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Abstract

The capacity region of the two-user Gaussian Interference Channel (IC) is studied. Three classes of channels are considered:
weak, one-sided, and mixed Gaussian IC. For the weak Gaussian IC, a new outer bound on the capacity region is obtained that
outperforms previously known outer bounds. The sum capacity for a certain range of the channel parameters is derived. For this
range, it is proved that using Gaussian codebooks and treating interference as noise is optimal. It is shown that when Gaussian
codebooks are used, the full Han-Kobayashi achievable rate region can be obtained by using the naive Han-Kobayashi achievable
scheme over three frequency bands (equivalently, three subspaces). For the one-sided Gaussian IC, an alternative proof for the
Sato’s outer bound is presented. We derive the full Han-Kobayashi achievable rate region when Gaussian codebooks are utilized.
For the mixed Gaussian IC, a new outer bound is obtained that outperforms previously known outer bounds. For this case, the
sum capacity for the entire range of channel parameters is derived. It is proved that the full Han-Kobayashi achievable rate region

using Gaussian codebooks is equivalent to that of the one-sided Gaussian IC for a particular range of channel parameters.

Index Terms

Gaussian interference channels, capacity region, sum capacity, convex regions.

I. INTRODUCTION

NE of the fundamental problems in Information Theory, originating from [1], is the full characterization of the capacity
O region of the interference channel (IC). The simplest form of IC is the two-user case in which two transmitters aim t
convey independent messages to their corresponding receivers through a common channel. Despite some special cases
as very strong and strong interference, where the exact capacity region has been derived [2], [3], the characterization of
capacity region for the general case is still an open problem.

A limiting expression for the capacity region is obtained in [4] (see also [5]). Unfortunately, due to excessive computation:
complexity, this type of expression does not result in a tractable approach to fully characterize the capacity region. To sh
the weakness of the limiting expression, Cheng and ¥érale shown that for the Gaussian Multiple Access Channel (MAC),
which can be considered as a special case of the Gaussian IC, the limiting expression fails to fully characterize the capa
region by relying only on Gaussian distributions [6]. However, there is a point on the boundary of the capacity region c

1An earlier version of this work containing all the results is reported in Library and Archives Canada Technical Report UW-ECE 2007;28ug.

2007 (see http://www.cst.uwaterloo.ca/pultech.rep.html for details).



the MAC that can be obtained directly from the limiting expression. This point is achievable by using simple scheme ¢
Frequency/Time Division (FD/TD).

The computational complexity inherent to the limiting expression is due to the fact that the corresponding encoding al
decoding strategies are of the simplest possible form. The encoding strategy is based on mapping data to a codebook constr
from a unique probability density and the decoding strategy is to treat the interference as noise. In contrast, using me
sophisticated encoders and decoders may result in collapsing the limiting expression into a single letter formula for t
capacity region. As an evidence, it is known that the joint typical decoder for the MAC achieves the capacity region [7
Moreover, there are some special cases, such as strong IC, where the exact characterization of the capacity region has
derived [2], [3] where decoding the interference is the key idea behind this result.

In their pioneering work, Han and Kobayashi (HK) proposed a coding strategy in which the receivers are allowed to deco
part of the interference as well as their own data [8]. The HK achievable region is still the best inner bound for the capaci
region. Specifically, in their scheme, the message of each user is split into two independent parts: the common part and
private part. The common part is encoded such that both users can decode it. The private part, on the other hand, cau
decoded only by the intended receiver and the other receiver treats it as noise. In summary, the HK achievable region is
intersection of the capacity regions of two three-user MACs, projected on a two-dimensional subspace.

The HK scheme can be directly applied to the Gaussian IC. Nonetheless, there are two sources of difficulties in characteriz
the full HK achievable rate region. First, the optimal distributions are unknown. Second, even if we confine the distributions
be Gaussian, computation of the full HK region under Gaussian distribution is still difficult due to numerous degrees of freedo
involved in the problem. The main reason behind this complexity is the computation of the cardinality of the time-sharin
parameter.

Recently, reference [9], Chorgt al has presented a simpler expression with less inequalities for the HK achievable region.
Since the cardinality of the time-sharing parameter is directly related to the number of inequalities appearing in the achieva
rate region, the computational complexity is decreased. However, finding the full HK achievable region is still prohibitively
complex.

Regarding outer bounds on the capacity region, there are three main results known. The first one obtained by Sato |
is originally derived for the degraded Gaussian IC. Sato has shown that the capacity region of the degraded Gaussian I(
outer bounded by a certain degraded broadcast channel whose capacity region is fully characterized. In [11], Costa has prt
that the capacity region of the degraded Gaussian broadcast channel is equivalent to that of the one-sided weak Gaussia
Hence, Sato outer bound can be used for the one-sided Gaussian IC as well.

The second outer bound obtained for the weak Gaussian IC is due to Kramer [12]. Kramer outer bound is based on
fact that removing one of the interfering links enlarges the capacity region. Therefore, the capacity region of the two-us
Gaussian IC is inside the intersection of the capacity regions of the underlying one-sided Gaussian ICs. For the case of w
Gaussian IC, the underlying one-sided IC is weak, for which the capacity region is unknown. However, Kramer has used t
outer bound obtained by Sato to derive an outer bound for the weak Gaussian IC.

The third outer bound due to Etkin, Tse, and Wang (ETW) is based on the Genie aided technique [13]. A genie that provic

some extra information to the receivers can only enlarge the capacity region. At first glance, it seems a clever genie m



provide some information about the interference to the receiver to help in decoding the signal by removing the interference.
contrast, the genie in the ETW scheme provides information about the intended signal to the receiver. Remarkably, refere
[13] shows that their proposed outer bound outperforms Kramer bound for certain range of parameters. Moreover, usin
similar method, [13] presents an outer bound for the mixed Gaussian IC.

In this paper, by introducing the notion of admissible ICs, we propose a new outer bounding technique for the two-us
Gaussian IC. The proposed technique relies on an extremal inequality recently proved by Liu and Viswanath [14]. We shq
that by using this scheme, one can obtain tighter outer bounds for both weak and mixed Gaussian ICs. More importantly,
sum capacity of the Gaussian weak IC for a certain range of the channel parameters is derived.

The rest of this paper is organized as follows. In Section I, we present some basic definitions and review the HK achieval
region when Gaussian codebooks are used. We study the time-sharing and the convexification methods as means to enlarg
basic HK achievable region. We investigate conditions for which the two regions obtained from time-sharing and concavificati
coincide. Finally, we consider an optimization problem based on extremal inequality and compute its optimal solution.

In Section lll, the notion of an admissible IC is introduced. Some classes of admissible ICs for the two-user Gaussian cas
studied and outer bounds on the capacity regions of these classes are computed. We also obtain the sum capacity of a sp
class of admissible IC where it is shown that using Gaussian codebooks and treating interference as noise is optimal.

In Section IV, we study the capacity region of the weak Gaussian IC. We first derive the sum capacity of this channel f
a certain range of parameters where it is proved that users should treat the interference as noise and transmit at their hic
possible rates. We then derive an outer bound on the capacity region which outperforms the known results. We finally prc
that the basic HK achievable region results in the same enlarged region by using either time-sharing or concavification. T
reduces the complexity of the characterization of the full HK achievable region when Gaussian codebooks are used.

In Section V, we study the capacity region of the one-sided Gaussian IC. We present a nhew proof for the Sato outer bot
using the extremal inequality. Then, we present methods to simplify the HK achievable region such that the full region can
characterized.

In Section VI, we study the capacity region of the mixed Gaussian IC. We first obtain the sum capacity of this chann
and then derive an outer bound which outperforms other known results. Finally, by investigating the HK achievable region f
different cases, we prove that for a certain range of channel parameters, the full HK achievable rate region using Gauss

codebooks is equivalent to that of the one-sided IC. Finally, in Section VII, we conclude the paper.

A. Notations

Throughout this paper, we use the following notations. Vectors are represented by bold faced letters. Random variab
matrices, and sets are denoted by capital letters where the difference is clear from the gdhtex{.A}, and A* represent
the determinant, trace, and transpose of the square métnigspectivelyl denotes the identity matriXN and® are the sets
of nonnegative integers and real numbers, respectively. The union, intersection, and Minkowski sum of tvausels are

represented by UV, UNV, andU + V, respectively. We use(x) as an abbreviation for the functidn5log,(1 + ).



Il. PRELIMINARIES
A. The Two-user Interference Channel

Definition 1 (two-user IC):A two-user discrete memoryless IC consists of two finite s&fsand 2> as input alphabets
and two finite sets?; and % as the corresponding output alphabets. The channel is governed by conditional probability
distributionsw(y1, y2|z1, z2) Where(x1,z2) € Z1 x 22 and (y1,y2) € %4 x %s.

Definition 2 (capacity region of the two-user ICK code Q"+ 2782 n \? A1) for the two-user IC consists of the fol-
lowing components for Userc {1,2}:

1) A uniform distributed message s#t; € [1,2, ..., 2" %],

2) A codebookX; = {x;(1),%;(2), ...,x;(2"%)} wherex;(:) € Z;".

3) An encoding function?; : 1,2, ..., 2"%] — X;.

4) A decoding function’; :y, — [1,2,...,2"%i].

5) The average probability of errov? = P(G;(y;) # M,).

A rate pair (?1, Ro) is achievable if there is a sequence of cod®s?(,2"%2 n, \7', \?) with vanishing average error
probabilities. The capacity region of the IC is defined to be the supremum of the set of achievable rates.

Let ¥1¢c denote the capacity region of the two-user IC. The limiting expressiof§fer can be stated as [5]

€1c = lim closure U (R1, Ra) | = %I X5, Y1) . Q)
e B(X)P(XE) Ry < 11(X3,Y3)
In this paper, we focus on the two-user Gaussian IC which can be represented in standard form as [15], [16]

Y1 = r +yare + 2, @

y2 = Vb + 22 + 2,
wherez; andy; denote the input and output alphabets of User{1, 2}, respectively, and; ~ N(0,1), 22 ~ N(0,1) are
standard Gaussian random variables. Constarts0 andb > 0 represent the gains of the interference links. Furthermore,
Transmitteri, i € {1, 2}, is subject to the power constraiff. Achievable rates and the capacity region of the Gaussian IC can
be defined in a similar fashion as that of the general IC with the condition that the codewords must satisfy their correspondi
power constraints. The capacity region of the two-user Gaussian IC is deno®@dQigarly, % is a function of the parameters
Py, P, a, andb. To emphasize this relationship, we may wifeas @ (P, P», a,b) as needed.

Remark 1:Since the capacity region of the general IC depends only on the marginal distributions [16], the ICs can b
classified into equivalent classes in which channels within a class have the same capacity region. In particular, for the Gaus:
IC given in (2), any choice of joint distributions for the péir , z2) does not affect the capacity region as long as the marginal
distributions remain Gaussian with zero mean and unit variance.

