
networks [2]-[4], the Internet [5]-[7], and Peer-to-peat-n
works [8]. Many studies have shown that path diversity h
the ability to simultaneously improve the end-to-end ratd a .

reliability [1], [5], [6], [9]-[11]. In order to apply pathigersity

over any packet switched network, two problems need to
addressed: i) setting up multiple independent paths betwe

the end-nodes (multipath routing) ii) utilizing the giverde-

pendent paths to improve the end-to-end throughput and

reliability. In this paper, we focus on the second probleﬂﬁ1
and try to develop a mathematical analysis of path diversi?
which is valid for any type of underlying network. Due '
to the inherent flexibility of wireless mesh networks, mang
routing protocols can be modified to support multipath nogiti
over such networks [12]-[18]. Thus, we consider a wirele

network as the underlying network. However, it should

underlying network (e.g. path diversity over the Interret)

long as multiple independent paths are given. Assuming a

of independent paths, we utilizeorward Error Correction

(FEC) across the given paths and analyze the reliabilitp g
achieved by path diversity mathematically. Furthermohe, t

1This manuscript is an extended version of the conferencerpaublished
in Globecom 2007 [1].

rate allocation (RA) problem across the given paths is ad-
dressed, and a polynomial suboptimal algorithm is intreduc
for this purpose.

B. Multipath Routing over Wireless Mesh Networks

In order to exploit path diversity, it is desirable to set tiul
ple independent paths between the end nodes. This problem is
addressed throughput the literature [12]-[20]. A set ohpat
are defined to be independent if their corresponding packet
loss patterns are independent. According to the definitio,
set of disjoint paths are independent. Even when the pa¢hs ar
not completely disjoint, their loss and delay patterns skow
high degree of independence as long as they do not share
any congestion points or bottlenecks [6], [21]-[26]. Many
techniques are proposed to detect the shared congestiats,poi
such as cross-correlation-based approach [27], entrapgeb
approach [28], and wavelet-based approach [29]. Hence, the
independence of a set of paths can be verified by the mentioned
bottleneck detection algorithms.

Many well-known mesh network routing protocols like
AODV [30] and DSR [31] can be modified to support multi-
path routing. Indeed, DSR can find multiple paths naturally
by its flooding behavior [31]. However, it does guarantee

1at the found paths are disjoint. The Split Multipath Rogti
EéMR) [12] solves this problem as it avoids dropping dupkca

oute RequestRREQ) packets by the intermediate nodes.
(gf course, this is achieved at the cost of more RREQs and

El!ngher routing overhead. Similarly, the Multipath SouraauR

ing (MSR) [18] introduces a multiple path routing protocol
étended from DSR. Based on the measurement of Round-
ﬁ(ip Times (RTT), MSR also proposes a scheme to distribute
e load among multiple paths. Leured al. [17] propose
MP-DSR protocol which focuses on a newly defined
etric for the QoS called thend-to-end reliability MP-DSR
an algorithm which selects multiple paths with low fall
obability associated by stable radio links. [16] addessbe
roblem of transmitting video with double description ireth
ase where non of the paths to the destination is significantl

t

Jgore reliable than the others. The problem is turned into
pan optimization which is too complex to have a closed-form

noted that the results of this work stay valid for any oth@romt'on' Thus, the authors apply the metaheurigmetic

algorithmto find a suboptimal solution. Then, it is shown that
géi§ method can be incorporated into many existing on-deiman
routing protocols like DSR [16]. Finally, the Robust Mulin
>ource Routing Protocol (RMPSR) is another extension to

SR to support multipath video communication over wireless
networks.

AMODV [14] is an Ad-hoc On-demand Multipath Dis-
tance Vector routing protocol based on the concept of link
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reversal extending from AODV. In contrast with the DSRshown that the topology-aware overlay networks can provide
based multipath routing protocols, AMODV discovers muétip a satisfactory degree of independence between disjoihtspat
link-disjoint loopfree paths. AODVM [15] is another exten{disjoint in the virtual level) [37]. Moreover, distribudeal-
sion to AODV which finds multiple reliable routing pathsgorithms can be utilized to construct and/or maintain axerl
Similarly, AODV-BR [13] introduces an algorithm to find networks. Reference [44] addresses the problem of disédbu
back up routing paths over Ad hoc networks. [3] proposewerlay network design based on a game theoretical approach
a novel multipath hybrid routing protocol, Multipath Meshwhile [45] studies overlay networks failure detection and
(MMESH), which effectively discovers multiple paths overecovery through dynamic probing.
wireless mesh networks. Simulation results show that MMESH Another issue which may degrade path diversity in overlay
is able to balance the traffic by avoiding hot paths, i.enetworks is having bottlenecks in the links connecting the
the paths with higher traffic load. AMTP [19], an ad ho@&nd-nodes to the network. To address this problem, the idea
multipath streaming protocol for multimedia delivery whic of multihomingis proposed [7], [46]. In this technique, the
selects multiple maximally disjointed paths with best Qo&nd users are connected to more than brternet Service
to maximize the aggregate end-to-end throughput. AMTP Fgoviders(ISP’s) simultaneously. It is shown that multihoming
able to accurately differentiate between packet lossestalueassists overlay networks to set up extra independent paths
different network conditions. In case of a path being brolten between the end-points, i.e. improves the end-to-endoiitia
seamlessly switches to a proper path and therefore masntasonsiderably [7].
high streaming quality. When there are multiple channels
between the wireless mesh nodes, it is easier to find multiple
independent paths across the network. Reference [2] applie
the idea of multipath routing in such a scenario to increase t Recently, path diversity is utilized in many applications
end-to-end throughput. Weit al. [10] address the problem of (see [47]-[52]). Reference [49] combines multiple degimip
path selection over a wireless network by taking into actoueoding and path diversity to improve the quality of service
the interference between the wireless links. Their goabis (Q0S) in video streaming. In [9], multiple descriptions ideo
minimize thepacket drop probabilitfPDP). The problem of are routed throughput different paths across a wirelessfimes
optimal multipath selection is shown to be NP-hard. Therefo network. It is assumed that coding i®n-hierarchicalin the
they introduce a heuristic algorithm to find a close-to4m@ii sense that none of the descriptions is the main description.
set of paths. A previous work by the same authors [3Mjstead, the distortion decreases gradually as the receive
studies video multicast over wireless ad hoc networks. Ke tareceives more descriptions of the video. Moreover, non ef th
advantage of network path diversity in the multicast case, gaths has significantly better quality than the others, auth e
algorithm to find multiple disjoint and near-disjoint treiss link is modeled by a 2-state Markov model called the Gilbert
proposed. channel. [9] concludes that in this setup, utilizing muéip
paths improves both the rate and reliability.

Packet scheduling over multiple paths is addressed in §63] t
optimize the rate-distortion function of a video streamfdRe

In the Internet, the end-points have no control over thence [52] utilizes path diversity to improve the quality afité
path selection process. Indeed, letting the end nodes set dher IP streams. According to [52], sending some redundant
paths requires modification of the IP routing protocol anaex voice packets through an extra path helps the receiver thuffe
signaling between the routers which are extremely costly. @nd the scheduler optimize the trade-off between the maximu
avoid such an expenseyerlay networksare introduced [24], tolerable delay and the packet loss ratio [52].
[25], [33]. The basic idea of the overlay network is to equip In [5], multipath routing of TCP packets is applied to comtro
very few nodes (smart nodes) with the desired new functionsthe congestion with minimum signaling overhead. When the
ities while the rest remain unchanged. The smart nodes founderlying network is an ad hoc wireless network, a similar
a virtual network connected through virtual or logical knkresult is reported [54]. In other words, transmitting vide@r
on top of the physical network. Thus, overlay nodes can beultiple paths is shown to decrease the average congestion
used as relays to set up independent paths between the @mdl end-to-end distortion. [55] proposes a multiflow reatim
nodes [7], [34]-[36]. transport protocol for wireless networks. Through bothhmat

Topology of the underlying physical network is an importargmatical analysis and comprehensive simulation, it is show
factor in the design of the overlay network. Indeed, improp¢hat partitioning the video packets across multiple paths i
design of the overlay network can result in shared bottlemeqroves queuing performance of the multimedia data, remplti
between different virtual links [37]. In such cases, even i§ less congestion, smaller delay, and higher utilizatibthe
two paths are disjoint in the virtual level, a large degreeottleneck link bandwidth [55].
of dependency may be observed between them. Hence, &ontent Distribution Networks(CDN's) can also take
class of topology-awareoverlay networks are proposed toadvantage of path diversity for performance improvement.
maximize independence between the virtual links [37]-[43FDN'’s are a special type of overlay networks consisting of
For instance, the overlay nodes can utilize latency [38)] [3Edge Servergnodes) responsible for delivery of the contents
or the underlying IP topological information [37], [40]-9}} from an original server to the end users [33], [56]. Current
to select the neighbors and form the overlay graph. It @mmercial CDN's like Akamai use path diversity based

Applications of Path Diversity

C. Path Diversity over the Internet
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techniques likeSureRouteto ensure that the edge server§s8] to approximate the distribution of the number of lost
maintain reliable connections to the original server. gidepackets with theNormal Distribution Using this distribution,
server selection schemes are discussed in [34] to maximihe authors propose a pseudo-polynomial algorithm, based
path diversity in CDN’s. on Dynamic Programmingto estimate the optimal RA for
a large number of paths. However, CLT can not be applied
to solve this problem. The reason is that in this case, the
variance of the fraction of lost packets scales(sr) to
References [11], [6], and [57] study the RA problem ovetero. Instead, as we show in this paper, the distribution of
multiple independent paths. Assuming each path follows thest packets can be computed uslrayge Deviation Principle
leaky bucket model, reference [11] shows that a water-illinLDP) which results in a distribution totally different frothe
scheme provides the minimum end-to-end delay. On the otmgrmal distribution. Hence, the pseudo-polynomial aldoni
hand, reference [6] considers a scenario of multiple send@roposed in [57] can not necessarily approximate the optima
and a single receiver, assuming all the senders share & even for large number of paths.

same source of data. The connection between each sendeh this work, we utilize path diversity to improve the perfor
and the receiver is assumed to be independent from Othﬁfénce of FEC between two end-nodes over a genera| packet
and follow theGilbert model In order to benefit from path switched network. The details of path Setup process is not
diversity, the authors apply FEC across independent pAthsdiscussed here. Similar to [4], [6], [11], [57], it is assufrtbat
Maximum Distance Separab(#1DS) block code, like Reed- 1, independent paths are set up by a smart multipath routing
Solomon code, is used for FEC. [6] proposes a receiv@cheme or overlay network. Moreover, as in [4], [57], [59],
driven prOtOCOl for paCket partitioning and rate allocatidhe [60]’ each path is assumed to be an erasure channel modeled
packet partitioning algorithm ensures no sender sendsathe s 35 a continuoud/-state extended Gilbert model. It should be
packet, while the RA algorithm minimizes the probability ofoted that the well-known 2-state Gilbert channel used Jn [6
irrecoverable loss in the FEC scheme [6]. They only addregs®), [61]-[63] is a special case of the extended Gilbert elod
the RA problem for the case of two paths. A brute-forcgwdied here. Probability of irrecoverable lo$%:] is defined
search algorithm is proposed in [6] to solve the problenas the measure of FEC performance. In another work, we have
Generalization of this algorithm over multiple paths résulshown that MDS block codes have the minimum probability of
in an exponential complexity in terms of the number ofrror over any erasure channel with or without memory [64].
paths. Moreover, it should be noted that the scenario of [Blnce, as in [4], [6], [57], MDS codes are applied for FEC

is equivalent, without any loss of generality, to the case tAroughout this paper. The contributions of this paper can b
which multiple independent paths connect a pair of end-sodgsted as follows:

as they assume the senders share the same data.