Depending on the values af and b, the two-user Gaussian IC is classified into weak, strong, mixed, one-sided, and
degraded Gaussian IC. In Figure 1, regionsibrplane together with their associated names are shown. Briefly<itz < 1
and0 < b < 1, then the channel is callesteak Gaussian ICIf 1 < a and1 < b, then the channel is callestrong Gaussian
IC. If eithera = 0 or b = 0, the channel is calledne-sided Gaussian 1Gf ab = 1, then the channel is calledegraded

Gaussian ICIf either0 <a <1 andl1 <b,or0<b<1andl < a, then the channel is callatixed Gaussian ICFinally,

the symmetric Gaussian IQused throughout the paper for illustration purposes) corresponds=té and P, = P5.
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Fig. 1. Classes of the two-user ICs.

Among all classes shown in Figure 1, the capacity region of the strong Gaussian IC is fully characterized [3], [2]. In thi
case, the capacity region can be stated as the collection of all rate( gairR.) satisfying
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Ri+ Ry < min{y(P+aP),v(bP, + P)}.
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B. Support Functions

Throughout this paper, we use the following facts from convex analysis. There is a one to one correspondence between

closed convex set and its support function [17]. The support function of ani sefR™ is a functionop : R™ — R defined

as

op(c) = sup{c'R|R € D}. (©)]
Clearly, if the setD is compact, then the sup is attained and can be replaced by max. In this case, the solutions of (:
correspond to the boundary points Bf[17]. The following relation is the dual of (3) and holds whénis closed and convex

D ={R|c'R < op(c),V c}. 4)

For any two closed convex sef$ and D', D C D', if and only ifop < opr.

C. Han-Kobayashi Achievable Region

The best inner bound for the two-user Gaussian IC is the full HK achievable region deno#dqby8]. Despite having
a single letter formula@rzx is not fully characterized yet. In fact, finding the optimum distributions achieving boundary
points of € i is still an open problem. We defiri¢ as a subset o€ x where Gaussian distributions are used for codebook

generation. Using a shorter description@f x obtained in [9],% can be described as follows.



Let us first define?, as the collection of all rate pairg?;, R;) € R? satisfying

Ri<y =7 <%> ) %)
P
Ro<py =7 <1+bQOzP1> ) (6)
Ry + Ry< 4p3 = min {t31, 32,933}, (7)
o P1+a(1—6)P2 aP1 ﬂPQ‘Fb(l—O[)Pl
231+R2S¢4—7<W)+’Y<%>+’7< 1t ba Py )7 8)
. GP Py + b(l — Oz)Pl aP; + a(l — ﬁ)Pg
R1+2R2§¢5_7<1+baa>+ ( 1+ baP, )“L”( 1+ afby ) ©

for fixed o € [0,1] and 3 € [0, 1].1 +/5 is the minimum ofis1, 32, andipss defined as

_ P1+(L(1—ﬂ)P2 BP;

vn=r () 7 () 10)
_ b Py +b(1—a)P,

3=y (%> + 7y (1—|—baP1> ) (11)
_ . (aPita(l - PP APy +b(1 — )Py

w‘””( 1+ afP; )”( 1T baP, ) (12)

%, is a polytope and a function of four variabl&s, P, «, and3. To emphasize this relation, we may wrig(Py, P», «, 3)

as needed. It is convenient to represg&ptin a matrix form as%, = {R|AR < U(P;, P»,,3)} whereR = (Ry, Ry)?,
U= (¢17¢27¢3,¢4a¢5)t, and

1 01 2 1
A=
01 1 1 2
Equivalently,%, can be represented as the convex hull of its extreme points@,eF,, Py, o, 3) = conv {ry,ra,...,rk },

where it is assumed th&f, has K extreme points. It is easy to show that< 7.
Now, ¢ can be defined as a region obtained from enlargfndy making use of the time-sharing parameter, t#is the

collection of all rate pair® = (Ry, Rz)? satisfying

q
ARL Z)\i‘I’(Pu,Pzi,ai,ﬁi), (13)
i=1
whereq € N and
q
z AiPui< Py, (14)
=1
q
Z AP < Py, (15)
=1
> =1, (16)
=1
)\i 207 (Oéi,,Bi)e [07 1]2; Vie {177Q} (17)

It is easy to show tha¥ is a closed, bounded and convex region. In fact, the capacity ré&giarich contains? is inside
the rectangle defined by inequalitiés < +(P;) and Ry < v(P»). Moreover,(0,0), (v(P1),0), and (0,v(P,)) are extreme

1lin the HK scheme, two independent messages are encoded at each transmitter, nacmiymbe messagand theprivate messagen and 8 are the
parameters that determine the amount of power allocated to the common and private messages for the two udersgife.,and (1 — a)P1, (1 — 8) P2

of the total power is used for the transmission of the private/common messages to the first/second users, respectively.



points of both% and¥. Hence, to characteriz€¢, we need to obtain all extreme points éfthat are in the interior of the
first quadrant (the same argument holds#9r In other words, we need to obtairy (c1, c2), the support function o¥, either
whenl < ¢; andey, =1 or whene; =1 and1 < ¢s.

We also defing%, and%, obtained by enlarging/, in two different manners¥, is defined as

G(PLP) = |J %P Pa,B) (18)
(a,8)€[0,1]?

%, is not necessarily a convex region. Hence, it can be further enlarged by the convex hull op&fai®mefined as the

collection of all rate pair®R = (Ry, Rz)? satisfying

R =) AR, (19)
=1
whereq’ € N and
AR; < U (P, Poj, v, 3i), (20)
ql
Z AiPu< Py, (21)
=1
q/
> AiPy< P, (22)
i=1
ql
=1, (23)
=1
i >0, (ag,B:)€[0,1]% Vie {1,...,q¢}. (24)

It is easy to show that;, is a closed, bounded and convex region. In f&tis obtained by using the simple method of TD/FD.
To see this, let us divide the available frequency band intsub-bands where; represents the length of théh band and

?=1 A; = 1. User 1 and 2 allocat®;; and P»; in thed’'th sub-band, respectively. Therefore, all rate pair&iQPry;, P, i, 5;)
are achievable in théth sub-band for fixeda;, 3;) € [0, 1]2. Hence, all rate pairs i[?;l A% (Pri, Pa;, o, ;) are achievable
provided thatzz?;1 X\ P; < P, and E;?/:l i Po; < P,

Clearly, the chain of inclusion®, C % C % C ¥ C ¢ux C ¥ always holds.

D. Concavification Versus Time-Sharing

In this subsection, we follow two objectives. First, we aim at providing some necessary conditions su@h thaV.
Second, we bound and¢’ which are parameters involved in the descriptions/oand%,, respectively. However, we derive
the required conditions for the more general case where theré/ansers in the system. To this end, assume an achievable
scheme for an\/-user channel with the power constralit= [Py, P», ..., Py/] is given. The corresponding achievable region
can be represented as

Dy(P,0) = {R|AR < ¥(P,0)}, (25)

where A is a K x M matrix and® < [0,1]™. D, is a polyhedron in general, but for the purpose of this paper, it suffices to
assume that it is a polytope. Siné€&, is a convex region, the convex hull operation does not lead to a new enlarged region.

However, if the extreme points of the region are not a concave functiaR,df is possible to enlargd, by using two



different methods which are explained next. The first method is based on using the time sharing parameter. Let us denote

corresponding region aB which can be written as

i=1 i=1

q q q
D= {R|AR <Y NU(PL0:),> AP <P> A=1,X>0,0;€0,1]M w} , (26)
=1

whereq € N.
In the second method, we make use of TD/FD to enlarge the achievable rate region. This results in an achievable reg

D represented as

’ ’ ’

q q q
Dy={R=> ARJAR; < U(P;,0;),> AP;<P,> X\=1X>0,0;€0,1]" Vi, (27)
=1 =1 =1

whereq’ € N. We refer to this method as concavification. It can be readily shown#hand D, are closed and convex, and
D, C D. We are interested in situations where the inverse inclusion holds.

The support function oD, is a function ofP, ©, andc. Hence, we have
op,(c,P,0) = max{c'R|AR < ¥(P,0)}. (28)
For fixedP and®, (28) is a linear program. Using strong duality of linear programming, we obtain
op,(c, P,0) = min{y'¥(P,0)|A'y = c,y > 0}. (29)

In general,y, the minimizer of (29), is a function dP, ©, andc. We sayD, possessethe unique minimizer property

y merely depends on, for all c. In this case, we have
op,(c,P,0) =y'(c)¥(P,0), (30)

where A'y = c. This condition means that for anythe extreme point ofDy maximizing the objectivez’!R. is an extreme
point obtained by intersecting a set of specific hyperplanes. A necessary conditidh for possess the unique minimizer
property is that each inequality in describihg is either redundant or active for &t and ©.
Theorem 1:If Dy possesses the unique minimizer property, thes Ds.
Proof: SinceD, C D always holds, we need to sha C D, which can be equivalently verified by showiag < op,.

The support function oD can be written as
op(c,P) =max {c'R|R € D}. (31)

By fixing P, P;’s, ©,’s, and \;’s, the above maximization becomes a linear program. Hence, relying on weak duality of linear
programming, we obtain

q
< i t ; 5 0;).
op(e,P)<  min_ 'y ; N (P, 0;) (32)
Clearly, y(c), the solution of (29), is a feasible point for (32) and we have

op(c,P) < yt(c)i)\i‘l’(Pi,@i)~ (33)

i=1

Using (30), we obtain
q
O'D(C,P) S Z/\iUDO(C;Piyei)- (34)
=1



Let us assum®&; is the maximizer of (28). In this case, we have

q
op (C7 P) S Z )\ictf{i- (35)
=1
Hence, we have
q
O'D(C,P) S Ctz)\iRi~ (36)

i=1

By definition, >~7_, MR, is a point inD,. Therefore, we conclude
op(c,P) <op,(c,P). (37)

This completes the proof. O
Corollary 1 (Han [18]): If Dy is a polymatroid, therD=D.
Proof: It is easy to show thaD, possesses the unique minimizer property. In fact, for givep can be obtained in a
greedy fashion independent Bf and ©. O
In what follows, we upper boung and¢’.
Theorem 2:The cardinality of the time sharing parametgin (26) is less than\/ + K + 1, where M and K are the
dimensions ofP and ¥'(P), respectively. Moreover, it (P) is a continuous function aP, theng < M + K.

Proof: Let us defineE as

i=1 i=1

q q q
E= {ZAqu(Pi, 0:) Y AP <PY A =1,X2>0,6; €[0,1] Vi} . (38)
=1
In fact, £ is the collection of all possible bounds f@). To proveq < M + K + 1, we define another regiof; as
E,={(P,SH0<P S =0P 00 c1M} (39)

From the direct consequence of the Caratheodory’s theorem [19], the convex [#illdd#noted by con; can be obtained
by convex combinations of no more thari + K + 1 points in ;. Moreover, if (P’, ©') is continuous, thed/ + K points

are sufficient due to the extension of the Caratheodory’s theorem [19]. Now, we define the Feg®on
E={S'|(P',S') € conv E;, P’ < P}. (40)

CIearIy,E C E. To show the other inclusion, let us consider a poinfinsay.S = >.7_; \;¥(P;,0;). Since(P;, ¥(P;,0;))
is a point inEy, "7, \(P;, ¥(P;,0;)) belongs to cond,;. Having>"¢_, \,P; < P, we conclude}?_, \;¥(P;,0) € E.
Hence,E C E. This completes the proof. O

Corollary 2 (Etkin, Parakh, and Tse [20])For the M-user Gaussian IC where users use Gaussian codebooks for data
transmission and treat the interference as noise, the cardinality of the time sharing parameter is 2&g. than

Proof: In this case,Dy = {R|R < ¥(P)} where bothP and ¥(P) have dimensionM/ and ¥(P) is a continuous

function of P. Applying Theorem 2 yields the desired result. O

In the following theorem, we obtain an upper boundgn

Theorem 3:To characterize boundary points bk, it suffices to sety < M + 1.