Djukic and Valaee utilize path diversification to provide
low probability of packet loss (PPL) in wireless networks. [4
Similar to our work, they consider each path as an erasure
channel following the multi-state Markov model. Moreoviér,
is assumed that the feedback is not fast enough to acknogledg
the receipt of each packet. Thus, an MDS code is applied®
across multiple independent paths as a FEC method. The
authors of [4] compare two RA schemes: blind allocation and *
optimal allocation. The blind RA is used when the source
has no information about the quality of the paths. Hence, it
distributes the traffic across the paths uniformly. It isvgho
that even blind RA outperforms single-path transmission.
When a feedback mechanism periodically provides the source
with information about the quality of each path, the trartteni
has the chance to find the RA which minimizes PPL (optimal *
allocation). The authors propose a greedy algorithm fag thi
purpose.

Most recently, in an independent work, lat al. have
addressed the RA problem [57]. Same as [4], [6] and our
work, the authors of [57] apply an MDS code for FEC across *
multiple independent paths. However, unlike [6], the atgho
study the problem for any general number of paths, denoted by’
L. Using thediscrete to continuouapproximation, the authors
approximate the total number of lost packets over all paths
with a continuous random variable. Furthermore, assumingThe rest of this paper is organized as follows. Section Il
a large number of paths with a large number of packedgscribes the system model. Performance of FEC in two
over each path, they apply the Central-Limit Theorem (CLT9ases of multiple identical paths, and non-identical pattes

E. Contribution and Relation to Previous Works

o Path diversity is shown to simultaneously achieve an
exponential decay inPg and a linear increase in the
end-to-end rate with respect o, while the delay stays
fixed. Furthermore, the decaying exponent is analyzed
mathematically based on LDP.

The RA problem is solved for the asymptotic case (large
values ofL).

It is proved in the asymptotically optimal RA, each path
is assigned a positive rai its quality is above a certain
threshold. Quality of a path is defined as the percentage of
the time it spends in the bad state. This result is important
since for the first time in the literature, an analytical
criterion is proposed to predict whether adding an extra
path improves reliability.

A heuristic suboptimal polynomial algorithm, based on
the memoization technique, is introduced to solve the RA
problem for any arbitrary number of paths. Unlike the
brute-force search in [6], this algorithm has a polynomial
complexity, in terms ofL.

The proposed algorithm is proved to converge to the
asymptotically optimal RA ad, grows.

Through the simulation results, the proposed algorithm is
shown to achieve a near-optimal performance for practical
number of paths.
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| TABIF;E | Iy K1 Ko KM -2
MPORTANT PARAMETERS /\ /\ /\ /\
Notation Refers to Secton| ([ G )}  ( By )} [ DBs }
L number of the paths I-E
N length of an FEC block (in packets) 1I-B
K number of information packets II-B \/
in an FEC block )
a=(N-K)/N FEC overhead 1I-B
T transmission time of an FEC block II-C b2
Sreq required end-to-end rate (pkt/sec) II-C
N; number of packets transmitted on II-C Loy
paths in each FEC block o
Si, W; rate and max. rate of path(pkt/sec) II-C . . . .
Pr probability of imrecoverable 10ss E Fig. 1. Continuous-time\/-state Extended Gilbert model of the end-to-end
z, = B;JT fraction of bad bursts on pathduring 7' 1 channel
pi fraction of end-to-end rate assigned to path -A
J number of path types 11-B
v =Li/L fraction of paths of typg lll-B Py still decays exponentially versusand the asymptotically
nj fraction of the end-to-end rate 11-B . .
allocated to paths of typg, see (7) optimal RA follows the same formula. However, the decaying
. i — aSymptoticallyI optimellll rate allocation vector | II-B exponent of Pg is a function of the bad burst probability
n°P'=N°P*/N optimal rate allocation vector 11-B P . . .
N Aumber of packets fransmitied on - distribution which should be recomputed a(_:cordlng to the
paths of typej in each FEC block new end-to-end channel model. Moreover, in the proposed
probability of having more tha# errors over \Y] : ; : i R
PNk ) paths of types. to 7 for the allocation vecton suboptimal RA algorithm, no assumption is made regard|_qg
Q;(n, k) probability of having exactly: errors out Y the end-to-end channel model and/or the bad burst prohabili
. of the n_packets sent over paths of type distribution. In other words, the input parameters to the- pr
NP optimum allocation vector \Y . . . .
PP kL) PN e min P v posed algorithm consist of the probability mass functianfjp
e s Ry . e »J) 1., E . . .
Po(n b, j) lowerbound of P°P" (., &, ;). see (16) V] assomgted with the number of erasures over dlfferent. paths
N=(N1,...,N;) suboptimum allocation vector v These input parameters are computed in polynomial time in
K=(Ky,-, Ky) typical error event v appendix H for any general Markov model which obviously

includes the extended Gilbert model as a special case.
The behavior of the continuous time extended Gilbert model
Mean be described as follows. The channel spends an expo-
section Nenially distributed random amount of time with the mean

analyzed in section Ill. Section IV studies the RA proble
and proposes a suboptimal RA algorithm. Finally,

concludes the paper. L in the Good state. Then, it alternates to the fiBad
state ,B1, and stays in that state for another random duration

[l. SYSTEM MODELING AND FORMULATION exponentially distributed with the mean— Then, the
A. End-to-End Channel Model channel either goes back to the good state or transits to a

?eper bad state, denoted By. Similarly, the channel can
move to deeper bad states consecutively before going back to
Ste good state. The steady state probability of being in the
good or any of the bad states are denotedn’gyand T, -

It is easy to observe that, #51_ and 7y,

From an end to end protocol’s perspective, performance 0
the lower layers in the protocol stack can be modeled a
random channel called theend-to-end channelSince each
packet usually includes an internal error detection codiog _
instance a Cyclic Redundancy Check), the end-to-end channe R i T +M>.~
is modeled as an erasure channel. where = £ .-+ X5 55 The packets transmitted

Numerous measurements studies have suggested that butstjng the good state are received correctly, while they are
loss behavior is the most dominant characteristic of the er@st if transmitted during any of the bad statés o Bas—1).
to-end channel over different underlying networks, inahgd Therefore, the average probability of erram, is equal to
wireless mesh networks and the Internet [4], [60], [65]}[67the steady state probability of being in any of the bad states
Hence, a variety of models have been proposed to captawe= qul T, -
this bursty behavior, including the-state Gilbert model, the
M-state Extended Gilbert model, and the Hidden Markds- FEC Model
model [59], [60], [65], [68], [69]. This paper assumes the In real-time applications like video and audio over wirsles
continuous time) -state extended Gilbert model for the endmesh networks or IP, due to the delay requirement, conven-
to-end channel, see Fig. 1. This model achieves a good mlational retransmission based schemes such as automatit repe
between model accuracy and simplicity [57], [59], [60];st i request (ARQ) are impractical. On the other hand, FEC is
much more accurate than the 2-state Gilbert Model, whilg ordhown to be favorable for such real-time scenarios withttigh
requires2(M — 1) parameters to be estimated (as opposed @oS requirement [4], [61], [62], [70]-[72]. However, FEC
M? parameters in the General Markov Model). It should beould be ineffective when bursty packet loss occurs and such
noted that the well-known 2-state Gilbert channel used Jn [Boss exceeds the recovery capability of the FEC codes. To
[50], [61]-[63] is a special case of the extended Gilbert elodmitigate this problem via path diversity, this work applSC
studied here. across multiple paths.

It is worth mentioning that the main results of this paper re- Each packet is provided with an internal coding such as the
main valid for any end-to-end channel model. More precjselgyclic Redundancy Check (CRC) which enables the receiver
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. . Source Internet Destination
to detect an error inside each packet. Hence, the receiver
can consider the end-to-end channel as an erasure channel. Path 1
Assuming the length of each packetribits, the alphabet size Traffic Allocator

Traffic Reassembler
of the end-to-end channel would lge= 2". Other than the >

coding inside each packet, a FEC scheme is applied between
packets. Everys packets are encoded tdBdockof N packets ‘ ~
where N > K to create some redundancy. Thepackets of

each block are distributed across theavailable independent I I o I
paths, and are received at the destination with some |OSSW 2, 5= S
(erasure). The ratio oft £ X-£ defines the FEC overhead. @

It is proved that among all block codes of the same size, any
Maximum Distance Separab{®DS) code, such as the Reed-
Solomon code, provides the minimum probability of errorrove

an erasure channel (either memoryless or with memory) [64]. I
Moreover, MDS codes can reconstruct the origikaldata

Ny

Ly 11|

packets at the receiver side K or more of theN packets =%

are received correctly [73]. This property makes MDS codes

favorable FEC schemes over the erasure channels [57], [74]- N; Packets
[76]. (b)

Since MDS codes are used for FEC, the probability of
; ; il ;. Fig. 2. RA problem: a block ofV packets is being sent from the source to
Irre(_:overable loss P, is adopted as the re“ablllty metnc'the destination througlh independent paths over the network during the time
An |rrecoyerab|e loss occurs when more thsin- K packets interval T with the required rateS,.cq = L. The block is distributed over
are lost in a block ofN packets. It is shown in [64] that the paths according to the vect®¥ = (NV1, ..., Nz ) which corresponds to
Py is almost equal to the error probability of the maximuri'® RA vectorS = (Si,..., 51
likelihood decoder for an MDS codé. More precisely,Pg ,
can be bounded as | | | 1 11— ﬂ - 1 | I

1
Ps < Pp < (1+—1)P5
q—

whereq denotes the alphabet size of the MDS code which j§; 3 A bad burst of duratioss; happens in a block of lengthi. E; = 3
very large in our application. The reasd®; is used as the packets are corrupted or lost during the interil. Packets are transmitted
measure of system performance is that while many practi€4f"y s; seconds, wheré; is the rate of pathi in pkt/sec.
low-complexity decoders for MDS codes work perfectly if

the number of correctly received symbols is at leASttheir _ —

probability of correct decoding is much less than that @wtisfy the constrainfs;” | N; = N and % < W;, V1 <i <
maximum likelihood decoders when the number of correctly- The latter constraint follows from the bandwidth consttai
received symbols is less thd [73]. Thus, in the rest of this ©i = 7 < Wi.