Proof: Let us assum®& is a boundary point of),. Hence, there exists such that

op,(c,P) = lllréagz c'R = ctf{, (41)
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whereR = 7 A,;R; and the optimum is achieved for the set of parame@s);, andP;. The optimization problem in

(41) can be written as

q/
0Dy (C7 P) =max Z )‘ig(ca P’L) (42)
i=1

q q
subject to:Z)\i =1, ZMP?: <P,
=1 =1

0 < )\Z)OSPU Vi € {1723"'7(]/}7
whereg(c, P) is defined as

g(c,P) =maxc'R (43)

subject to:AR < ¥(P,0), 0<©0 <1,

In fact, op,(c, P) in (42) can be viewed as the result of the concavificatiog(ef P) [19]. Hence, using Theorem 2.16 in
[19], we conclude thay’ < M + 1. O

Remarkable point about Theorem 3 is that the upper boung @nindependent of the number of inequalities involved in
the description of the achievable rate region.

Corollary 3: For the M-user Gaussian IC where users use Gaussian codebooks and treat the interference as noise, we t

Dy;=Dandgq=¢ =M+ 1.

E. Extremal Inequality

In [14], the following optimization problem is studied:
W = max h(X +Z;) — ph(X + Z), (44)
Qx<S

where Z; and Z, are n-dimensional Gaussian random vectors with the strictly positive definite covariance maprces
and )z,, respectively. The optimization is over all random vect&sndependent o, and Z,. X is also subject to the
covariance matrix constraif@x < S, where S is a positive definite matrix. In [14], it is shown that for all > 1, this
optimization problem has a Gaussian optimal solution for all positive definite matfigesnd Qz,. However, for0 < p < 1
this optimization problem has a Gaussian optimal solution provided < Qz,, i.e., Qz, — Qz, is a positive semi-definite
matrix. It is worth noting that fog, = 1 this problem wherQz, < @z, is studied under the name of the worse additive noise
[21], [22].

In this paper, we consider a special case of (44) wifarandZ, have the covariance matricdg I and N,I, respectively,

and the trace constraint is considered, i.e.,

W= WX + Zy) — ph(X + Zy). 45
tT{gg;nP( +2Z1) — ph(X 4 Zs) (45)

In the following lemma, we provide the optimal solution for the above optimization problem When N-.

Lemma 1:1f N; < N,, the optimal solution of (45) is iid Gaussian for al< ;» and we have

1) Foro<u< %ﬁig, the optimum covariance matrix B/ and the optimum solution is

W= glog [(27e) (P + Ny)] — % log [(2€)(P + Na)] . (46)
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2) For 245 < u < {2, the optimum covariance matrix i82-4™1 T and the optimum solution is

Ni+P
n Ny — N; Un w(2mwe)(Ny — Nyp)
W = —log |(2me) ————| — E-1 47
tog | (2me) T2 | - g | MU (47)
3) For ﬁ’,—f < u, the optimum covariance matrix (sand the optimum solution is
W= glog(%reNl ) — % log(2meN). (48)

Proof: From the general result for (44), we know that the optimum input distribution is Gaussian. Hence, we need t

solve the following maximization problem:

W =max J log (2¢)"|@x + MT|) — & o ((27¢)"|@x + Na]) (49)

subject t0:0 < @Qx, tr{Qx} < nP.

Since Qx is a positive semi-definite matrix, it can be decomposed)as= UAU?, where A is a diagonal matrix with
nonnegative entries antl is a unitary matrix, i.e.,UU* = I. SubstitutingQx = UAU? in (49) and using the identities

tr{AB} =tr{BA} and|AB + I| = |BA + I|, we obtain

W —max % tog (2me)"|A + N 1]) — & log ((2me)" A + No ) (50)

subject t0:0 < A, tr{A} < nP.

This optimization problem can be simplified as
n n
W =max B Z [log(2me)(A; + N1) — plog(2me) (N; + N2)) (51)
=1
subject to:0 < \; Vi, »_\; < nP.
=1

By introducing Lagrange multipliers and ® = {¢1, ¢o, ..., ¢, }, we obtain

L(A, ), ®) = max g > llog(2me) (i + N1) — plog(2me)(Ai + Na)] + ¢ <nP -3 )\i> + 3 diki. (52)
i=1 i=1 1=1

The first order KKT necessary conditions for the optimum solution of (52) can be written as

1 w .
- - ; =0, V 1,2,...,n}, 53
Ai+Ni AN+ Ny L ied n} (53)

¥ <nP — zn: Ai> =0, (54)
=1

¢iN; =0, Vi e {1,2,...,71}. (55)
It is easy to show that whefiv; < N, A = A; = ... = )\, and the only solution fo is
; No+P
P, if 0 <p< 5
A= Rl il << R (56)
0, if ¥ o<uw
SubstitutingX into the objective function gives the desired result. O

In Figure 2, the optimum variance as a function ofs plotted. This figure shows that for any value jof< Iﬁi%‘f, we

need to use the maximum power to optimize the objective function, whereas;ﬁoﬁj—ﬁ,’f, we use less power than what is

permissible.
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Variance

Fig. 2. Optimum variance versys

Lemma 2:1f N; > N,, the optimal solution of (45) is iid Gaussian for all< p. In this case, the optimum variance(s
and the optimum¥ is
n un
W= 5 log(2meNy) — 5 log(2meNy). (57)
Proof: The proof is similar to that of Lemma 1 and we omit it here. O

Corollary 4: For = 1, the optimal solution of (45) is iid Gaussian and the optimidmis

W = (58)
glog g%;) s if N1 > Ns.
We frequently apply the following optimization problem in the rest of the paper:
fn(P,N1,No,a,p) = max WX +Z;) — ph(vVaX + Zy), (59)
tr{Qx}<nP
where N7 < Ny /a. Using the identityh(AX) = log(|A]) + h(X), (59) can be written as
n Z2
P, Ny, N =—1 X+7Z)— X+ —).
fh( 3 4V1, 2,0/,/.11) ) Oga+tr{£¢%};nph( + 1) /’(‘h( + \/a) (60)
Now, Lemma 1 can be applied to obtain
Llog[(2me)(P + N1)] — Llog[(2me)(aP + Np)] i 0 < p < EEP2le
fn(P. N1, Na,a 1) = § L log [(2me) Moo | — b jog [eCraliNo/e—to) | jf Prlyfe <y < N (61)
1log(2meNy) — & log(2meNs) if a%"l <

I1l. ADMISSIBLE CHANNELS

In this section, we aim at building ICs whose capacity regions contain the capacity region of the two-user Gaussian IC, i.
% . Since we ultimately use these to outer boifidthese ICs need to have a tractable expression (or a tractable outer bound;
for their capacity regions.

Let us consider an IC with the same input letters as that aihd the output letterg, andg, for Users 1 and 2, respectively.

The capacity region of this channel, s&y, contains? if
I(=7;y7) <I(2%;97), (62)

I(xy;yy) <I(xh;73), (63)
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Fig. 3. An admissible channef; and f2 are deterministic functions.

for all p(z7)p(z%) and for alln € N.

One way to satisfy (62) and (63) is to provide some extra information to either one or to both receivers. This techniqt
is known asGenie aided outer boundingn [12], Kramer has used such a genie to provide some extra information to both
receivers such that they can decode both users’ messages. Since the capacity region of this new interference channel is equiy
to that of theCompound Multiple Access Channghose capacity region is known, reference [12] obtains an outer bound
on the capacity region. To obtain a tighter outer bound, reference [12] further uses the fact that if a genie provides the ex
information about the interfering signal to one of the receivers, then the new channel becomes the one-sided Gaussian
Although the capacity region of the one-sided Gaussian IC is unknown for all ranges of parameters, there exists an outer bo
for it due to Sato and Costa [23], [11] that can be applied to the original channel. In [13],&ftalluse a different genie that
provides some extra information about the intended signal. Even though at first glance their proposed method appears tc
far from achieving a tight bound, remarkably they show that the corresponding bound is tighter than the one due to Kran
for certain ranges of parameters.

Next, we introduce the notion of admissible channels to satisfy (62) and (63).

Definition 3 (Admissible Channel)An IC " with input letterz; and output letterj; for Useri € {1,2} is an admissible

channel if there exist two deterministic functiof® = f1(77") and ¢ = f2(g%) such that
I(@7;y7) <I(21;97), (64)
I(zg;y3) <I(23;93) (65)

hold for all p(z})p(«%) and for alln € N. & denotes the collection of all admissible channels (see Figure 3).

Remark 2:Genie aided channels are among admissible channels. To see this, let us assume a geniespranilesas
side information for User 1 and 2, respectively. In this cage= (v:,s;) for i € {1,2}. By choosingf;(yi, s;) = yi, we
observe thaf); = y;, and hence, (64) and (65) trivially hold.

To obtain the tightest outer bound, we need to find the intersection of the capacity regions of all admissible channe
Nonetheless, it may happen that finding the capacity region of an admissible channel is as hard as that of the original one
fact, based on the definition, the channel itself is one of its admissible channels). Hence, we need to find classes of admiss
channels, say7, which possess two important properties. First, their capacity regions are cl@e Second, either their
exact capacity regions are computable or there exist good outer bounds for them.Sineg, we have

¢ C() (66)

F
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Recall that there is a one to one correspondence between a closed convex set and its support functighisSilosed and
convex, there is a one to one correspondence betwéand oy . In fact, boundary points o¥ correspond to the solutions
of the following optimization problem

 (c1, = Ry + coRo. 67
og(c1,c2) (RIT}}%?Z))<€<501 1+ 2Ry (67)

Since we are interested in the boundary points excluding®thand R, axes, it suffices to considér< ¢; and0 < ¢, where
c1+c=1.
Since¥ C €', we have

o¢(c1,c2) < ogr(c, ca). (68)
Taking the minimum of the right hand side, we obtain
ow (1, e2) < iy o (cr, e2), (69)
which can be written as

og(c1,c2) < s max c1R1 + 2Ry, (70)

For convenience, we use the following two optimization problems

1) = Ry + Ry, 71
o (p;1) (X B+ R (71)

1) = Ry + pRy, 72
oe(lp)=  max Ri+pR, (72)

wherel < pu. It is easy to show that the solutions of (71) and (72) correspond to the boundary points of the capacity regiol

In the rest of this section, we introduce classes of admissible channels and obtain upper bawadg.on andos (1, ).