paper,PE is used as a close approximation of decoding error. The above formulation of RA prOblem is valid for any finite
number of paths and any chosen valuesvoandT'. However,

in section Il where the performance of path diversity igiad

for a large number of paths, and also in Theorem 2 where
o the optimality of the proposed suboptimal algorithm is v
paths,1,2,..., L, connect the source to the destination, r the asymptotic case, we assume thatgrows linearly

indicated in Fig. 2(a). Information bits are transmitted 3% terms of the number of paths, i.& = noL, for a fixed
packets, each of a constant lengthEach path has a rateno_ The reason behind this assumption is that wiegrows

constraiqt of Wi packets per secoqd. This constraint cals mptotically large, the number of paths eventually edsee
be considered as an upperbound imposed by the phys block length, ifN stays fixed. Thus. — N paths become

Eg%actiristics of the _patr;]. For a specif:f application Zrﬁgeless for the values d¥f larger thanN. At the same time,
scheme, we require the rate $f, packets per secon it is assumed that the delay imposed by FHC,stays fixed

from the sLource to the destmat!on. Obwpusly, we Sh(.)umbha\\ﬂ/ith respect toL. This model results in a linearly increasing
Sreq < >_;-1 W; to have a feasible solution. As mentioned

[
the previous subsection, the information packets are ije(?ate as the number of paths grows.
blocks of length/V packets. Hence, it takés = SL seconds ) ) o
to transmit one block. red D. Discrete to Continuous Approximation

The RA vectoN = (N1, ..., Nyp) is defined as the number To compute Pg, we have to find the probability of;
of packets in one block sent through each path. The objectipackets being lost out of thd; packets transmitted through
of the RA problem is to find the optimal RA vector, i.e. thegathi, forall 1 <i < L, 0 < k; < N,. Let us denote the
RA vector minimizing the probability of irrecoverable lgssnumber of erroneous or lost packets over the pattith the
Pg, defined in the previous subsection. The RA vector shouldndom variableF;. Any two subsequent packets transmitted

C. Rate Allocation Problem
The RA problem is formulated as followd. independent
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TABLE |I . .
MAIN ASSUMPTIONS Hence, the probability of irrecoverable loss for an MDS code
is equal to
Assumption Comments L
L independent paths justified in subsection I-B and I-C _ e
used in sections lll and IV Pp=P Z Pili > Qo @)
discrete to continuous justified in subsection 1I-D =1
imati d in section Ill ; i i
ARPIEEMAnET Sified T Subsecton TA In order to find the optimum rate allocatio®s has to be
Extended Gilbert Model used in section II| minimized with respect to the allocation vecter’'§), subject
results valid without this assumption : : .
see subsections II-A and IlI-A for detail to the fOIIOWIng constraints:
L
. W;
over the pathi are Sl seconds apart in time, wherg; is req i=1

the transmission rate over thith path. Now, we define the where W; is the bandwidth constraint on pathdefined in
continuous random variabl®; as the duration of time that subsection 1I-C.

path i spends in the bad state in a block duratidn, It

is easily observed that the probabilB{E; > k;} can be A |dentical Paths

approximated with the continuous counterpaftB; > g—}
when the inter-packet interval is much shorter than theamesr
bad burst duration. According to the extended Gilbert mod

the average bad burst duration can be lower-bounded . . . o
1 obviously the optimum solution. Of course, the solution is
L__ Therefore, as long as we havse <

T _ » the  feasible only when we haveé < 2. Then, the probability
t . . . Wi Ko K1 . = Sreq.
discrete to continuous approximation is valid (see Fig. 3). of irrecoverable loss can be simplified as
The necessity of this condition can be justified as follows. 1
In case this condition does not hold, any two consecutive Pg="P {_ sz > a}, (3)
packets have to be transmitted on two independent states of L i=1
the channel. Thus, no gain would be achieved by applyigg; ys defineQ(z) as the probability density function of
diversity over multiple independent paths. The continuous gince + is defined asr — & clearly we haveQ(z) =
approximation is just used in section Ill. On the other hanqqu(xT)’ where f5(t) is theTprobabiIity density function
section IV studies the RA problem in the original discretfpdf) of B. Defining E{} as the expected value operator
format. throughout this paperE{z} can be computed based on
Q(z). We observe that in (3), the random variabigs are
E. Notation and System Parameters bounded and independent. Hence, the following well-known

. . . . upperbound in large deviation theory [77] can be applied
Table II summarizes the main assumptions made in our

When the paths are identical and have equal bandwidth
eclonstraint% (W; = W forV 1 < i < L), due to the
mmetry of the problem, the uniform RAv( = %) is

network model and problem formulation. The important pa- Pg < emul@)l
rameters which are used throughout the paper are summarized () = 0 for o« < E{z} @)
in Table I. Moreover, the following mathematical notations “ 1 Aa—log(E{e**}) otherwise

are used in the rest of the pap®{.} andE{.} are defined
as the probability and expected value operators, resgdgctiv
The notationPg = e~*“(®)L meansimy, ., —22L2 — y(a).
f(L) = o(g(L)) is equivalent tolimL_,OOM = 0, and

where thelog function is computed in Neperian base, and
is the solution of the following non-linear equation, whiish
shown to be unique by Lemma 1.

(L) E{ze?*}
f(L) = O(g(L)) means that3iLy,M > 0 : VL > o= —. (5)
Lo, [f(L)| < M |g(L)]. E{e™)
Since) is unique, we can definga) = A. Even though being
IIl. PERFORMANCEANALYSIS OF FECON MULTIPLE an upperbound, inequality (4) is exponentially tight forgia
PATHS values of L [77]. More precisely
According to the discrete to continuous approximation in Pg = " (6)
subsection II-D, when theV; packets of the FEC block are log P

where the notatiog- meanslim —

sent over path, the loss count can be written %NZ Hence, L =00 = u(a). Note that
the total ratio of lost packets is equal to u(a) depends on the pdf B, f5(t), which is computed in
appendix A. Of course, equation (6) is valid regardless ef th
L B;N; L Bipi pdf of B.
Z TN Z T Next, we state the following lemmas which are required for
=t =t the analysis of the next subsection. The proofs can be found

where p; £ S0 < pi < 1, denotes the portion of thein the appendices B and C, respectively.

STeq ’
. - A B7, . - -
bandwidth assigned to pathz; = = is defined as the portion 27,6 case wheréV;’s are different is discussed in Remark 4 of subsec-

of time that pathi has been in the bad state £ z; < 1). ton llI-B
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. . . . . .
1 15 2 25 3 35 4 4.5 5 55 6
Number of Paths (L)
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24
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— - — Simulation Results

Exponent (u(a))

I I I
0.35 0.4 0.45

I
0.3
a

I I
0.2 0.25 0.5

(b)

Fig. 4. (a)Pg vs. L for different values ofx. (b) The exponent (slope) of
plot (a) for different values oé: experimental versus theoretical values.

Lemma 1. u(a) andi(«) have the following properties:
1) Zi(a)>0
2) l(a=0)=-

3) (a=E{z})=0

4) l(a=1)=+x

5) Zu(a) =1(a) >0 for a > E{z}

Lemma 2. Definingy = %Zlexi, where z;’s are i.i.d.

random variables as already defined, the probability dgnsitollowing Lemma 2, we observe thdg, (3;) = e

function ofy satisfiesf, (o) = e~ for all a > E{z}.

stream with the DVD quality (using either MPEG-2 or MPEG-
4) over multiple identical paths. The bitrate per path iestd

to be 1 Mbps. The number of paths varies from = 1 to

L = 6. Hence, the end-to-end video bitrate varies in the
range of 1 — 6 Mbps, in accordance with [78]-[82]. The
block transmission time i§" = 200 ms which imposes an
acceptable end-to-end delay for the video stream. The pdylo
of each video packet is assumed tokb. Accordingly, the
block length equals taV = ngL whereng can be written
asng = MT = 50. The end-to-end channel follows
a 2-state Gilbert model withﬂL = 2500 ms andi = 52

ms, in accordance with [6], [5?)]. Coding overhead is changed
from v = 0.16 to o = 0.48. Figure 4 compares the result
of (6) with the simulation resultsPz is plotted versud. in
semilogarithmic scale in Fig. 4(a) for different values wof

We observe that a& increaseslog Pr decays linearly which

is expected noting equation (6). Also, Fig. 4(b) compares th
slope of each plot in Fig. 4(a) with(«). Figure 4 shows a
good agreement between the theory and the simulation sesult
for practical number of paths. Moreover, it verifies the fact
that the stronger the FEC code is (largdr the higher is the
gain we achieve through path diversity (larger exponent).

B. Non-ldentical Paths

Now, let us assume there asetypes of paths between the
source and the destination, consistinglgfidentical paths of
type j (Z;}:l L; = L). Without loss of generality, we assume
that the paths are ordered according to their associatey] typ
i.e. the paths from + ch;ll Ly to Y75 _, Ly, are of typej.

We denotey; = % According to the i.i.d. assumption, it is
obvious thatp; has to be the same for all paths of the same
type.n; andy; are defined as

njg = Z Pi
YAy Le<i<S oy Lk
n;
; I ” 7
Yj Lv; Z Ti )

St Le<i<y]_ Lk

B
=754 (55)L

We define the setS;, Sp andSr as

Remark1. A special case is when the block code uses all

the bandwidth of the paths. In this case, we have- LW T,
whereW is the maximum bandwidth of each path, ahd the

block duration. Assuming > E{z} is a constant independent S;
of L, we observe that the information packet rate is equal to

X = (1 - a)WL, and the error probability i€p = e~4(®)L.

This shows using MDS codes over multiple independengo
paths provides an exponential decay in the irrecoveralske lo

probability and a linearly growing end-to-end rate in terofis
the number of paths, simultaneously.

Example1l. Consider the scenario of transmitting a video

J
B0 <1 Y B >a

= (B, B
j=1
J

= (B Ba - B0 B <L, Y Bi=a
j=1
J

Sro= (BB, Br) I E{a;} <8, B =a

j=1
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respectively. HencePr can be written as Proof of Lemma 3 can be found in appendix D.
J Lemma 4. There exists a unigue vect@* with the elements
Po = P> y>a gy = ml;t (”Wﬂ) which minimizes the convex function
1 . J
JJ fz:[ij]:l _yjuj(i—;’j(;.t(.)ver the convex sefir, wherev satisfies the
ollowing condition
— [ TLh6as :
=1 d 1 (VN
J | > ity (—) = a. ©)
6.7 i=1 Vi
—LZ%‘W(;) J J
= / e =1 ! Hdﬁj I=1() denotes the inverse of the functiéf) defined in sub-
Sr j=1 section IlI-A.
. i (B Proof of Lemma 4 can be found in appendix E.
(a) -t 56%1,1850 - Vit n; Equation (8) is valid for any fixed value of. To achieve
= € ; =t the most rapid decay dfz, the exponent must be maximized
; over.
—L min Z%-uj bi K
(b) BES, 4 : 7; J %
= e j=1 . log Pp B; 10
; 5 Jim ——= = max 3y o (10)
© —L min Z'yjuj <—J> =1
- pesr nj wheres* is defined for any value of the vectgrin Lemma 4.
J 3 Theorem 1 solves the maximization problem in (10) and
_szjuj <_7) identifies the asymptotically optimum RA. The proof can be
(i) o =1 BN ®) found in appendix F.

Theorem 1. Consider a point-to-point connection over the
fact thatu;(a) is a strictly increasing function ofy, for network with L independent paths from the source to the

o > E{z,}, and(c) can be proved as follows. Let us denotgestination, with a I_arge enough bandwidth constriirfhe
the vector which minimizes the exponent over the Sgtas paths are from.J different types,L; paths from the type

B*. Since Sy is a subset ofSy, 3 is either inSy or in J- As_sume a block FEC of sizeV, K] is sent during a

So — Sr. In the former case(c) is obviously valid. When time interval T'. Let IV; denote the number of packets in a

ﬁ* cs Sr, we can prove that < 3 < E{z;} block of sizeN assigned to the paths of type such that
O — ©oT, R iBg .

J o . . Ny
for all 1 < j < J, by contradiction. Let us assume thezﬂ':} Nj = N. The RA zljectom IS 2ef|ned as;'zﬂ - N
opposite is true, i.e., there is at least one index j < J FOr fixed values ofy; = 7, no = 7, ko = 7, T and
such that0 < B; < n;E{z,}, and at least one other index@Symptotically large number of paths, the optimum rate

1 < k < J such thatngE{z;} < B,:. Then, knowing allocation vectorn* equals to

where (a) follows from Lemma 3,(b) follows from the

that the derivative of ofu;(«) is zero fora = E{z;} and 0 if @« <E{z;}

strictly positive fora > E{z;}, a small increase in3;

and an equal decrease ftf reduces the objective function, = (@) otherwise (11)
J o & . . . ok J

D i1 Vi (nj), which contradicts the assumption that Z ~ili(@)

is @ minimum point. Knowing that < ﬁj* < n;E{z;}, for i=1, a>E{z:}
all 1 < j < J, itis easy to show that the minimum value . . .
of the objective function is zero ovefy, andSr has to be if there is at least ond < j < J for whicha > E{z;}. Fur-
an empty set. Defining the minimum value of the positiv@ermore’ the probability of irrecoverable loss correspioty
objective function as zero over an empty s&) makes(c) to n* decays as

valid for the latter case whe@ € Sp—Sr. Finally, applying Pg = e EXimviw(@) (12)

Lemma 4 results ir{d) where3* is defined in the lemma. In the case wherer < E{a;} for 1 < j < J, Pp = 1

Lemma 3. For any continuous positive function(x) over a independent of the allocation vectgr

convex setS, and definingH (L) as
Remark2. Theorem 1 can be interpreted as follows. For

H(L) = / e heIL gx large values ofL, adding a new type of path contributes to
S
we have faBy the term ‘Iargfe enc;]ugh’, v(\;e mf}egr)o the bandw::jth constralinahpath
. v o o™ < T ; v
. log(H(L)) . £ h(x) i h(x) of type j, W;, satisfies the con itiorE2 < W]NT e reflsonL is that;
m — =1nf h(x) = min h(x i iti ) j . 1m0 )
I —oo S TS must satisfy both conditions @i < n; < 1 and Ti;, = 1%L < Wy,

simultaneously. WheiV; is large enough such th B0 < Wj, the latter
where cl(S) denotes the closure of (refer to [83] for the condition is automatically satisfied, and the optimiéatipmblem can be

definition of the closure operator). solved.
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- ‘ ‘ ‘ ‘ ‘ function of equation (10), and satisfies the bandwidth con-
straints toon* is the maximizing vector for the unconstrained
problem, defined in Theorem 1. According to equation (11),
e ] we haven? = v, for V1 < j < J. Itis obvious that}* = n* if

ny < % forall j. In casen; does not satisfy the bandwidth

constraint for somej, 71* can be found by the water-filling

10

¥ 107 ] algorithm. More accurately, we have
W, T
B i g < T
4 Sk no :

10°F 1 77; = . W.T (13)
wT i< o

107 3 : s : : . whereY can be found by imposing the condititirj;.’:1 ny =

Number of Paths (L) 1. Figure 6 depicts water-filling among identical paths with

four different bandwidth constraints. Proof of equatior8)(1

@ can be found in appendix G.

‘ Example2. Consider the scenario of transmitting a video
ool | stream with the DVD quality (using either MPEG-2 or MPEG-

' . 4) over multiple paths of two types. The number of paths for
each type are equal, i.ez = 72 = 0.5. The total number
of paths varies fromL. = 2 to L = 8. Both type of paths
are modeled ag-state Gilbert channels with- = 2500 ms,

in accordance with [6], [50]. Furthermore, ‘the average bad
burst duration are equal tﬁ)lb— = 50 ms for the first type and

osh | #% = 100 ms for the secolnd type. The block transmission
time is T = 200 ms which imposes an acceptable end-to-
end delay for the video stream. The payload of each video

packet is assumed to ekb. The end-to-end rate increases

08l ---M

0.4

0.2

0.1r

0 3 3 5 5 ; 8 linearly with L such tha % = 1 Mbps. Hence, the block
Number of Paths (L) length equals taV = 40L. The coding overhead is = 0.3.
(b) Figure 5(a) showsPgr of the optimum RA versud.. The

optimal RA, n°Pt, is found by exhaustive search among all
Fig. 5| Eja)hpf? fVefSUSL f‘|>|f t(f;; %’]mbi”aﬁo? OfdtWO path tygg%fé hfa'f from possible allocation vectors. The figure depicts a lineaaisien
type | and half from type II. e normalized aggregate of type . . . . . .
| paths in the optimal rate allocationﬁ(”t), compared with the value of; !n SemHOgachm'C scale W'_th the exponent(b9137, which
which maximizes the exponent of equation (19 X is comparable td).9256 predicted by (11).
In this scenario, let us denotgf as the value of the

first element ofn*, given in equation (11). Obviously;;

the path diversityiff the path satisfies the quality constraintlo€S not depend ot. Moreover, 0" is defined as the

a > E{z}, wherez is the percentage of time that the patfformalized aggregated We;gtht of type | paths in the optimal
spends in the bad state during the time intefoal]. Only in RA- Figure 5(b) compareg, ot with #j for different number
this case, adding the new type of path exponentially impsov8f Paths. It is observed that™ converges rapidly to asL

the performance of the system in terms of the probability §fOWS:

irrecoverable loss.

Remark3. Observing the exponent coefficient corresponding IV. SUBOPTIMAL RATE ALLOCATION

to the optimum allocation vector*,_we can see that the typical |, order to compute the complexity of the RA problem,
error event occurs when the ratio of the lost packets on @il tocus our attention on the original discrete formulaiion
types of paths is the same as the total fraction of the la§ihsection 11-C. According to the model of subsection 1J1-B
packetsq. However, this is not the case for any arbitrary RAye assume the available paths are frontypes, L, paths
vectors. from typej, such thatz;.]:1 L; = L. Obviously, all the paths
Remark4. An interesting extension of Theorem 1 is the casieom the same type should have equal rate. Therefore, the RA
where all types have identical erasure pattetn$x) = ux(z) problem is turned into finding the vect®¥ = (Ny,...,Ny)

for V1 < j,k < J andVz), but different bandwidth con- such thatz;.]:1 N; = N, and0 < N; < L;W;T for all j.
straints. Adopting the notation of Theorem 1, the bandwidiN; denotes the number of packets assigned to all the paths of
constraint oryy; can be written a% < W;, whereW; is typej. Let us temporarily assume that all paths have enough
the maximum bandwidth for a patﬁ of tyge Let us define bandwidth such thal; can vary from0 to N for all j. There

71* as the allocation vector which maximizes the objectivare (Njffl) L-dimensional non-negative vectors of the form
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wiT

- total complexity of computing®™N (K, J) adds up to
WyT ;
no 2 - 2 2 N7
O(K*J)+> O K’L; + M K
T j=1 J
s (@) 2 d 2 2
Wt " = O(K*J)+> O0(K’L; + M°N;K)
I Jj=1
Q0 (KL + M2KN) (15)
where (a) follows from the fact that% < Nj, and the term

P T Vs Y O(K?2J) is omitted in(b) since we know thatl < L.
Now, we propose a suboptimal polynomial time algorithm
Fig. 6.  WaterFilling algorithm over identical paths withufo different  tg estimate the best path allocation vect¥§f?t. Let us define
bandwidth constraints. opt . ., : ’
P°P(n, k, j) as the probability of having more thanerrors
for a block of lengthn over the paths of typed to j
_ _ . minimized over all possible RASIY = Nert), First, we find
(N1, ..., Ny) which satisfy the equatioh_;_, N; = N each a lowerbound?, (n, k, j) for P2"!(n, k, j) from the following
representing a distinct RA. Hence, the number of candidaiegursive formula
is exponential in terms af.

First, we prove the RA problem is NP [84] in the sense that
Pr can be computed in polynomial time for any candidat (n,k,j) =
vector N = (Ny,...,Ny). Let us definePN(k,j) as the ~
probability of having more that errors over the paths of _
typesl1 to j for a specific allocation vectdN. We also define 1 if k<0
Q;(n, k) as the probability of having exactlyerrors out of the . - _
n packets sent over the paths of typdn appendices H and |, FPe(n k,1) = Z Q1(n, 7).
Q;(n,k)'s are computed for any generadl/-state Markov =kt
channel model with polynomial complexity. Hence, we cak/'sing memoization technique, we need an array of size
assume tha®;(n, k)’'s are precomputed and stored for all O(NKJ) to store the values of(n, k,j) for 0 <n < N,
and k and path types. Then, the following recursive formulfl < & < K, andl < j < J. According to the recursive defini-
holds for PN(k, 7) tion above, computing’. (n, k, j) requiresO(N K) operations
assuming the values @j;(n;,i) and P.(n —n;, k —i,j — 1)
and >, | Q;(n;,i) are already computed for all and

> Qj(ny, i)

min
0<n;<min{n,|L;W;T]} =0
P.n—nj,k—i,j—1) ifk>0

(16)

N; T . -
N PN . : nj. Thus, it is easy to verify thaP.(V, K, J) can be com-
PN(k,j) = Z QN )P (k — 1.5 —1) i k=0 oed with the complexity 0O(N2K?2J) when the values of
fo if k<0 Qj(nj,i) are given for all0 < n; < N and0 < i < nj.
Ny According to appendix |, for each < j < J, Q;(n;,i) can
PN(k ) = Z Q1 (N1, 1) (14) be computed for al0 < n; < N and0 < i < n; with

the complexity ofO(N3L;) + O(MQJX—j). Thus, computing
Qj(nj,3) forall 1 <j < J,and0 < n; < N, and0 < i <
n;, has the complexity o7 . O(N3L;) + O(M?N—Q) =
N . J gA_l 7 L;
B e bove recrse ST QUYL + N, Fial (. K. J)can b corputed

pply o que in y 9 with the total complexity ofO(N2K?2J + N3L + M?N2J).
called memoization[85]. Memoization works by storing the . ~ N

. T The following lemma guarantees th&t(n, k, j) is in fact a

computed values of a recursive function in an array. By keero— ont , N . .
. . . o . “fowerbound forP2?* (n, k, ). The proof is given in appendix J.
ing this array in the memory, memoization avoids recomputin € A
the function for the same arguments when it is called latdremma 5. P! (n, k,j) > P.(n,k, j).
To computePN(K, J), an array of sizeD(KJ) is required.
This array should be filled with the values &f¥(k, j) for
0<k<K,andl < j < J. ComputingPN(k, j) requires