A. Classes of Admissible Channels

1) Class Al:This class is designed to obtain an upper bound9fy, 1). Therefore, we need to find a tight upper bound
on oy (1, 1). A member of this class is a channel in which User 1 has one transmit and one receive antenna whereas Use

has one transmit antenna and two receive antennas (see Figure 4). The channel model can be written as

= w1 ++ary + 21,
Jor = @2+ V0T1 + 201, (73)
Y22 = T2 + 222,
where g, is the signal at the first receivejp; andgq2 are the signals at the second receivgris additive Gaussian noise
with unit variance,zo; and zy, are additive Gaussian noise with variandés, and N»s, respectively. Transmitters 1 and 2
are subject to the power constraints Bf and P,, respectively.
To investigate admissibility conditions in (64) and (65), we introduce two deterministic funcfioasd f, as follows (see

Figure 4)
Hi(o)= o1, (74)

f2 (U5, U31)= (1 = V/92)555 + /92051, (75)
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(0

Admissible Channel fo(22: 21) = (1 — \/G2)T22 + /G201
Fig. 4. Class Al admissible channels.
where0 < go. For g, = 0, the channel can be converted to the one-sided Gaussian IC by I&iting= co and Noy = 1.

Hence, Class Al contains the one-sided Gaussian IC obtained by removing the link between Transmitter 1 and Receive

Using f; and f2, we obtain

97 =2t + Vaxh + 27, (76)
95 =/ gaxy + x5 + (1 — \/92)255 + /9223 (77)
Hence, this channel is admissible if the corresponding parameters satisfy
b =b,
g2 (78)
(1—/92)?Nag + g2Noy = 1.
We further add the following constraints to the conditions of the channels in Class Al:
b < No,
>~ 21 (79)
(INQQ S 1.

Although these additional conditions reduce the number of admissible channels within the class, they are needed to g¢
closed form formula for an upper bound e (u,1). In the following lemma, we obtain the required upper bound.

Lemma 3:For the channels modeled by (73) and satisfying (79), we have

1
o (11, 1) <min % log [2me(Py + aP2 4+ 1)] — % log(2me) + B log ( + + ) (80)

1
+ p2 fr (Ph 1, Noy, b/, M) + fu(P2, Nag, 1, a, j11)
2
subject to:uy + p2 = p, pa, p2 > 0.

Proof: Let us assumd?; and R, are achievable rates for User 1 and 2, respectively. Furthermore, we sipld 14 > 0
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and po > 0 such thaty = uq + p2. Using Fano’s inequality, we obtain

n(uRy + Ra) <pl (a7 7) + 1(23; 55, 55 + nen
=g d (275 G7) + pod (23 57) + (23 55, 55) + nen
LI ) + T (a5 10) + 1 3, 380) + e
=p (@7 97) + pol (@7 97 [23) + 1255 951 |39) + (235 33) + ney,
= h(F}) — ph(F|27) + peh(Fy|2y) — peh(Fy)et, 5)
(G5 555) — PG |25, 5) + h(G5) — h(i5s]as) + nen
=[h(GY) — pah (G |25, 25)] + [eh(F|28) — h(i5 |25, §5)]
+[h(G511952) — h(F5al23)] + [M(F52) — mah(F7 |27)] + nen, (81)

where (a) follows from the fact that} andz% are independent. Now, we separately upper bound the terms within each bracket
in (81).

To maximize the terms within the first bracket, we use the fact that Gaussian distribution maximizes the differential entroy

subject to a constraint on the covariance matrix. Hence, we have
jh(Gy) — peh(G 27, 23)= puh(a} + Vazy + =) — poh(z})
< % log 2me(Py + aP> 4 1)] — % log(2me). (82)
Sinced’ < Ny;, we can make use of Lemma 1 to upper bound the second bracket. In this case, we have
pah(315) — B3 I3 530 s (WGt + ) — RVt + )
< panfn <P1,1,N21,b/,’u12> ) (83)

where f}, is defined in (61).

We upper bound the terms within the third bracket as follows [13]:

B ) — b le2) €S M illimali) — h()

i=1
(®) ~ 1 PQ[i]NQQ n
< —1 2 N- VPi] + ———=— )| — = log (2meN.
2 Og[ ”e< ORI N, )| T g o (Bmelz2)
©n 1< LS | Pafi]Nao n
<—log |2me [ Noy + =Y VP [i] + —254=L = — —log (2meN.
2 g[ ( B n; 1[] %21:1P2[Z]+N22 2 g( 22)
n P2N22 n
<=1 2 N- VP, + ——=")| — =log (2meN-
=5 Og{ﬂe( 21 + 1+P2+N22>} 20g(7re 22)
n N21 b/Pl P2 )
<—log|—+ + , 84
2 g(1\722 Nz P+ Ny 84)

where (&) follows from the chain rule and the fact that removing independent conditions does not decrease differential entro
(b) follows from the fact that Gaussian distribution maximizes the conditional entropy for a given covariance matrix, and (c

follows form Jenson’s inequality.
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fil@, 512) = (1 = /91)Ju + o1tz

1—/gr

i

T2

Admissible Channel

Fig. 5. Class A2 admissible channels.

For the last bracket, we again make use of the definitionfi,ofin fact, sinceaN2y < 1, we have
M) — pnh(§7'[27)= h(ay + 255) — ph(Vaxy + 27')
< nfn(P2, Naz,1,a,p1). (85)

Adding all inequalities, we obtain

1 N- b P P
uRy + Ry S% log 2me(Py + aPy +1)] — % log(2re) + §1og ( 21 1 ) )

Nos ' Noy ' Py+ Ny

1
+,U/2fh (Ph 1aN21ab/7 [1/2) + fh(P27N227 1,0,,/1/1), (86)

where the fact that,, — 0 asn — oo is used to eliminate,, form the right hand side of the inequality. Now, by taking the
minimum of the right hand side of (86) over all and u2, we obtain the desired result. This completes the proof. [

2) Class A2:This class is the complement of Class Al in the sense that we use it to upper &dg(hd:). A member of
this class is a channel in which User 1 is equipped with one transmit and two receive antennas, whereas User 2 is equip

with one antenna at both transmitter and receiver sides (see Figure 5). The channel model can be written as

y11 = 1+ 211,

Ji2 = 1 +Va'ry + 212, (87)

Jo = 2+ Vb + 20,
whereg;; and ¢, are the signals at the first receivegn, is the signal at the second receives, is additive Gaussian noise
with unit variancez;; andz;, are additive Gaussian noise with varianéés and N,,, respectively. Transmitter 1 and 2 are
subject to the power constrainiy and P,, respectively.

For this class, we consider two linear functiofisand f> as follows (see Figure 5):
Si(in, o1)= (1 = V91)i11 + Vo iia, (88)
f2(53)= 13 (89)

Similar to Class Al, wheg; = 0, the admissible channels in Class A2 become the one-sided Gaussian IC byNgttirg co
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and N;; = 1. Therefore, we have

Jr =2l 4+ Va'gies + (1 — g1zl + Vo121, (%0)
g8 =Vbal + b + 23 1)

We conclude that the channel modeled by (87) is admissible if the corresponding parameters satisfy

“o = (92)
(1—/91)*N11 + g1 N2 =1.
Similar to Class Al, we further add the following constraints to the conditions of Class A2 channels:
a’ < Ny, (93)
bN11 <1.
In the following lemma, we obtain the required upper bound.

Lemma 4:For the channels modeled by (87) and satisfying (93), we have

o (1, p) <min % log [2me(bPy + P> + 1)] — % log(2me) + %log (%ﬁ + iff + 2 len) (94)
+ pa fn (P27 1, Nz, d’, ;) + fn(Pr, N11,1,b, p1)
subject to:pg + po = p, p1, po > 0.

Proof: The proof is similar to that of Lemma 3 and we omit it here. O

3) Class B: A member of this class is a channel with one transmit antenna and two receive antennas for each user mode

by (see Figure 6)
y11 = 1+ 211,
Ji2= a1+ Va'zs+ 212, (©5)
Jor = @2+ V021 + 201,
Y22 = T2+ 222,
whereg;; andgi are the signals at the first receivgs, and s, are the signals at the second receiver, apds additive
Gaussian noise with varianc®;; for i,j € {1,2}. Transmitter 1 and 2 are subject to the power constraifitand P,
respectively. In fact, this channel is designed to upper bound dgflu, 1) and o (1, u).

Next, we investigate admissibility of this channel and the conditions that must be imposed on the underlying paramete

Let us consider two linear deterministic functiofisand f, with parameter$) < g; and0 < g», respectively, as follows (see

Figure 6)
Si(@t, 912)= (1 = Vg1) i1 + Vo iia, (96)
f2(32, 931)= (1 = V/92)T32 + /92031 - (97)
Therefore, we have
gy =at + Vagh + (1= Vo) + Ve, (98)

g3 =V gy + a5 + (1 — /92)255 + /92251 (99)
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Admissible Channel f2(o2, Y1) = (1 — \/92) 22 + /G201
Fig. 6. Class B admissible channels.
To satisfy (64) and (65), it suffices to have
agr =a,
b/92 = ba

(100)
(1= /01)?’Ni1 + g1 N2 =1,

(1 —1/92)°Nog 4+ gaNoy = 1.
Hence, a channel modeled by (95) is admissible if there exist two nonnegative numlaerd go such that the equalities in

(100) are satisfied. We further add the following two constraints to the equality conditions in (100):

b'Ni1 < Noy, (101)
a’Nay < Nis.
Although adding more constraints reduces the number of the admissible channels, it enables us to compute an outer boun
o (1, 1) andoe (1, 1),
Lemma 5:For the channels modeled by (95) and satisfying (101), we have

) <py (LB N (P, B
ogr (W, L) Sy Ny; - a'Ps+ Nio v Nay VP + Ny

1
+f(Poy Nag, Nz, ', 1) + &5 log((2me) (a' P2 + Nug)) = 5 log((2me) (P2 + Nag)), (102)
P P > ( Py Py )
(L) <y (o + g | ey (o +
o (L p) 7<N11 a' Py + Nia H Nao VP + Noy
1
+fh(P1,N11,N21, b/, ,U/) —+ glog((%re)(b'Pl + Ngl)) — 5 10g((27T6)(P1 + Nll))~ (103)

Proof: We only upper bound-(u,1) and an upper bound ot (1, ) can be similarly obtained. Let us assuriig
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and R, are achievable rates for User 1 and User 2, respectively. Using Fano’s inequality, we obtain

n(pRy + Ra) <pd (x5 971, 91a) + (253 U39, U31) + nen
=pd (275 915 |91h) + pd (213 91)
+ (235951930, ) + 1(235 955) + nen
=ph(J1a|911) — ph(Gialat, 911) + ph(g1y) — ph(i:|27)
+h(U211955) — h(U51 125, U55) + h(T52) — h(¥as|75) + nen
=[G l501) = e |e7)] + [R(5511552) — (G5 ]25)]
+[/~Lh(ﬂﬁ) - h@gl‘x&ggz)] + [h@gz) — ph(Fis Y, Zgﬁ)] + nen. (104)

Next, we upper bound the terms within each bracket in (104) separately. For the first bracket, we have

~n |~n ~N M (@) - ~ Py 3 n
h(912|911) — ph(91: |27) S,UZ h(g2[i|g11[d]) — % log (2meN11)
i=1

(b) n 1 P1 [i]NH un
< — 1 2 N "P,li _— — —1 2meN
_,MZZ Og[ 71'6( 12 +a 2M+P1[i]—|—N11)] 5 og (2meNy1)

=1

) un 1 — LS~ PNy un
<"log |2me | Nio + — a' Poli] + 0= — “—log (2meN1;
2 [ ( 1 ”; . i1 Pili] + N 2 18! )
un , P1N11 Hun
<—1 2 N P _ — —1 2meN
=5 Og[ﬂe< 12+ a 2+P1+N11>} B og (2meNi1)
pun Niz | d'Py Py )
g (2 OS2 , 105
2 g<N11 Nii Pi+Npp (105)

where (a) follows from the chain rule and the fact that removing independent conditions increases differential entropy, (
follows from the fact that Gaussian distribution optimizes conditional entropy for a given covariance matrix, and (c) follow:
form Jenson’s inequality.

Similarly, the terms within the second bracket can be upper bounded as

|~ - n Noy blPl Py )
h( oy |Ta) — h(fhs|2h) < = log | —— ) 106
(U1 1732) (U32]73) < 9 g (N22 N Py + Noo ( )
Using Lemma 1 and the fact thaf;; < N, /b, the terms within the third bracket can be upper bounded as
~MN ~T n ~n n n 1 n n
ph(gi1) — WGz |73, G50)= p <h(x1 +211) — ;h(ﬁxl + 221))
1
< pnfn (P1,N11,N21,b/, ) - (107)
w
Sincel < p, from (61) we obtain
~n ~M n ~n bn n /
ph(F1y) — h(J21]23, U22) < > log((2me)(Py + Ni1)) — 3 log((2me)(b'P1 + Noai)). (108)

For the last bracket, again we use Lemma 1 to obtain

h(g) — ph(Fialet, Gi)= h(xh + 255) — ph(Va'e} + 2f)

< nfn(Py, Nag, N1o,d, ). (109)
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Adding all inequalities, we have

12 N12 a’Pg P1 ) 1 (N21 b/.Pl P2 )
Ry + Ry <Zlog | — + + +-log | — + +
e *=2 g(Nn Ni1  Pi+Nnp 5 8 Nag  Naa Py + Ny

1
+g log((2me)(Py + N11)) — 3 log((2me)(b' Py + Na1)) + fa(P2, Nog, N12,d’, 1), (110)

where the fact that,, — 0 asn — oo is used to eliminate,, from the right hand side of the inequality. By rearranging the

terms, we obtain

Ri+ Ry < (P TN W )+ (PQ+PQ>
pi 2 = Nii  a'Py+ Ny 7 Noy  b'Py + Ny

1
1 (Po, Noa, Niz, ', ) + 5 log((2me) (@ Py + Niz)) — 5 log((2me) (P + Naz)).

This completes the proof. O
. . . Ps+ N / P1+No1 /b’
A unique feature of the channels within Class B is thatfof p < ﬂT}\Z{f andl < p < %, the upper bounds

in (102) and (103) become, respectively,

P P1 P2 P2
Ry + Ry < S S RIPVY ( A E 111
pia T e ’”(NH ’P2+N12) 7(N22 b’P1+N21> (111)

and

P Py Dy L
- A 2 ) 112
R1+NR27<N1+ /p2+N12>+MW<N22 b’P1—|—N21> -

On the other hand, if the receivers treat the interference as noise, it can be shown that

P, P
R = _ 113
! V(Nu +G'P2+N12) (113)

and

- P,
B2 =7 (]\722 + bP + NQl) (1)

are achievable. Comparing upper bounds and achievable rates, we conclude that the upper bounds are indeed tight. In
this property is first observed by Etkat al in [13]. We summarize this result in the following theorem:

Theorem 4:The sum capacity in Class B is attained when transmitters use Gaussian codebooks and receivers treat
interference as noise. In this case, the sum capacity is

o (3t ) < (o) 19)
Proof: By substitutingu = 1 in (111), we obtain the desired result. O

4) Class C: Class C is designed to upper bouag(u, 1) for the mixed Gaussian IC where< b. Class C is similar to
Class Al (see Figure 4), however we impose different constraints on the parameters of the channels within Class C. Th
constraints assist us in providing upper bounds by using the fact that at one of the receivers both signals are decodable.

For channels in Class C, we use the same model that is given in (73). Therefore, similar to channels in Class Al, tl

channel is admissible if the corresponding parameters satisfy
b/gg = b,

(116)
(1- @)Qsz +g2Ng1 =1
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Next, we change the constraints in (79) as
b 2 N, (117)
alNoy < 1.
Through this change of constraints, the second receiver after decoding its own signal will have a less noisy version of 1
first user’s signal, and consequently, it is able to decode the signal of the first user as well as its own signal. Relying on t
observation, we have the following lemma.

Lemma 6:For a channel in Class C, we have

-1 1 P, N-
e (11, 1) S“ 5 log (2me(Py + aPy 4+ 1)) + 3 log <2ﬂ'e (1323_]2\?22 +0 P+ N21>>
1 1
— 5 10g(27T€N21) — 5 10g(27T€N22) -+ fh(PQ, NQQ, ]., a, i — ].) (118)
Proof: Since the second user is able to decode both users’ messages, we have
1 n, ~n

R < 51(5’31%%)’ (119)

1 ~T ~T n
rR < El(x?;y21,y22|x2), (120)

1 ~T ~T n
Ry< Ef(x’g’;yzuyzzﬂl)a (121)

1 ~n. ~N
Ry + Ro< Ef(x?’l’&yzuyzz)- (122)

FromaNoo < 1, we havel (7 g7) < I(zl; 95 |«%) = I(a%; 9%, 95|25 ). Hence, (120) is redundant. It can be shown that
Ryt Ry < " Lr@ngpy + Lran, an g, a2 123
plty + Ry < — ($1»y1>+n (21, 233 31, U32)- (123)

Hence, we have

n—1
n

-1,
uRy + Ro< MTh(yf)

w—1 1., 1. .. .
= Th(y?) + Eh(yéﬁly%) - Eh(ygl,ygzlx?w?)

. 1, .. . 1, . . :
R IR) + (i 75) — bl Tl )

1 p—1
~h(iy) — B h(gp et 124
+ n (922) i (77 |7) (124)

Next, we bound the different terms in (124). For the first term, we have

-1 -1
MTh(g{L) <k — log (2me(Py +aP2 +1)). (125)

The second term can be bounded as

1 - - 1 P2N22 /
- nogn Yy < .
nh(ym‘yzz) =5 log (27T€ <p2  Noy + 0P+ Nog (126)
The third term can be bounded as
1 ~n  ~n n n 1 1
gh(yzl,yﬂ\xl,%) =3 log(2meNay) + B log(2meNas). (127)
The last terms can be bounded as
1 ~n = 1 ~n|..n 1 n n n— 1 n
—h(f32) — ——h(g7'|27)= —h(xy + 235) — 7’”‘(\/&% + 21) (128)
n n n n
< fu(P2,Nag, 1,a,u—1). (129)

Adding all inequalities, we obtain the desired result. O
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IV. WEAK GAUSSIAN INTERFERENCECHANNEL

In this section, we focus on the weak Gaussian IC. We first obtain the sum capacity of this channel for a certain range
parameters. Then, we obtain an outer bound on the capacity region which is tighter than the previously known outer boun

Finally, we show that time-sharing and concavification result in the same achievable region for Gaussian codebooks.

A. Sum Capacity

In this subsection, we use the Class B channels to obtain the sum capacity of the weak IC for a certain range of paramet

To this end, let us consider the following minimization problem:
w=min: (5 + ot ) 7 (v * ) (30
subject to:
adgr=a
bgs =10
b'Ni1 < No
a'Nap < N1z
(1—/g1)?’Ni1 + g1 N2 =1
(1 — /92)?Nag + gaNoy = 1
0<Id,b,g1,92, N11, N12, Nag, No].
The objective function in (130) is the sum capacity of Class B channels obtained in Theorem 4. The constraints are t

combination of (100) and (101) where applied to confirm the admissibility of the channel and to validate the sum capaci

result. Since every channel in the class is admissible, we #ayg < W. SubstitutingS; = g1 N12 and So = gaNaoy, we

have
. (1-/91)°Py g P (1—/92)°Ps g2 P
= 131
W mm”( -5 tam+s) TS Tipts, (131)
subject to:
b(1 —
( 51)2 < SQ <1
(1= /91)
Cl(l — Sg)
<S5 <1
(1-vg)? =7
0 < [91, go]
By first minimizing with respect tg; and g2, the optimization problem (131) can be decomposed as
W =min Wy + Wy (132)
subjecttoi0 < S; <1, 0< Sy < 1.
where TV, is defined as
. (1—yq)*P g1 P
W, = 133
! H;infy( ].—Sl +aP2—|-Sl ( )

subject to:b(ls;sl) <(1—+a1)? 0< g
2
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Similarly, W5 is defined as

(1—/92)°Ps g2 P

-5 P +5, (134)

(1= S)
S

Wy =min~y <
g2
subject to:2 <(1-g2)% 0< ga.

The optimization problems (133) and (134) are easy to solve. In fact, we have

v (1+121P2) if Vb(1+aPy) < /S2(1—S1)

e v <bSP21 + UW)?H) Otherwise (135)
7 (w%) if Va(l+0bP) < \/Si(1—Ss)

s Y ("SI? + (I_W)2P2> Otherwise (136)

From (135) and (136), we observe that f6f and S, satisfying vb(1 + aP,) <

Sg(l — Sl) and \/6(1 + bPl) <

S1(1 — S3), the objective function becomes independentSofand Ss. In this case, we have

B Py Py
W_7(1+aP2>+7<1+bP1>’ (137)

which is achievable by treating interference as noise. In the following theorem, we prove that it is possible to find a certa

range of parameters such that there esistand .S, yielding (137).

Theorem 5:The sum capacity of the two-user Gaussian IC is

_ Py P

bom = (125 ) +7 (107 ) (138)
for the range of parameters satisfying

1—+ya— b
VOP, +aPy < — Y — . 139
L+ VaP, < Jab (139)

Proof: Let us fixa andb, and defineD as
S1(1—952) 1 Sa(1—51) 1

D=<(P,PR)|ALt—F— - P +——~-  — 1 13. 140
{( 1, )| Pr < NG pr 2 s o a,0<51<,0<52< (140)

In fact, if D is feasible then there exist < S; < 1 and0 < S, < 1 satisfying \/5(1 + aP) < /S2(1-5) and
Va(l+bP) < 4/S1(1 — S3). Therefore, the sum capacity of the channel for all feasible points is attained due to (137).