O(K) o.perat|onsN?ssum|ng the values Bf (i, j — 1) and recursively finds the typical error evenk('s) which has the
QJ'(NJ'_ i) and Ei:k+11§2j(Nj 7) are already compu'Fed fOr 1 aximum contribution to the error probability, and assigres
0 < < k. Thu52, PE_ (X,J) can be computed W'th the pa (Nj’s) such that the estimated typical error probability
complexity of O(K2J) if the values ofQ,(N;, k) are given (P.) is minimized. Indeed, Lemma 5 shows that the estimate

fﬁr 5}" N; an’dO SA;C % [f( Fo!oll/vrg;]{qppendix L éveﬁ?ote used in the algorithmA.) is a lower-bound for the minimum
that for eachy, Q;(N;, k) for 0 < k < K is computed offline ievaple error probabilityR°rt). Comparing (16) and the

. - N_'I . - .
with the complexity ofO(K>L;)+O (MQL—J.K)- Hence, the \yhile loop in Algorithm 1, we observe that the values of

i=k+1

Algorithm 1 recursively finds a suboptimum allocation
vectorN based on the lowerbound of Lemma 5.
Intuitively speaking, the proposed suboptimal algorithm
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Algorithm 1 Proposed Suboptimal RA Algorithm

InpUt: N7 AKv ']7 (Ale"'vLJ)v Qj(?)a Pe('v'v')
Output: (Ny,...,Ny)

Initialize j «— J; n «— N; k — K;

while j > 1 andk > 0 do

Nj — argmin
0<n;<min{n,|L;W;T]} ;2
Qj(nj,0); o A
K; — argmax Q;(N;,i)P.(n — Nj, k —i,j5 — 1);
0<i<N;
Updaten «— n — Nj; k — k — Kj; j — j —1;
end while
for m =1to j do
~ n
end for
for m =1 to (n mod j) do
Ny — Np + 15
end for
return (Ny,...,Ny);

> Pn-njk—i,j—1)-

to-end rate ofS,., = 3.2 Mbps is studied in both scenarios
of Fig. 7. The block transmission time ¥ = 250 ms which
imposes an acceptable end-to-end delay for the video stream
The payload of each packet is adopted tatlkd. Accordingly,

the block length would be equal f8 = S,..,T" = 200 packets.
The FEC coding overhead is fixed at = 0.2. The paths
follow the 2-state Gilbert model Wiﬂ?}—g = 2500 ms. However,
quality of the paths are different as they have differentage

bad burst durationga) In the case o8 paths, the average bad
burst of the paths;f;’s) are listed ad75 ms 75 ms+ Al; (b)

In the case of4 paths, the average bad burst of the paths
(;5's) are listed ag75 ms+ 4,75 ms+ 22]; As observed,
the median 0% of paths is fixed a5 ms in both scenarios.

A represents a measure of deviation from this medias- 0
describes the case where all the paths are identical. Tyerlar

is A, the more variety we have among the paths and the more
diversity gain might be achieved using a judicious RA.

As seen, our suboptimal algorithm tracks the optimal al-
gorithm so closely that the corresponding curves are not
easily distinguishable in most cases. However, theymp-
totically Optimal RA results in lower performance since
L is relatively small which makes the asymptotic analysis

Nj and K; can be found inO(1) during the computation of assumptions invalid. Comparing Fig. 7(a) and Fig. 7(b)sit i

P.(N, K, J). Hence, complexity of the proposed algorithnobserved that increasing from 3 to 4 paths reduces the gap
is the same as that of computing. (N, K,J) which is between theAsymptotically OptimaRA and the optimal RA

O(N?K?2J + N3L + M2N?2J).

considerably.

The following theorem guarantees that the output of the When A = 0, the ‘Equal Distributiorl scheme obviously
above algorithm converges to the asymptotically optimal Réoincides with the optimal allocation. This scheme eveitua
introduced in Theorem 1 of section 1lI-B, and accordingty, idiverges from the optimal algorithm as grows. However, it
performs optimally for large number of paths. The proof castill outperforms the best path allocation method as long as

be found in appendix K.

Theorem 2. Consider a point-to-point connection over the

network with L independent paths from the source to th

destination, each with a large enough bandwidth constrain

The paths are frony different typesL; paths from the typg.

Assume a block FEC of the sig¥, K] is sent during an inter-
_N _ K

no= 7 kO - I T

val timeT". For fixed values of; = %,
and asymptotically large humber of paths)(we have
1) B.(N,K,J) = PPN, K, J) = e L Xim (@)
N.:
2) ~ =mn;+o(l)

3) F =a+o(1) for a > E{z;}.

where o = Z_?) and u;() are defined in subsections IlI-A
and III-B. P.(N, K, J) is the lowerbound forPo%!(n, k, j)

A is not too large. For very large values 4f, the best path
dominates all the other ones, and we can ignore the rest of the

aths. Hence, the best path allocation eventually consame
Eﬂe optimal scheme wheA increases.

V. CONCLUSION

In this work, we have studied the performanceFofward
Error Correctionover a block of packets sent through multiple
independent paths. Adopting MDS codes, the probability of
irrecoverable lossKg) is shown to decay exponentially with
the number of paths. Furthermore, trete allocation (RA)
problem across independent paths is studied. It is shovtirntha
the asymptotically optimal RA, each path is assigned a pesit
rate iff its quality is above a certain threshold. Finally, the
RA problem is studied for any arbitrary number of paths. A

defined in equatior{16) N; is the total number of packetsheuristic suboptimal algorithm is proposed which compates
assigned to the paths of tygeby the suboptimal rate alloca- near-optimal allocation in polynomial time. For large vesof
tion algorithm.n; is the asymptotically optimal RA given iny, the result of this algorithm is shown to converge to the-opti

equation(11). K, is also defined in Algorithm 1.

Example3. The proposed algorithm is compared with fou

mal RA. Simulation results verify the validity of the thetcal
gnalyses in several practical scenarios and also show #re ne

other allocation schemes ovér = 4 and L = 3 paths in optimal performance of the proposed suboptimal algorithm.
Fig. 7. The optimal method uses exhaustive search over all

possible allocationsBest Path Allocatiohassigns everything
to the best path only, ignoring the resEdqual Distributiori
scheme distributes the packets among all paths equallgilin

APPENDIXA
PROBABILITY DISTRIBUTION OF B;

First, we compute the distribution aB; for the 2-state

the ‘Asymptotically Optimakllocation assigns the rates basedilbert model. We denote the values Bf with the parameter
on equation (11). A DVD-quality video stream with the endt to emphasize that they are expressed in the unit of time.
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For odd values ofn > 1, let r; to 7,,, denote the times the

0.055,
———— Optimal Allocation channel spendsin d|ﬁerent states. If the channel stants the
0.05F —&— Suboptimal Allocation
—#— Asymptotically Optimal Allocation bad State we haVE T2i—1 = t and Z T2; = T — t
0.045 | Distrib 1 i=1 i=1
——&— Equal Distribution
0.04 —<&— Best Path Allocation | | Thus fB‘b( ) can be ertten as
0035 m=—2
m - T — T — Tm — — Tm
oo fB|b(t) ZL ppe T e T T L pge T e 1o—Hb H Ti
=1
0.025 m—1 m—1
ool =l 2 2 e Hote s (TN |y () A pes (T —t)
. 2 2
(20)
0.015
001f whereD and A, (t) are defined as
0005, 5 10 15 20 25 30 35 40 45 50 mtl
pm D ( )|Vi:m >0 t
= Tly++-»Tm 11T aZTZi—IZ )
@ i=1
771 1
0.06 ZT2z—T_t ,
—+—— Optimal Allocation
—&— Suboptimal Allocation
0.05 ——— Asymptotically Optimal Allocation A
——&— Equal Distribution Ak (t) = . de .
004k —<— Best Path Allocation Zi >0 12i< <t
It is easy to observe thaﬁk( ) is the volume of ak-
o 003 dimensional simplex with the edge of length By mathe—

matical induction onk, it can be shown that\(¢)
Therefore, making similar arguments for the even va]fues of

Fig. 7.

m, We have
" (th) (Ng (- t)) e—Hpto—tg(T—t)
o )t ()
2 2

0 . . . . . m for m odd

0 5 10 15 20 25 30 fB\b( )= m_q

A(ms) " (M:)jﬂg (T _ntl)) 2 e hpte—g(T—1)

(F -7 -

(b) for m even

Optimal and suboptimal RA's are compared with equstridution

and best path allocation schemes for different values\ofa) L = 3, (b)

L =4.

Based on similar argumentﬁgg(t) can be written as

(T - 1))

m—l

s (apt) ™ e—tpte—ng(T—1t)

( (!

Here, we focus on one path, for example path 1. Therefore, thg, (t)= (untpy (T — 1)) %1 for m odd
index: can be temporarily dropped in analyzing the probability 9 E”’mu_g N1z — 1) e rvtem o (1)
density function (pdf) ofB;. 2o for m even

We define the eventg and b, respectively, as the channel ) - . .
being in the good or bad states at the start of a block. ThenHaving /5, (¢) and fx;, (¢) for all m, we can write

the pdf of B can be written as

fB(t) _ fB\b(t)Wb + fB\gT"g- (17) fB\b(f) = mZ:lfB|b(t)
Let NI denote the number of consecutive states the channel S
experiences during the intervdl. For instance NI = 3 IB19(t) Z B14(0) (21)
m=1

means that the channel switches its state twice in a block
transmission time. Now, we defingy, (¢) as Combining the above equations with (17jz(¢t) can be
computed. Noting the factorial terms in the denominator of
(18) fE)p(t) and fg' (t) and the fact thatnax{t,T —t} = T for
0 <t < T, it can be verified that botifBIb( ) and fB‘q( )
fBlg( ) can be defined similarly. decrease very rapidly fof52 > max{u, T, pyT'}. Therefore,
Form = 1, due to the memoryless nature of the exponentitl the practical cases, we do not need to compute an infinte
distribution, we have summation to get a close approximation fof(¢).
1 For the Extended Gilbert model, the pdf & can be
fflb(t) computed as follows. Here, equation (17) should be replaced
fB\g(t) =

(19) with fp(t) = foo(t)my + Sorry" oy (t),. Moreover,

P{t<B<t+6&NI=mlp
i l6) = timg TALSB <RI LN =),

§(t —T)e T
S(tye HaT,
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for any specific sequence of state transitiéns ..., 7,,) of Equation (25) is valid for any arbitrarg < ¢ < 1. If we
lengthm, similar to the argument of equation (20), it can behoosee — 0, z; and z2 are both squeezed in the interval
shown thatfg, (11, - ., i) Only depends on the summation(0, ¢]. Thus, we have

of 7;’s which belong to the same state. Accordingly, similar

to (21), fgp, () and fp|4(t) can be recomputed by summing iy, v(N) <
over all lengthsn and all state transition sequences of lengthA——c

)\11
il FL@EVe™

A——o0 €e—0 Q(:CQ) Az2 - gl—{%xl =0 (27)

m.