We claim thatD = D’, whereD’ is defined as

D' = {(Pth)Ix/BPl ++aP, < 1_\/\/%_‘/5} : (141)

To showD’ C D, we setS; =1 — 55 in (140) to get

S 1 1- 8
- P —
ba b 27 ovb

It is easy to show that the left hand side of the above equation is another representation of théDregiemce, we have

1
{(P17P2)|P1§ _a70<51<1}gD (142)

D' C D.
To showD C D', it suffices to prove that for anyP;, P,) € D, VbP; ++/aP, < i\/i\/g holds. To this end, we introduce
the following maximization problem:

J= max VbP +aP,, (143)
(Py,P2)€D
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Fig. 7. The shaded area is the region where treating interference as noise is optimal for obtaining the sum capacity of the symmetric Gaussian IC.

which can be written as

1-— 1-—
J = max \/Sl( S2) + \/52( 51) — = — i (144)
(81,82)€(0,1)2 Vab va /b
It is easy to show that the solution to the above optimization problem is
1 1 1

J=—-—-— 145
Vab  Va b (49)
Hence, we deduce thd C D’. This completes the proof. O

Remark 3:The above sum capacity result for the weak Gaussian IC (see also [24]) has been established independently
[25] and [26].

As an example, let us consider the symmetric Gaussian IC. In this case, the constraint in (139) becomes

1-2a
P< TN (146)

In Figure 7, the admissible region fd?, where treating interference as noise is optimal, vekguss plotted. For a fixedP?
and all0 < a < 1, the upper bound in (130) and the lower bound when receivers treat the interference as noise are plotted

Figure 8. We observe that up to a certain value:othe upper bound coincides with the lower bound.

B. New Outer Bound

For the weak Gaussian IC, there are two outer bounds that are tighter than the other known bounds. The first one, du
Kramer [12], is obtained by relying on the fact that the capacity region of the Gaussian IC is inside the capacity regions
the two underlying one-sided Gaussian ICs. Even though the capacity region of the one-sided Gaussian IC is unknown, tf

exists an outer bound for this channel that can be used instead. Kramers’ outer bound is the intersection of tw@regions
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Fig. 8. The upper bound obtained by solving (130). The lower bound is obtained by treating the interference as noise.

and E». E; is the collection of all rate pair6R;, R;) satisfying

(1-p)F
Ri<v (M) » (147)
Ry<~(BP), (148)

for all 8 € [0, Bmad, Where P’ = Py /a + P> and Bmax = %. Similarly, E5 is the collection of all rate pairsR;, R»)

satisfying
Ri< ~(aP”), (149)
(1— a)P”
<y (LT 1
Fasy (an/+ 1/b)° (150)
for all o € [0, amax, WhereP” = P + P, /b and amax = %.

The second outer bound, due to Etlén al [13], is obtained by using Genie aided technique to upper bound different

linear combinations of rates that appear in the HK achievable region. Their outer bound is the union of all rdtg,paiss
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satisfying

Ri<~(Py), (151)

Ro< y(P), (152)

Ry + Ro< 7(P1)+7(152P1>7 (153)
Rt Res 2P 47 (g ) (159
R1+R2§7(aP2—|— 1f2P1>+7<bP1+ 1+PZP2>’ (155)
2Ry + Ro< y(P1 +aP2) + (bP1 + 1 +PZP2) +0.5log (fib]}z) ’ (156)
Ry + 2R2< y(bPy + P3) + 7 (aP2 + 1+Pép1) +0.51og (11;5%) . (157)

In the outer bound proposed here, we derive an upper bound on all linear combinations of the rates. Recall that to obtain
boundary points of the capacity regi@ it suffices to calculate« (1, 1) ando« (1, 1) for all 1 < p. To this end, we make
use of channels in Al and B classes and channels in A2 and B classes to obtain upper boagdg,dh and o« (1, ),
respectively.

In order to obtain an upper bound e (u, 1), we introduce two optimization problems as follows. The first optimization

problem is written as

1
W1 (@) =min % log [2me(Py + aP2 +1)] — % log(2me) + = log < (158)

N21 blpl P2 )
2

N722+ Nao * P + Nap
+ p2 fr (Ph 1, Noy, b/, ;) + fu(P2, N2z, 1, a, j11)
subject to:

M1t p2 =

bgo=b

b < Ny

aNgy <1

(1 —/92)*Nag + gaNoy = 1

0 < [p1, p2, V', g2, Naz, Noyl.
In fact, the objective of the above minimization problem is an upper bound on the support function of a channel within Cla:
Al which is obtained in Lemma 3. The constraints are the combination of (78) and (79) which are applied to guarantee t

admissibility of the channel and to validate the upper bound obtained in Lemma 3. Hepge,l) < Wi(u). By using a
new variableS = (1 — ,/g2)? N22, we obtain



28

. M1 ]. 2 1—S+bP1 Pg
W =min — log [2me(P; + aP> + 1)] + = log | (1 — 159
) =min B log 2me(Py+ 0Py +1)] + g log (1= VP (F b+ )| (159
1-5 b 1 S U2
+ Py, 1, ,,)+ Py, ————— 1,a,p1) — — log(2me
#th( 1 5 5 i fn (P 1= vam)? 1) 5 g(2me)
subject to:
M1t o = p
S<1-b
1— 2
g< 1=V
a
0 S [M17M27sag2]‘
The second optimization problem is written as
. Pl Pl P2 P2 ’
W- = —_ 4 — 4+ Ps, Noo, N- 160
2(p) mmlw<N11+a’P2+N12>+7<N22+b’P1+N21>+fh( 2, Nag, Ni2,a’, 1) (160)

+ Blog((2me) (@’ Py + Niz)) — L Tog((2m¢) (P2 + Non))
subject to:

agi=a

bgs=10

b'Ni1 < Noy

a’'Nap < Nio

(1—/g1)’Ni1 + g1 N2 =1

(1 — \/g2)*Nag + gaNoy = 1

0 < [a’,', 91,92, N11, Ni2, Naa, No1].
For this problem, Class B channels are used. In fact, the objective is the upper bound on the support function of chanr
within the class obtained in Lemma 5 and the constraints are defined to obtain the closed form formula for the upper bou

and to confirm that the channels are admissible. Hence, we deduge 1) < W>(u). By using new variable$; = g1 N1

and S, = g2 N1 , we obtain

vt - (S5 s ) o (R )
+ I (sz (11_;%)2, % ;17u> + glog ((%e)(wj&)) - %log ((27re)(P2 + (11_\2%)20
subject to:
(li(i_\/;)é <S8 <1
g(i_\/;i;))z <S5 <1
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Fig. 9. % for the weak Gaussian Gy, rq, r3, andry are extreme points af, in the interior of the first quadrant.

In a similar fashion, one can introduce two other optimization problems}iggy:) and W5(x), to obtain upper bounds on
o%(1, 1) by using the upper bounds on the support functions of channels in Class A2 and Class B.

Theorem 6 (New Outer Bound}or any rate paifR;, R>) achievable for the two-user weak Gaussian IC, the inequalities

piRy + Ry < W(p) = min{Wi(u1), Wa(pa)}, (162)

Ry + pa Ry < W (p) = min{Wi (p2), Wa(p2)}, (163)

hold for all 1 < 1, po.

To obtain an upper bound on the sum rate, we can apply the following inequality:
G < min H2 = DWln) + (= YW (ps) (164)
1<p,p2 pipe — 1

C. Han-Kobayashi Achievable region

In this sub-section, we aim at characterizidgor the weak Gaussian IC. To this end, we first investigate some properties of
% (Py, Py, , ). First of all, we show that none of the inequalities in descrilsfhgs redundant. In Figure 9, all possible extreme
points are shown. It is easy to prove that¢ ¥, for i € {1,2,...,6}. For instance, we considef, = (w, M)

Sinces; + Y32 + 133 = 14 + 95 (see Section II.C), we have
3= min{v31, 32,933}
1
< 5(1/)31 + 132 + 133)
1
= 3(1/)4 +15).
However,%(zm + 15) is the sum of the components of. Therefore,r; violates (7) in the definition of the HK achievable
region. Hencerj ¢ %. As another example, let us considér= (v, 13 — ¢1). We claim thatr} violates (8). To this end,
we need to show thap, < i3 + 1. However, it is easy to see thaty < 31 + 1, Yy < W32 + 1, and iy < P33 + Y

reduce to0 < (1 —a)(1 —b+ (1 —ab)Ps), 0 < (1 —-pB)(1—a+ (1 —ab)Py), and0 < (1 — a)(1 — B)aPs, respectively.
Therefore,r] ¢ %.
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We conclude tha has four extreme points in the interior of the first quadrant, namely

r1= (1, %4 — 2¢1), (165)
ro= (ths — 3, 2th3 — ), (166)
r3= (2ths — 5,15 — ¥3), (167)
ra= (V5 — 22,¢2). (168)

Most importantly,%, possesses the unique minimizer property. To prove this, we need to shoy; thaet minimizer of the

optimization problem

ope(c1,c2, P1, Pa, o, f)= max{ci R + coR2|AR < VU(Py, Ps, v, B)}

= min{yt\I’(Pth,%ﬁﬂAty = (01702)t7y Z 0}7 (169)

is independent of the parametdps, P, «, and3 and only depends om andc,. We first consider the cade;, c2) = (u, 1)
for all 1 < p. It can be shown that fat < p, the maximum of (169) is attained at regardless of,, P», «, ands. Therefore,
the dual program has the minimizgr= (x —2,0,0,1,0)* which is clearly independent a?;, P», «, and3. In this case, we

have

oy (1, 1, Pry Poy o, B) = (= 2)91 + s, 2 < g (170)

For1 < p < 2, one can show that, andy = (0,0,2— u, 1 —1,0)* are the maximizer and the minimizer of (169), respectively.

In this case, we have

UDo(l% 1,P1,P27O[,6) = (2 - /’[’)w?) + (,lt - 1)¢4a 1 S 14 S 2. (171)

Next, we consider the case;,c2) = (1,u) for all 1 < u. Again, it can be shown that f2 < g and1 < p < 2,

y=(0,u—2,0,0,1)" andy = (0,0,2 — p,0, u — 1)* minimizes (169), respectively. Hence, we have

UDO(l,,LL,Pl,PQ,Oé,ﬁ): (M_2)1/)2+¢5’ if 2</~‘La (172)

UD0(17M7P15P2aa7ﬁ): (2 - /L)’(/JS + (,LL - 1)w57 if 1 <p< 2. (173)

We conclude that the solutions of the dual program are always independéht é%, o, and 5. Hence,¥, possesses the
unigue minimizer property.

Theorem 7:For the two-user weak Gaussian IC, time-sharing and concavification result in the same region. In other word
¢ can be fully characterized by using TD/FD and allocating power over three different dimensions.

Proof: Since¥, possesses the unique minimizer property, from Theorem 1, we deduc# tha¥,. Moreover, using

Theorem 3, the number of frequency bands is at most three. O

To obtain the support function ¢, we need to obtaig(cy, ¢z, P1, P2, o, 3) defined in (43). Sincé,, possesses the unique
minimizer property, (43) can be simplified. Let us consider the case wlere;) = (u,1) for 4 > 2. It can be shown that

for this case

g= @ gn)lea% 1]2(/1 = 2)1(P1, Py, 0, B) + ha(Pr, P, x, B). (174)
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Fig. 10. Comparison between different bounds for the symmetric weak Gaussian ICRvaen anda = 0.2.