APPENDIXB
PROOF OFLEMMA 1

1) We define the functiom()\) as
_ Ef{ze??}
Then, the first derivative of(\) will be
0 E{z2e** }E{e**} — [E{ze**}]?
av(/\) E{o]] (23)

According to Cauchy-Schwarz inequality, the followingtsta
ment is always true for any two functions ¢f) andg()

(/ d (””)g(x)dx)Q < / f2(w)da / g*(x)dz

unlessf(z) = Kg(z) for a constants’ and all values of:.
If we choosef(z) 22Q(z)e** and g(z) = /Q(z)e®?,

(24)

they can not be proportional to each other for all values of

Based on the distribution of, v()) is obviously non-negative
for any A. Hence, the inequality in (27) can be replaced by
equality.

3) By observing thaw(\ =
l(a =E{z}) =0.

0) = E{z}, it is obvious that

4) To show thatl(w = 1) = 400, we prove the equivalent
statement of the formimy_, ., v(A\) = 1. Forany0 < e < 1
andz € [1—¢,1], (—14+€)A — 400 when\ — +oo. Then,
defining¢ = 1 — ¢, we have

m)\dI

fo zQ(x <
)\HJrOO f Q em)\dx

fo zQ(x _
A too f Q(z)elr— C)/\dx N
(28)
Since the fraction in (28) is obviously non-negative for &l
this inequality can be replaced by an equality. Similarlg w
have

fog Q(z)e* dx fo

L A A
A—Foo fCl 2Q(z)e Nz ~ xﬁ+oof 2Q(z

(z— C)’\d:v -
(29)

x. Therefore, the numerator of equation (23) has to be strictvhich can also be replaced by equality. Now, the limit0X)

positive for all\. Since the functiom(\) is strictly increasing,
it has an inversev=!(«) which is also strictly increasing.
Moreover, the non-linear equation\) « has a unigue
solution of the form\ = v=!(a) = I(a).

2) To show that/(aw = 0) = —oo, we prove an equivalent
statement of the forrim_, ., v(A\) = 0. Sincez is a random
variable in the rangf, 1] with the probability density function
Q(z), for any0 < e < 1, we can write

Jo 2Q(x)

e + f: rQ(x)e™ dx
fol Q(z)e" dx
€ T 1

L CTaT N L T
T Ao—o0 fEQ Yer Az (z—)Ady
@ lim fO 7Q(@)edx

A——00 fO )e””‘dx
® 5 »”5162(5101)6Ml

A——oo Q(x2)ew2

for somexy,z2 € [0,€]. (a) follows from the fact that for
€ [0,€], (xt — e)A — 400 when A — —o0, and (b) is a

lim v(\) =

A——00

A——00

T

(25)

is written as
fOC 2Q(z)e" N + fgl 2Q(z)e™ N dw
lim o(\) = lim T A
A—o0 A—00 Jo Qz)emrdx
@ Ji fc 2Q(z)e* dx
A—+o0 f Q ez)\dx
O fo Q(x)e™ dx + fCI Q(x)e* dx
A—+o0 fcl zQ(z)e* dx

O Jim fg Je"Adw
A— o0 f IQ em)\dI
(@) Q(z1)e” >_1

] T G Dl
(A—l>r-41-1<>o z2Q(x2)e2A

for somexy,zy € [1 —¢,1]. (a) follows from equation (28),
and(b) is valid since the final result shows tHati 1o v(\)

is finite and non-zero [86]¢) follows from equation (29), and
(d) is a result of the mean value theorem for integration. If
we choose — 0, z; andx, are both squeezed in the interval
[1 — €, 1]. Then, equation (30) turns into

(30)

result of the mean value theorem for integration [86]. This

theorem states that for every continuous functjgm) in the
interval [a, b], we have

zo)[b—al. (26)

Iz € [a,b] st /f

)\Erﬁr-loo v (A)

Il)\ -1
lim lim Q(z1)e ) = <lim i
e—0 T

(k—»-i—oo e—0 .CCQQ(IQ)GQQ)‘
5) According to equations (4) and (5), the first derivative of
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u(a) is of |h(x) — h(x*)| < e. Moreover, sinceS is a convex set, we
dula) o)+ aal(a) ) E{we’} dl(a) o have vol(B(e) N S) > 0 . Now, we can write
da da E{er*} Oa ’ lim _log(H(L))
L—oo L
APPENDIXC 1
<  lim ——=log / e ) gx
PROOF OFLEMMA 2 L—oo L ( SNB(e)
Based on the definition of probability density function, we 1
have < lim ——log [ e F(h(x HE)/ dx
1 L—co L SNB(e)
Jim ——log (fy(a)) = h(x*)+e (34)
—  lm —llog < lim Ply>a} —Ply > a+5}> Selectinge to be arbitrarily small, (33) and (34) prove the
—oo L 56— 0 0 lemma.
@ oo 1 Ply > a} —Ply>a+4}
= LILH;O_Zlog< B APPENDIXE
1 PROOF OFLEMMA 4
> hm hm — (—log (P{y > a}) +logd) i o )
§— 0L—oo L According to Lemma 1u;(x) is increasing and convex
®) u(e) (31) for V1 < j < J. Thus, the objective functiory(3) =

Z" lyjuj(fjj) is also convex, and the regiof; is de-
where(a) is valid sincelog is a continuous function, and bothtermined by.J convex inequality constraints and one affine
limitations do exist and are interchangealjlg. follows from  equality constraint. Hence, in this case, KKT conditions ar
equation (6). The exponent ¢f () can be upper-bounded ashoth necessary and sufficient for optimality [87]. In other

) 1 words, if there exist constants; andv such that
Jim ——log (fy(a))

ﬁ*
@ L lim —log (P{y > a} —P{y > a4+ 0}) + logd ;;Jl( )—¢j—v=0 Vi<j<J (35)
d— 0 L—oo L * .

(b) . ) _ log (e—L(u(a)-l‘E) _ e—L(u(a+6)—e)) 4 log§ ¢j [nE{:EJ} - 67] =0 Vi< J= J (36)
< thno nggo I then the point3* is a global minimum.

log (1 — e=1X) Now, we prove that eithes; = n;E{z;} forall 1 < j < J,
= JlimOngI;Ou(a)+e— — or Bf > n;E{z;} forall 1 < j < J. Let us assume the
© opposite is true, and there are at least two elements of the
=u(a) +e (32) vector 8*, indexed withk andm, which have the values of

Br = mgE{xx} and 8%, > nmE{z,,}, respectively. For any

wherex = u(a +9) — u(a) — 2e. Sinceu(a) is a strictly arbitrary e > 0, the vector3** can be defined as below

increasing function (Lemma 1), we can makepositive by

choosinge small enough(a) is valid sincelog is a continuous Bi+e ifj=k
function, and both limits do exist and are interchangealle. =< By —€ ifj=m (37)
follows from the definition of limit if L is sufficiently large, B; otherwise.

and(c) is a result ofy being positive. Selecting arbitrarily

small, results (31) and (32) prove the lemma. Then, we have

f(B™) - £(B7)

lim
APPENDIXD =0 € N N
PROOF OFLEMMA 3 — lim 2 {%wc (M) T At (M)
e—0 m
According to the definition of infimum, we have ‘ ﬁzk
i (221
S f h(x) = li (ﬁﬁe ) b (ﬁ;ﬁeu)
—rinf h(x .
> lim _l log | e S / dx € 0 77k Nk m Im
L—oo L S Ym ﬁ*
= ——In <0 (38)
@ inf h(x). (33) e A T

where €/,¢” € [0,¢], and (a) follows from the Taylor’s
where (a) follows from the fact thatS is a bounded region. theorem. Thus, moving from* to 3** decreases the function
Sinceh(x) is a continuous function, it has a minimum in thevhich contradicts the assumption @ being the global
bounded closed set(S) which is denoted by*. Due to the minimum.
continuity ofh(x) atx*, for anye > 0, there is a neighborhood  Out of the remaining possibilities, the case where =
B(e) centered ak* such that any € B(¢) has the property n;E{z;} (V1 < j < J) obviously agrees with Lemma 4 for
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the special case of = 0. Therefore, the lemma can be provedhen, we have
assuming3; > n;E{z;} (V1 < j < J). Then, equation (36) g(n**) — g(n*)

turns intog; = 0 (V1 < j < J). By rearranging equation (35) 212% p
. . J o .
and using the conditiod;_, 3; = a, Lemma 4 is proved. . 1 { VA2t y (V*ni) _ V*2n:nvl (V*UZ@) )
e—0€e [ Y Vi Ym N\ Ym
APPENDIXF ) o, i
PROOF OFTHEOREM 1 + v ArY ) +0(e?)
=1V K
Sketch of the proof: First, it is proved that); > 0 if (@) vnk,
E{z;} < a. At the second step, we prove th@;t =0, if B m B} (43)

ngﬂ} TS kT<h?]n EKT Igondmons t[87f] z:ljret:happlled for thewhere( ) follows from (42). If the value of (43) is positive for
indices wherel{z} < o to find the maximizing an indexm, moving in that direction increases the objective

allocation vectorn*. ) ) ] function which contradicts with the assumption 9f being
Proof: The parameter is obviously a function of the vector 5 aximal point. If the value of (43) is non-positive for all

7. Differentiating equation (9) with respect tg results in i, qexesm whosen*, > 0, we can write

J
s Uk, ( VNk vk
v | — |+ —v, [ — > E * m ) —
v - _ i ( Tk ) Tk b ( Tk ) (39) E{xk} o —1 T Om. ( Ym > “ (44)
B T 2 . "
Tk S :77_-71};, <ﬂ> which obviously contradicts the assumption®fz;} < a.
= i At the second step, we prove thgt = 0 if E{z;} > a.

Assume the opposite is true for an index< » < J. Since
where v;(z) = I;'(z), and v)(z) denotes its derivative >/, nf = 1, we should have; < 1 for all other indicess.
with respect to its argument. The objective function can Weor any arbitrary > 0, the vectorn*** can be defined as

simplified as e i
=9 ny e ifj=s (45)

v * ise.