Substituting into (42), we obtain

3
0w, (1, 1, P, P2) :maxz)\i (1t = 2)v1(Pri, Pai, o, Bi) + ¥a(Pri, Pais i, B5)] (175)
i=1
subject to:
3

d =1

i=1

3
Z APy <Py
i=1

3
Z)\iPQi <PB

i=1

0< )\iao < P1i70 < P2ia Vi € {17273}

0<o; <1,0<8; <1, Vie{l,23}.

For other ranges ofcy, ¢2), a similar optimization problem can be formed. It is worth noting that even though the number
of parameters in characterizirgg is reduced, it is still prohibitively difficult to characterize boundary points/ofin Figures

(10) and (11), different bounds for the symmetric weak Gaussian IC are plotted. As shown in these figures, the new ou

bound is tighter than the previously known bounds.

V. ONE-SIDED GAUSSIAN INTERFERENCECHANNELS

Throughout this section, we consider the one-sided Gaussian IC obtained by &etting.e, the second receiver incurs no
interference from the first transmitter. One can further split the class of one-sided ICs into two subclassemndhene-sided

IC and theweak one-sided ICFor the former,a > 1 and the capacity region is fully characterized [16]. In this case, the
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Fig. 11. Comparison between different bounds for the symmetric weak Gaussian ICEvee00 anda = 0.1.

capacity region is the union of all rate paifB,, R») satisfying

For the lattera < 1 and the full characterization of the capacity region is still an open problem. Therefore, we always assum
a < 1. Three important results are proved for this channel. The first one, proved by Costa in [11], states that the capac
region of the weak one-sided IC is equivalent to that of the degraded IC with an appropriate change of parameters. The sec
one, proved by Sato in [10], states that the capacity region of the degraded Gaussian IC is outer bounded by the capa
region of a certain degraded broadcast channel. The third one, proved by Sason in [16], characterizes the sum capacit
combining Costa’s and Sato’s results.

In this section, we provide an alternative proof for the outer bound obtained by Sato. We then characterize the full H

Ry + Ro< y(P1 + aPs).

achievable region where Gaussian codebooks are used?i.e.,

A. Sum Capacity

For the sake of completeness, we first state the sum capacity result obtained by Sason.

Theorem 8 (Sason)The rate pah(y (HPTlPQ) ,y(PQ)) is an extreme point of the capacity region of the one-sided Gaussian

IC. Moreover, the sum capacity of the channel is attained at this point.

B. Outer Bound

In [10], Sato derived an outer bound on the capacity of the degraded IC. This outer bound can be used for the weak one-si

IC as well. This is due to Costa’s result which states that the capacity region of the degraded Gaussian IC is equivalent to t

of the weak one-sided IC with an appropriate change of parameters.
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Theorem 9 (Sato)if the rate pair(R;, R2) belongs to the capacity region of the weak one-sided IC, then it satisfies

1-pp
Ry < 7(1/a+6p)>

(176)
R2 S ’Y(ﬂp) )

for all 3 € [0,1] whereP = Py /a + Px.

Proof: Since the sum capacity is attained at the point where User 2 transmits at its maximutp ratg(P,), other bound-
ary points of the capacity region can be obtained by characterizing the solutiong0f1) = max {zR1 + Ra|(R1, R2) € €'}
for all 1 < u. Using Fano’s inequality, we have

n(pRy + Ry) <pl(xV:y7) + 1(z3;y5) + nep

=ph(yy') — ph(yr'|zy) + h(ys) — h(ys|os) + ney,

=[ph(z} + Vazy + 27') — h(23)] + [h(zh + 23) — ph(Vazh + 27)] + ne,
a)
<

—~

INS

% log 2me(Py + aPy +1)] — glog(%re) + [h(xhy + 28) — ph(Vaxh + 27)] + nep
% log [2me(Py + aPy + 1)] — glog@ﬁe) +nfn(Pa,1,1,a, 1) + nep,
where (a) follows from the fact that Gaussian distribution maximizes the differential entropy for a given constraint on th
covariance matrix and (b) follows from the definition ff in (59).

Depending on the value gf, we consider the following two cases:

Py+1/a
1-For1<u< 51 we have

P
Ry + Ry < Py). 177
pR1+ z_uv(1+ap2>+7( 2) (177)

In fact, the point(y (JTle) ,’y(Pg)) which is achievable by treating interference as noise at Receiver 1, satisfies (177) with

equality. Therefore, it belongs to the capacity region. Moreover, by settingl, we deduce that this point corresponds to

the sum capacity of the one-sided Gaussian IC. This is in fact an alternative proof for Sason’s result.
Py+1/a 1
2- Forﬁ <pu <, we have

1 1a—1 1/a—1
uRlJngSglog(PlJranJrl)Jr10g</€a )“1 (““(/“)>

5 — 5 og 1 (178)
Equivalently, we have
Ry + Ry < glog <W) + %log <1Za_11) , (179)
whereP = P;/a + P». Let us defineF; as the set of all rate paird?;, R,) satisfying (179), i.e.
By — {(Rl,Rg)le + Ry < Elog (W) n %log (%“_f) , vpi,jjia <u< i} (180)

We claim thatE; is the dual representation of the region defined in the statement of the theorem, see (4). To this end, v
define E5 as

B, = {(Rl,RzﬂRl < V(m),RQ <~(3P), Y5 € [0, 1]}

(181)
We evaluate the support function &k as

o, (1, 1) = max {uR1 + Ry|(R1, R2) € Es} . (182)
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It is easy to show thaf = 1/“:1 maximizes the above optimization problem. Therefore, we have
Yy P(u—1) p p

o, (1, 1) = glog <W> + %1og <1L“__11> . (183)

Since E is a closed convex set, we can use (4) to obtain its dual representation which is indeed equivalent to (180). Tt

completes the proof. O

C. Han-Kobayashi Achievable Region

In this subsection, we characterigg, 4, %, and ¥ for the weak one-sided Gaussian 1€ can be characterized as
follows. Since there is no link between Transmitter 1 and Receiver 2, User 1's message in the HK achievable region is ol

the private message, i.ev,= 1. In this case, we have

Py
Pr1="y (Mﬂﬁ%) > (184)
Yo=(Pz), (185)
P31="y (W) +v(BP), (186)
=1y (W} +(P2), (187)
=y (P2 4 o), (189
- P1+a(1—5)P2 P1
a= 1y <1+aﬁPz) <1+aﬁPg) +7(8P), (189)

(190)

U= A(BP2) +1(P2) 4 (PH“‘”P) ,

1+ aﬁPg
It is easy to show thaps = min{ws;, V32, 33} = W31, 31 + Y1 = Y4, Y31 + Y2 = 5. Hence, % can be represented as all
rate pairs(R;, Ry) satisfying

P
Ri< <1M15PQ> : (191)
Ry< v(P), (192)
Ri+ Ry< v <Jw> +4(3Py). (193)

We claim that¥%, = ¢. To prove this, we need to show thé possesses the unique minimizer prope#y.is a pentagon

with two extreme points in the interior of the first quadrant, nameghandr, where

= (7 (BEER om) 2R a(P)) (199

Using above, it can be verified th&, possesses the unique minimizer property.
Next, we can use the optimization problem in (42) to obtain the support functigh bfowever, we only need to consider

(c1,¢2) = (p, 1) for p > 1. Therefore, we have

) +2(5Py) +w((1‘m“P2). (196)

P
1, P, Py, 3) = SN -
g(p, 1, Py, Py, 3) Oggglm(lJrﬂaPQ 15D, 1 paby
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Substituting into (42), we conclude that boundary pointséotan be characterized by solving the following optimization

problem:
3

B | P . _ (= Bials
W —maXi:Z1 A [;w(l n BiaPQi) +v(BiPai) + 7(1 TPyt @CLP%)] (197)
subject to:

3
=1
i=1

3
Z)\ipu <P

i=1
3

Z AiPoy < Py
i=1

0< B <1, Vie{l,2,3}

0< [PliaP2i7>\’i]7 Vi € {17273}

For the sake of completeness, we provide a simple descriptio#;fan the next lemma.

Lemma 7:The region%; can be represented as the collection of all rate pdis R2) satisfying

Py
R, < ’Y(Mﬂ,&>; (198)
_3"\P
R 1P+ (T L ) (199)

for all 5’ € [0,1]. Moreover,¥; is convex and any point that lies on its boundary can be achieved by using superpositior
coding and successive decoding.
Proof: Let E denote the set defined in the above lemma. It is easy to showEthatconvex andEl C ;. To prove
the inverse inclusion, it suffices to show that the extreme point§,pf; andr, (see (194) and (195)) are inside for all
08 € [0,1]. By setting3’ = 3, we see that; € E. To provers € E, we sets’ = 1. We conclude that, € F if the following

inequality holds

Py +a(l1—-B)P> Py
gl (W) +7(8P2) =v(P2) < 7(1 n ap2>, (200)

for all 8 € [0, 1]. However, (200) reduces W< (1 —a)(1 — 8) P, which holds for allg € [0, 1]. Hence % C E. Using these
facts, it is straightforward to show that the boundary pof#itsare achievable by using superposition coding and successive
decoding. 0

Figure 12 compares different bounds for the one-sided Gaussian IC.

VI. MIXED GAUSSIAN INTERFERENCECHANNELS
In this section, we focus on the mixed Gaussian Interference channel. We first characterize the sum capacity of this chan
Then, we provide an outer bound on the capacity region. Finally, we investigate the HK achievable region. Without loss

generality, we assume < 1 andb > 1.
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Comparison between different bounds for the one-sided Gaussian ICRyhenl, P, = 7, anda = 0.4.

A. Sum Capacity

Theorem 10:The sum capacity of the mixed Gaussian IC with: 1 andb > 1 can be stated as

. P bP;
Coum =7 (P2) —Hmn{'y (1 +aP2> 7 (1 +P2>}
Proof: We need to prove the achievability and converse for the theorem.

(201)
Achievability part: Transmitter 1 sends a common message to both receivers, while the first user’s signal is considered
noise at both receivers. In this case, the rate

. P bP;
By =win 4y (7505 )0

1+ P

(202)
is achievable. At Receiver 2, the signal from Transmitter 1 can be decoded and removed. Therefore, User 2 is left witf
channel without interference and it can communicate at its maximum rate which is

Rg = ’Y(PQ).
By adding (202) and (203), we obtain the desired result.

(203)
Converse part The sum capacity of the Gaussian IC is upper bounded by that of the two underlying one-sided Gaussic
ICs. Hence, we can obtain two upper bounds on the sum rate. We first remove the interfering link between Transmitter 1 &

Receiver 2. In this case, we have a one-sided Gaussian IC with weak interference. The sum capacity of this channel is kne

36
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[16]. Hence, we have

P
G <P+ (). (204)

By removing the interfering link between Transmitter 2 and Receiver 1, we obtain a one-sided Gaussian IC with stror

interference. The sum capacity of this channel is known. Hence, we have

which equivalently can be written as
bPy
< y(P. . 2
By taking the minimum of the right hand sides of (204) and (206), we obtain
) P bP,
< .
%sum,7(P2)+mln{’7<1+ap2>,'7<1+P2>} (207)
This completes the proof. O

Remark 4:In an independent work [25], the sum capacity of the mixed Gaussian IC is obtained for a certain range c
parameters, whereas in the above theorem, we characterize the sum capacity of this channel for the entire range of its param

(see also [24]).

By comparingy (1+’le2) with ~ (1};13}1,2), we observe that it + P, < b+ abP5, then the sum capacity corresponds to the
sum capacity of the one-sided weak Gaussian IC, whereas-if>> > b + abP», then the sum capacity corresponds to the
sum capacity of the one-sided strong IC. Similar to the one-sided Gaussian IC, since the sum capacity is attained at the p
where User 2 transmits at its maximum ratg = ~(P,), other boundary points of the capacity region can be obtained by

characterizing the solutions ofy(y, 1) = max {uR; + Ra|(R1, Re) € €} for all 1 < p.

B. New Outer Bound

The best outer bound to date, due to Etkinal [13], is obtained by using the Genie aided technique. This bound is the

union of all rate pairg R, R2) satisfying

Ri<~(Py), (208)
Ry< y(P2), (209)
Py
< ~(P. 210
Ry + Ra< ~( 2)+7(1+aP2)’ (210)
Ry 4+ Ro< v(P2 + bPy), (211)
P, Py

< )

2R1+R2_’Y(P1+QP2)+’Y(Z)P1+1+ap2)+’}/(1+bpl) (212)

The capacity region of the mixed Gaussian IC is inside the intersection of the capacity regions of the two underlying on
sided Gaussian ICs. Removing the link between Transmitter 1 and Receiver 2 results in a weak one-sided Gaussian IC wi

outer boundF, is the collection of all rate pair6R;, R2) satisfying
(1- )P
< S
mso (S, 213)
Ry< ~(BP), (214)
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for all 8 € [0, Bmay, WhereP’ = Py /a+ P and Bmax = %. On the other hand, removing the link between Transmitter
2 and Receiver 1 results in a strong one-sided Gaussian IC whose capacity lgg®iully characterized as the collection

of all rate pairs(R1, Rs) satisfying

Ri< y(bPy), (215)
Ry + Ro< v (bPy + P). (217)

Using the channels in Class C, we upper bourdu, 1) based on the following optimization problem:

W (p) =min p1 log (2me(Py + aPp + 1)) + %log (27re (f% +0' P+ N21)> (218)
— %log(%reNgl) — %10g(2W6N22) + fn(P2, Nog, 1 a,u— 1)
subject to:
bgo="b
b > Noy
aNap <1

(1 = /92)*Naz + gaNoy = 1

0 < [/, g2, Nog, Nog).

By substitutingS = g N»2;, we obtain

W (1) =min “ L log (27e(Py + aPy + 1)) log (2776 ( 2 7 43 st bplgj S)) (219)
—ilog(iis)—il (?“%53% h(% -mw—l)
subject to:
S<1
a(l = 8) < (1-/g2)°
0<[S, g2]-

Hence, we have the following theorem that provides an outer bound on the capacity region of the mixed Gaussian IC.
Theorem 11:For any rate paifR;, R2) achievable for the two-user mixed Gaussian (B;, R2) € F1 () E2. Moreover,
the inequality

}Ry + Ry < W(p) (220)

holds for all1 < p.

C. Han-Kobayashi Achievable Region

In this subsection, we study the HK achievable region for the mixed Gaussian IC. Since Receiver 2 can always decode

message of the first user, User 1 associates all its power to the common message. User 2, on the other handjllocates
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Fig. 13. The new regio) which is obtained by enlargingo.
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and (1 — 8) P, of its total power to its private and common messages, respectively, wher®, 1]. Therefore, we have

¢1_7<1+aﬁp2>a

2= (P2),

Y31= "7y (W) +7(BP2),

V30= (P> + bPy),

Vas ="y (%) + (8P, +bPy),
V=" (W) + (8P, + bPy),
Vs=v(BP2) + y(Ps + bPy) + 7 (‘%) .

Due to the fact that the sum capacity is attained at the point where the second user transmits at its maximum rate,

(221)
(222)
(223)
(224)

(225)
(226)

(227)

last inequality in the description of the HK achievable region can be removed. Although therpeintys — v(Pz), v(Py))

in Figure 9 may not be 1%, this point is always achievable due to the sum capacity result. Hence, we can &fijdoge

removingrs andr,. Let us denote the resulting region & Moreover, one can show tha}, 5, 7, andry are still outside

%. However, for the mixed Gaussian IC, it is possible tHabelongs to;. In Figure 13, two alternative cases for the region

¢/ along with the new labeling of its extreme points are plotted. The new extreme points can be written as

r1= (¥1,%4 — 2¢1),
r2= (Y1,%3 — Y1),
r3= (Va4 — 3, 23 — Y4),
T4= (Y3 — 2, 2).
In fact, we have eithe® = con{ry,r3, 74} Or 4 = conyra,rs}.
To simplify the characterization ¢f;, we consider three cases:

Casel: 14+ P, <b+ abPs.
Casell: 1+ P, >b+abP, andl — a < abP;.
Case lll:1+ P, > b+ abP, and1 — a > abP;.
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Case | (L + P, < b+ abP,): In this cases = ¥3;. Moreover, it is easy to verify thats; + v, < v, which means (8) is

redundant for the entire range of parameters. Heffge= con{rs, 4} consists of all rate pair6R;, R2) satisfying

Py
Ri<~ <1-HOL5Pz> ) (228)
Ro< v (), (229)
Bt R (P DB) om), (230)

whereg € [0, 1]. Using a reasoning similar to the one used to express boundary poiffisfof the one-sided Gaussian IC,

we can express boundary points4f as

Py
Ri<~v <%> ) (231)
1— )P
Ro<~y(BP2) +~ <11(Pl+ﬁztﬂng> ; (232)

for all 8 € [0,1].
Theorem 12:For the mixed Gaussian IC satisfyirnig< ab, region¥ is equivalent to that of the one sided Gaussian IC
obtained from removing the interfering link between Transmitter 1 and Receiver 2.
Proof: If 1 < ab, thenl+ P, < b+ abP» holds for all P, and P,. Hence,%; (P, P», 3) is a pentagon defined by (228),
(229), and (229). Comparing with the corresponding region for the one-sided Gaussian IC, we eidrejuivalent ta%,
obtained for the one-sided Gaussian IC. This directly implies ¥h& the same for both channels. O

Case Il (1+ P, >b+ abP, and1 — a < abPy): In this caseps = min{ys1, 132}, It can be shown tha¥; is the union

of three regionsF, Es, and E3, i.e, % = F1|J E2|J Es. RegionE; is the union of all rate pairéR;, R») satisfying

Py
< _ 233
s (s ). (233)
a(l — ﬁ)PQ >

Ry< P) + —_— . 234
2< Y(BF%) 7<1+P1+aﬁP2 (234)

for all 5 € [0, (lfa%]. Region E5 is the union of all rate pairéR;, R2) satisfying

bP,

R < —, 235
=7 (1 n 6P2> (239)

Pl —+ a(l — ﬂ)PQ bP1
< _— P) — . 236
R2—V( 1+ aib, +1(6P) =7\ 135 (236)

(b—1)Pi+(1—a) Py : ; : - e
for all g € [(1 ab)P2 T—ab) PPy (=) P |. RegionE; is the union of all rate pairéR;, R2) satisfying
bP1(1+ (1—1ab)P1)

< — 237
Rl—”( 1+bP +P, )’ (237)
Ry< vy (P2), (238)
Ry + Ro< y(bPy + Py). (239)

Case lll (1+ P, > b+ abP, and1 — a > abPy): In this casep)s = min{s;, 132} Similar to Case I, we have, =

Ey U E2|J Es, where regionsE;, E», and E5 are defined as follows. Regiof; is the union of all rate pair§R;, R2)
satisfying

P
Ri< I 240
= (1+a6P2)’ (240)

Ras 190 + 7 (o o). (241)
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0.5[

New Outer Bound

Fig. 14. Comparison between different bounds for the mixed Gaussian IC Whefs < b+ abPs (Case |) forP, =7, P, =7, a = 0.6, andb = 2.

for all 5 € [0, ﬂf(zﬁ]' Region E; is the union of all rate pairéR;, R3) satisfying
Py
<Al ———— 242
< (s ) (242)
a(l—B)P > ( P )

Ro<y| ——"—F5 | +7(BPa+bP) — v | ——= | - 243
2_7<1+P1+aﬁP2 V(8P 1) = 1T adb, (243)

for all g € [ufaﬁ, 1]. RegionE5 is the union of all rate pairéR;, R») satisfying

Py

< 244
mso (g ) (244)
Ro< v (P2), (245)
Ry + Ro<v(bP1 + I%). (246)

Remark 5:Region E5 in Case Il and Case Il represents a facet that belongs to the capacity region of the mixed Gaussic
IC. Itis important to note that, surprisingly, this facet is obtainable when the second transmitter uses both the common mess
and the private message.

Different bounds are compared for the mixed Gaussian IC for Cases I, Il, and lll in Figures 14, 15, and 16, respectively

VIl. CONCLUSION

We have studied the capacity region of the two-user Gaussian IC. The sum capacities, inner bounds, and outer bounds |
been considered for three classes of channels: weak, one-sided, and mixed Gaussian IC. We have used admissible chann
the main tool for deriving outer bounds on the capacity regions.

For the weak Gaussian IC, we have derived the sum capacity for a certain range of channel parameters. In this range,
sum capacity is attained when Gaussian codebooks are used and interference is treated as noise. Moreover, we have deri
new outer bound on the capacity region. This outer bound is tighter than the Kramer's bound and the ETW's bound. Regard

inner bounds, we have reduced the computational complexity of the HK achievable region. In fact, we have shown that wh
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Fig. 15. Comparison between different bounds for the mixed Gaussian IC WheR> > b+ abP> and1 — a < abP; (Case ll) forP, =7, P» = 7,
a = 0.4, andb = 1.5.

Fig. 16. Comparison between different bounds for the mixed Gaussian IC WheRy > b+ abP> and1 — a > abP; (Case lll) forP; = 7, P, = 700,
a =0.01, andb = 1.5.
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Gaussian codebooks are used, the full HK achievable region can be obtained by using the naive HK achievable scheme
three frequency bands.

For the one-sided Gaussian IC, we have presented an alternative proof for the Sato’s outer bound. We have also derivec
full HK achievable region when Gaussian codebooks are used.

For the mixed Gaussian IC, we have derived the sum capacity for the entire range of its parameters. Moreover, we hi
presented a new outer bound on the capacity region that outperforms ETW'’s bound. We have proved that the full HK achieva
region using Gaussian codebooks is equivalent to that of the one-sided Gaussian IC for a particular range of channel g
We have also derived a facet that belongs to the capacity region for a certain range of parameters. Surprisingly, this face

obtainable when one of the transmitters uses both the common message and the private message.
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