Z Vi Ug Z Vs (vj — )) . (40) m; otherwise

v*** is defined as the corresponding valuevdfor the vector

) ) ) n***. Based on equation (39), we can write
v* is defined as the value of corresponding tay*. Next, we

show thatv* > 0. Let us assume the opposite is true, i.eQdv=v""—v"

v* < 0. Then, according to Lemma 1, we ha\/p(”v’” < _ € {UT (V*ﬁ?) LY (V*ﬁ?)
E{z;} for all j which results ing(n*) = 0. However, it is J m? o, (v Tr Yo\ W
possible to achieve a positive value gfin) by settingn; =1 Z _j“j v
for the one vector which has the property®fz,} < a, and =1 . . .
settingnj_: 0 for th_e _rest. Thusp* can not be the maximal —v, <V 775) v v, <V Ms )} +O(2). (46)
point. This contradiction proves the fact that > 0. Vs Vs s
At the first step, we prove thag; > 0 if E{z;} < a. Then, we have
Assume the opposite is true for an indéx< k£ < J. Since g — g(n*)
Z}-]:1 n; = 1, there should be at least one indexsuch that 21_13% e
7y, > 0. For any arbitrary > 0, the vectom** can be defined 1 (v, (v V2
as below = lim - v €— v,
o e—0 € Vs Vs Yr Yr
€ if j=kF ;
Kk * e - . *2
mr=q nj—e ifj=m (41) " 1 /( "1y
J ; + v Av - + O(€?)

n; otherwise. ; v I\
v** is defined as the corresponding valuevofor the vector @ {v (V*n$> . (V*n§>} (a7)
n**. Based on equation (39), we can write "\ s

where (a) follows from (46). If the value of (47) is positive

Av = for an indexs, moving in that direction increases the objective
v -t = (42) function which contradicts with the assumption f being
venr, vk, , (vnk, E a maximal point . If the value of (47) is non-positive for all
R e I W B {oe} ,.  indicess whosen; > 0, we can write
e+ O(e”).
XJ: 2 (V*m*) vy d v
Y ' E{z,} <wv T)g *v( S):a 48
> 2 (5 ford <o () < e (5 (48)
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which obviously contradicts the assumptionlofz,.} > «. Py(n,k,l) can be computed from the following recursive
Now that the boundary points are checked, we can safely wesguation
the KKT conditions [87] for alll < k& < J, whereE{z;} < «,

M
to find the maximizing allocation vecton*. (n, k1) Z s Por(n — 1,k = 1,1) +
*2, % * ok J *2 * k2 r—1
C:V nkv; (—V nk)—i—y*zﬂvg (U i )g—y|u_u* M
Tk Tk j=1 i Vi "Ik Z (1 _qs) Trs/\sPs/(n_ 17kal) (53)
@ . (Vg o=t
- Yk ( Ve ) “9) " ith the initial conditions
where ¢ is a constant independent & and (a) follows Py(n,k,1) =0 fork>n

from (39). Using the fact tha{:;.':1 n; = 1 together with
equations (9) and (49) results in

(=—-av

. " According to the recursive equations in (53), to compute
v Z il (@)- (50) Ps(n,k,l) by memoization technique, the functions()

Elej}<a should be calculated at the following set of points denoted
Combining equauons (49) and (50) results in equation (1&3S(n, k)

andg(n*) = Y7, vju;(q).

Pi(n,k,1)=0 for k <0
Pi(n, k1) =1 fork=n=0. (54)

Sn,k)={(n,k)|0<K <k, n—n+k<k <n'}.

APPENDIXG Cardinality of the setS(n,k) is of the order|S(n, k)| =
PROOF OFREMARK 4 O (k (n — k)). SinceO(M) operations are needed to compute
Based on the arguments similar to the ones in appendixthe recursive functiong’() at each point and/ functions
it can be shown thafj; = 0 iff E{z;} > a. Since all the P,(n,k,l) (s =1,..., M) have to be computed’(n, k, 1) is
types are identical here, this meafis> 0 for all j. Similar computable with the complexity a® (M?k (n — k)) which
to equation (49), applying KKT conditions [87], gives us  give us Q(n,k,[) according to equation (52). It is worth

. W,T mentioning that if the)M-state extended Gilbert model is
. —C if 7y < =—— adopted, the computational complexity of obtain®@@., k, 1)
vn; o
v; ( J) - (51) would be reduced t® (Mk (n — k)).
Vi v W5T
C— o if = 21T
¢=9 j no APPENDIX |
where o;’s are non-negative parameters [87]. Pulttifig= DISCRETEANALYSIS OF ONE TYPE
ZJSI;C) proves equation (13). When there are packets to be distributed ovér; identical
paths of typej, uniform distribution is obviously the optimum.
APPENDIXH However, since the integer may be indivisible byL;, the L;
DISCRETEANALYSIS OF ONE PATH dimensional vectoN is selected as
Q(n, k1) is defined as the probability of having exactly -] +1 for1<1i<Remn,L;)
k errors out of then packets sent over the path To L;
computeQ(n, k,l) for any generalM/-state Markov model, N = (55)
the following parameters are required: 1)VAx M matrix IT Lij for Remn, L;) <1< L,

with the elements:,,|; which represents the channel transition L;

behaviomrs,_‘S is the probability of_ the channel being in thewhere Rena, b) denotes the remainder of dividingby b. N
states’ provided that it has been in the statavhen the last represents the closest integer vector to a uniform digtcbu

packet was transmitted; 2) a vectqr= (qi,...,qn) Where  EN(k, 1) is defined as the probability of having exactly
qs denotes the probability of having erasure conditioned @tasures among the packets transmitted over the identical
being in the state. paths 1 to [ with the allocation vectorN. According to

ForV s € {1,..., M}, m, is defined as the steady statehe definitions ofQ;(n, k) and EN(k,1), it is obvious that
probability of belng in the state. Obviously, the steady stateQ;(n, k) = EN(k, L;). EN(k, 1) can be computed recursively

probability vectorr = (74, .. wM) can be computed using gs
the equation setr = ITw and ZS s = 1. k
Depending on the initial state of the pathPs(n, k,!) is EN(, 1) = ZEN(k il = D)Q(N, i, 1)
defined as the probability of having errors out of then ,
packets sent over this path when we start the transmission in EN(1) = Q(Ny,k,1) (56)

the states. It is easy to see that
whereQ(Ny,4,1) is given in appendix H. Since all the paths
(n,k,1) Z”S (n,k,1). (52) are assumed to be identical he®@(N,, k, 1) is the same
for all path indices,]. According to the recursive equations
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in (53), the values ofQ(NV;,i,1) for all 0 < i < k and {P e R¥I| Pi)>0, S P@i)=1}. Also, let P, de-

1 <1 < Lj; can be calculated with the complexity ofnote the subset of corresponding to all possible empir-
O(M2Nik) = O (MQLljk), According to the recursive equa-ical distributions of ¥ in L observations [88], i.eP; =
tions in (56), computing=™ (k, ) requires memoization over {P € 7?| Vi, LP(i) € Z}. For any dense and closed set [83]
an array of sizeO(kl) whose entries can be calculated witf?f PMf'SE S 7, the probability that the empirical distribution
O(k) operations each. ThugN (k, 1) is computable with the Of L observations belongs to the sktis equal to

complexity ofO(k21) if Q(IVy,1,1)'s are already given. Finally, P{E}=P{ENPL} =e LPEIQ (57)
noting thatQ, (n, k) = EN(k, L;), we can computé), (n, k)

(

with the overall complexity ofD(k?L;) + O (MzLﬂjk). where P - a];gén;nD(P||Q) and D(P[|Q) =

S P(i)log 5.

Focusing our attention on the main problem, assumeRhat
is defined as the empirical distribution of the number of erro
The lemma is proved by induction g The case of =1 in each path, i.e. fovi, 1 < i < n/, P(i) shows the ratio of
is obviously true ag%(n, k, 1) = P2P!(n, k, 1). Let us assume the total paths which contain exactlyost packets. Similarly,

this statement is true for = 1 to J — 1. Then, forj = J, we gy Vi, 1 <i<n/, Qi) denotes the probability of exactly

APPENDIXJ
PROOF OFLEMMA 5

have packets being lost out of the’ packets transmitted on a path
Pe(n k,J) of type j. The setsk and E,,,; are defined as follows
(a) Ny R n’
< D QNP i) Pe(n = NPk —i, ] — 1) E = {PeP|Y iP(i)>p} (58)
=0 1=0
®) o ; ; "
< D QNP (n— NPk —i,J —1) Boww = {PeP|> iP(i)=p}
i=0 i=0
© & : k
< ZQJ(ngt,i)PeNOP (k—i,J—1) where 3 = —. Noting E and E,,; are dense sets, we can
n
i=0 compute@;(n, k) as

2 PNk, J) = PP (n, k, J) ~z, min D (P||Q)

b
| | Qi) @B (B} = ¢ PR (59)
where NPt denotes the optimum allocation of packets
among theJ types of paths such that the probability of havingvhere (a) follows from the definition of@;(n, k) as the
more thank lost packets is minimizeda) follows from the probability of having exactlyt errors out of then packets
recursive equation (14), an@) is the induction assumption. sent over the paths of typg given in section IV, and)
(c) comes from the definition ofP!(n, k,1), and (d) is a results from Sanov’s Theorem.

result of equation (16). Knowing the fact that the Kullback Leibler distance,
D(P||Q), is a convex function oP andQ [89], we conclude
APPENDIX K that its minimum over the convex sdi either lies on an

PROOF OFTHEOREM 2 interior point which is a global minimum of the function over

the whole sef or is located on the boundary &f. However,

0 »S(zeliihisogng}szgéoga dF:{Sé SIE?)W?]S?:; E)tf%trlclatr):ge\‘/\gl?jesfo e know that the global minimum of Kullback Leibler distance
I y ccurs atP = Q ¢ E. Thus, the minimum ofD(P||Q) is

L; (or equivalentlyL), equation (60) computes the expone N ) .
of Q;(n,k) versusL. Next, we prove the first part of therloc"ﬂeOI on the boundary df. This results in

theorem by induction ow/. The proof of this part is divided (@ —z; min D (P[|Q)

R . K Q (n k) - e PceE,ut
to two different cases, depending on whetl%ns larger than AN
E{z;} or vice versa. Finally, the second and the third parts —z; min D (P||Q) ®) _WLUJ_(E)
of the theorem are proved by induction grnwhile the total = e Peb =e n" (60)
_number of_path typest, is fixed. A_gam, the proof 1S divided where(a) and (b) follow from equations (59) and (6), respec-
into two different cases, depending on Whethiérls larger tively
thanE{z;} or vice versa. '

Proof: First, we compute the asymptotic behavior 0TL) We prove the first part of the theorem by induction .bn

Qj(n, k) for k > nE{z;}, andn growing proportionally to When J = 1, the statement is correct for both cases%)b

L;, i.e.n=n'L;. Here, we can apply Sanov's Theorem [77]]E{:v } and K < E{ ling the f haf. (n. k1) —

- i i 1 ~ < E{z}, recalling the fact thaP,(n, k,1) =

[88] asn andk are discrete variables and is a constant. POV (n, k1) and us(x) = 0 for & < Ef{z1}. Now, et us
e s vy 1 - > 1s- ’

Sanov's Theorem. Let X3, Xo,..., X, be iid. dis- assume the first part of the theorem is truefer 1 to J — 1.

crete random variables from an alphabet sé& with We prove the same statement fbras well. The proof can be
the size |X| and probability mass function (pmf(z). divided into two different cases, depending on whetfeis

Let P denote the set of pmf's iR!*l, i.e. P = larger thanE{z} or vice versa.
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1_1)% > E{z;} Therefore, for0 < n; < ¢L, we have

nJg

ZQJ(”JJ)E(N -ng, K—i,J—1)

According to the definition, the value =

of P.(N,K,J) is computed by  minimizing > Qsnyn)P.(N—-nyj,K—ny,J—1)
>iloQu(ng,i)Pe(N —ny, K —i,J—1) over n; (see J—1 K—n 1
equation (16)). Now, we show that for any valuerof, the —L Zyjuj ( J> —nylog <—)
corresponding term in the minimization is asymptoticalty a = . g=1 N —ny To,J
least equal toP??(N, K, J). n; can take integer values in J-1 K 1
the ranged < n; < N. We split this range into three non- _szuj <_> — Lelog (—>
overlapping intervals 00 < n; < eL, eL <nj; < N(1 —¢), @ e =1 N o,
and N(1 —€¢) < ny < N for any arbitrary constant - J-1 J
e < min{y;,1— £}. The reason is that equation (60) is —LZ”Y'U' (5) —LZ’Y'U' <5)
valid in the second interval only, and we need separate (i’) P AN > = TUAN (64)

analyses for the first and last intervals.

First, we show the statement fel, < n; < N(1 — e). where (a) follows from the fact that{—=7- N S & and (b)
Definingi; = [n;% |, we have results from the fact that we can selec:hrbltrarlly small.

Finally, we prove the statement for the case> N(1—¢).
In this case, we have

iy K 1 : ) N\ A .
2 2 — gng,)Pe(N —ny, K —i,J — 1
L=5 o) ; (n.7,4) Pe( )
K_ZJ :54—0(1) (61) 2 QJ(TLJvK)PE(N_nJvOﬂ]_1)
N—-n; N L K
o ()
S e N(1—e¢)
J
. K
ase is constant, and{ = O(L), N = O(L). Hence, we have » —szjuj (ﬁ)
> / (65)
Where( ) follows from the fact thate < 1 — £ and
Z Q,J(n,J,i)Pe(N —ny, K—i,J—1) P.(n,0,7) =1, for all n andj. Settinge small enough results
; in (b).
> Qsny,if)P.(N—ns, K —is,J—1) Inequalities (62), (64), and (65) result in
J
K 1 J
(a) _LZI/Yjuj (N +0 (Z)) 7LZ’}/jUj (Oé)
= e P(N,K,J) = e = (66)
K . . . .
) *LZ’YJUJ' N Combining (66) with Lemma 5 proves the first part of Theo-
= e =t (62) rem 2 for the case whe& > E{z,}.

1. 2) — < E{SCJ}
where (a) follows from (60) and the induction assumption, N
and (b) follows from the fact thatu;()'s are differentiable

: k ' g Similar to the case ot]j > E{z;} in subsection 1.1, we
functions according to Lemma 1 in subsection IlI-A.

show that for any value o < n; < N, the corresponding

For 0 < n; < €L, sincee < v;, the number of packetsterm of the minimization in equation (16) is asymptotically
assigned to the paths of typ&is less than the number ofat least equal taP??*(N, K, J). Again, the range of; is
such paths. Thus, one packet is allocated joof the paths, partitioned into three non-overlapping intervals.

and the rest of the paths of typeare not used. Defining;, ; For any arbitrany) < e < min {v,,1 — £, L1}, and for all
as the probability of a path of typé being in the bad state, n; in the range ofeL < n; < N(1 — ¢€), we definei; as
we can write iy = [nsE{xzs}]. We have

Yo~ e 40 () > Efy)

ny — J i3 = J

1 .
—ng log(—> K — g 5 l
Qi(ny,ny)=mh=e T,/ (63) N-n, - N t0l 1 (67)
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Hence, The proof of the statements for the base of the induction,
. j = J, is similar to the proof of the induction step, froja-1
ZQJ(nJ,i)Pe(N -—ns, K—i,J-1) to j. Hence, we just give the proof for the induction step.
i Assume the second and the third parts of the theorem are true
> Qu(ng,is)P.(N — nLK iz, J—1) for m = J to j + 1. We prove the same statements for
. The proof is divided into two different cases, depending on
—Lyjyuy < > L Z%uﬂ (J) whether%: is larger thanE{z;} or vice versa.
@ nr Before we proceed further, it is helpful to introduce two
= (& '

new parameter®’’ and K’ as
O) —Lvyjuy <E{IJ}—|—O <Z)>
> e .

N = N- Y N

J-1
K 1
5 (Ko () e
e J=1

r K' = K- Y K
_sz.u, E m=j+1
) —~ VAN : i . :
= e J=1 (68) According to the above definitions and the induction assump-

where (a) follows from (60) and the induction assumpt|ontlons itis obvious that

and(b) is based on (67).c) results from the facts that;()’s K' K
are differentiable functions, and we haug (E{z,}) = 0, v = Toll)=ato() (73)
both according to Lemma 1 in subsection IlI-A.
For 0 < n; < €L, the analysis of section 1.1 and
inequality (64) are still valid. Fon; > (1 — ¢)N, we set 2.1) N E{z,}

i = [E{z;}ns]. Now, we have First, by contradiction, it will be shown that for small

iy >nyE{x;} > (1 —€e)NE{z;} > (1—-¢)K. (69) enough values of > 0, we haveN; > eN’. Let us assume

. . . the opposite is true, i.eV, < eN’. Then, we can write
The above inequality can be written as PP i=¢

K—ij<eK <1 (70) P.(N',K', j)
. : : L N;
sincee < 4. Noting thatK andi; are integer values, it is (@) 5 (N _ KT 3
concluded thafX” < i;. Now, we can write - ;PE(N Ny K’ —i,5 = 1)Q; (R )
g . > T, ’
ZQJ(nJ,i)Pe(N—nJ,K—i,J— 1) = BNV N KO I = 1@ (N, Ky)
-
i K'—N.
~ . —L27 U <7A>
> Jif)PAN —ng K —ig, J—1 ®) - A NTCN,
(a) QJ(nJ R : = Qj(Nj;Nj)e =1 M=
= QJ nJ7ZJ J 1
—LWU ( {CCJ}‘F—) © ~Lno | 1= e | elos <K)
5 e =i .
) —L u (E{x }+ ! ) = K’
< YIug J “ON *LZ%«UT (F)
e r=1
—Lvyjuy (E {SCJ} +0 (—)) (c) J
. L .
= e =1 (71) () _LZVTUT ()
where (a) follows from the fact thatk < i, and > e 7= (74)
P.(n,k,j) = 1, for k£ < 0. (b) and (¢) result fromn; >

where(a) follows from equation (16) and step (2) of our sub-
optimal algorithm,(b) results from the first part of Theorem 2,
and (¢) can be justified using arguments similar to those of
inequality (64).(d) is obtained assuming is small enough

(1 —¢)N anduy (E{zs}) = 0, respectively.
Hence, inequalities (64), (68), and (71) result in

R . —LZ%‘UJ' (a) such that the corresponding term in the exponent is strictly

P.(N,K,J) > e = (72) less thanLy;u, g%) and also the fact thak, = a + o(1).
which proves the first part of Theorem 2 for the caséfof The result in (74) is ob\{iously in Contr?diction with the firs
E{x;} when combined with Lemma 5. part of Theorem 2, proving thaV; > eN’.

Now, we show that ifN; > (1 — €) N’ for arbitrarily small

2) We prove the second and the third parts of the theorem ¥glues ofe, we should havé& {z, } > a forall 1 <r < j—1.
induction onj while the total number of types], is fixed. In such a case, we obser% = 1+o0(1), proving the second
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statement of Theorem 2. To show this, let us assifje> respect to3; and \; results in

(1 —€)N'. Hence, g -1
i J Yr
L= |- Iy
0= A*J<A;k_> Y. k(@
N r=1, J
! & ;.. o E{z,}<¢
PN',K',§) = Pu(N' = Nj, K' — i, j = 1)Q;(N;, 4)
i=0 ﬁ* j—1 _ fx
- . . B Yr(o = B7)
(Z)P( Nj,07]_ )Qj(NjaK/) 0= )\*2 l (}\*) + Zl (1_/\;)2 ZT(C)
’ b r=5
Se —wa(ﬁ) (:) e~ Liuj(ato(1)) (75) Ber}<c
) | 2y, AN Jii T (¢) %| .
where (a) follows from the fact that?.(n,0, j) = 1, for all NEAPY — 1 N TN
values ofn and j, and the fact thatV; > (1 —¢)N'. (b) is {2y} ¢
obtained by making arbitrarily small and using equation (73). o — G*

Applying (75) and knowing the fact thaP.(N’,K’,j) = where( =

—L Zj: Yty () 1-—
e r=1 , we conclude thak {z,} > «, for all values
of l1<r<j—1.

fj. Solving the above equations gives the

unique optimum éolutmr@ﬁ* A7) a

P.(N',K’,j) can be written as B; = a)
Pe(N’,K',j) ARG
r=1,a>E{z,}
=  min ZP — Nj, K" —i,5 —1)Q;(Ny, %) _ R o
0NN Hence, the integer parametes;, N; defined in the subop-
(a) ) timal algorithm have to satisfyfj% = B 4+ o(1) and % =
T NN E(-oNT 0ieN, A+ o(1), respectively. Based on the induction assumption, it

. is easy to show that
PAN' = Ny, K" —i,j = 1)Q;(Nj, 1) Y |
J

(®)
= min max Z yrun(ar)

eN'<N;<(1—€)N' E{z;}N,;<i<N; N’ r=1E{z,}<a

~ = (78)

. j—1 . J
i K —1q N
—Ly;u; <—> —L Vr Uy < > E rUr (&
. 757 Nj ; NI_N]' Y ( )

r=1E{z,}<a

L i My(i, N, .
- eN/SNI?ga()i—e)N’ ]E{mj}IJI\}jgiSNj ali, ;) which completes the proof for the case®fz;} < &
c —L max min M.(Bj, A
(i) e eSXs(—e) Efz;}a<B<) & j), (76)

22) % <E{r;}

In this case, we show tha% = o(1). Defining i; =
[E{z;}N;], we have

/ '.
K" —1;

whereMy(i, N;) and M.(8;, A;) are defined as

K’ — —L =a— (E{z;} —a)—L=— +0(1) (79)
) = om () S ()0
using equation (73). Now, we have
) = (B 4N o= B P(N’K’,j)
= ZP — i, 5 — 1)Q;(N;, 1)
_ .
In (76), (a) follows from the fact thatV; is bounded asN’ < > P (N’ vaK i )QJ( i)

N; < (1 —€)N'. (b) results from equation (60)2,(n, k, 7)
being a decreasing function &f and the fact that we have —L'yjuj (E{z;} +o(1)) .
Qj(Nj,1) < 1in(NjaE{%}N)f0”<E{$ } N B 5
and); are defined ag; = ~ and\; = %/. (¢) is a result of _LZ%uT < (E{z;} — a)%)
having M.(3;, \;) = Mu(i, N, )+ 0 (%) Hence, the discrete N'— N
to continuous relaxation is valid. 5.
Let us defme(ﬁ* /\*) as the values of3;, \;) which solve —LZ%UT < (E{x;} — a)ﬁ)
the max-min problem in (76). leferenuatln@[c(ﬁj, ;) with =

—~
-2
=

(80)
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where(a) follows from the first part of Theorem 2 and (60)18] L. Wang, Y. Shu, O. Yang, M. Dong, and L. Zhang, “Adaptilul-
On the other hand, according to the result of the first part of

Theorem 2, we know that

[19]

—L Z VrUr (O‘)

]56(]\7’, K jy=e r=1 (81) [20]

According to Lemma 1y,.(5) is an increasing function of
forall1<r<j—1. Thus,zj;i ~r-ur (B) is also a one-to- [21]

T

one increasing function gf. Noting this fact and comparing
(80) and (81), we conclude tha¥ = o(1) asE{z;} — ais [22]
strictly positive. Noting (78), we havéZ = o(1) which proves

the second part of Theorem 2 for the casefoi E{x;}.
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