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Abstract

The capacity region of the two-user Gaussian Interference Channel (IC) is studied. Three classes of channels are considered:

weak, one-sided, and mixed Gaussian IC. For the weak Gaussian IC, a new outer bound on the capacity region is obtained that

outperforms previously known outer bounds. The sum capacity for a certain range of the channel parameters is derived. For this

range, it is proved that using Gaussian codebooks and treating interference as noise is optimal. It is shown that when Gaussian

codebooks are used, the full Han-Kobayashi achievable rate region can be obtained by using the naive Han-Kobayashi achievable

scheme over three frequency bands (equivalently, three subspaces). For the one-sided Gaussian IC, an alternative proof for the

Sato’s outer bound is presented. We derive the full Han-Kobayashi achievable rate region when Gaussian codebooks are utilized.

For the mixed Gaussian IC, a new outer bound is obtained that outperforms previously known outer bounds. For this case, the

sum capacity for the entire range of channel parameters is derived. It is proved that the full Han-Kobayashi achievable rate region

using Gaussian codebooks is equivalent to that of the one-sided Gaussian IC for a particular range of channel parameters.

Index Terms

Gaussian interference channels, capacity region, sum capacity, convex regions.

I. I NTRODUCTION

ONE of the fundamental problems in Information Theory, originating from [1], is the full characterization of the capacity

region of the interference channel (IC). The simplest form of IC is the two-user case in which two transmitters aim to

convey independent messages to their corresponding receivers through a common channel. Despite some special cases, such

as very strong and strong interference, where the exact capacity region has been derived [2], [3], the characterization of the

capacity region for the general case is still an open problem.

A limiting expression for the capacity region is obtained in [4] (see also [5]). Unfortunately, due to excessive computational

complexity, this type of expression does not result in a tractable approach to fully characterize the capacity region. To show

the weakness of the limiting expression, Cheng and Verdú have shown that for the Gaussian Multiple Access Channel (MAC),

which can be considered as a special case of the Gaussian IC, the limiting expression fails to fully characterize the capacity

region by relying only on Gaussian distributions [6]. However, there is a point on the boundary of the capacity region of

1An earlier version of this work containing all the results is reported in Library and Archives Canada Technical Report UW-ECE 2007-26, Aug.

2007 (see http://www.cst.uwaterloo.ca/pubtech rep.html for details).
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the MAC that can be obtained directly from the limiting expression. This point is achievable by using simple scheme of

Frequency/Time Division (FD/TD).

The computational complexity inherent to the limiting expression is due to the fact that the corresponding encoding and

decoding strategies are of the simplest possible form. The encoding strategy is based on mapping data to a codebook constructed

from a unique probability density and the decoding strategy is to treat the interference as noise. In contrast, using more

sophisticated encoders and decoders may result in collapsing the limiting expression into a single letter formula for the

capacity region. As an evidence, it is known that the joint typical decoder for the MAC achieves the capacity region [7].

Moreover, there are some special cases, such as strong IC, where the exact characterization of the capacity region has been

derived [2], [3] where decoding the interference is the key idea behind this result.

In their pioneering work, Han and Kobayashi (HK) proposed a coding strategy in which the receivers are allowed to decode

part of the interference as well as their own data [8]. The HK achievable region is still the best inner bound for the capacity

region. Specifically, in their scheme, the message of each user is split into two independent parts: the common part and the

private part. The common part is encoded such that both users can decode it. The private part, on the other hand, can be

decoded only by the intended receiver and the other receiver treats it as noise. In summary, the HK achievable region is the

intersection of the capacity regions of two three-user MACs, projected on a two-dimensional subspace.

The HK scheme can be directly applied to the Gaussian IC. Nonetheless, there are two sources of difficulties in characterizing

the full HK achievable rate region. First, the optimal distributions are unknown. Second, even if we confine the distributions to

be Gaussian, computation of the full HK region under Gaussian distribution is still difficult due to numerous degrees of freedom

involved in the problem. The main reason behind this complexity is the computation of the cardinality of the time-sharing

parameter.

Recently, reference [9], Chonget al has presented a simpler expression with less inequalities for the HK achievable region.

Since the cardinality of the time-sharing parameter is directly related to the number of inequalities appearing in the achievable

rate region, the computational complexity is decreased. However, finding the full HK achievable region is still prohibitively

complex.

Regarding outer bounds on the capacity region, there are three main results known. The first one obtained by Sato [10]

is originally derived for the degraded Gaussian IC. Sato has shown that the capacity region of the degraded Gaussian IC is

outer bounded by a certain degraded broadcast channel whose capacity region is fully characterized. In [11], Costa has proved

that the capacity region of the degraded Gaussian broadcast channel is equivalent to that of the one-sided weak Gaussian IC.

Hence, Sato outer bound can be used for the one-sided Gaussian IC as well.

The second outer bound obtained for the weak Gaussian IC is due to Kramer [12]. Kramer outer bound is based on the

fact that removing one of the interfering links enlarges the capacity region. Therefore, the capacity region of the two-user

Gaussian IC is inside the intersection of the capacity regions of the underlying one-sided Gaussian ICs. For the case of weak

Gaussian IC, the underlying one-sided IC is weak, for which the capacity region is unknown. However, Kramer has used the

outer bound obtained by Sato to derive an outer bound for the weak Gaussian IC.

The third outer bound due to Etkin, Tse, and Wang (ETW) is based on the Genie aided technique [13]. A genie that provides

some extra information to the receivers can only enlarge the capacity region. At first glance, it seems a clever genie must
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provide some information about the interference to the receiver to help in decoding the signal by removing the interference. In

contrast, the genie in the ETW scheme provides information about the intended signal to the receiver. Remarkably, reference

[13] shows that their proposed outer bound outperforms Kramer bound for certain range of parameters. Moreover, using a

similar method, [13] presents an outer bound for the mixed Gaussian IC.

In this paper, by introducing the notion of admissible ICs, we propose a new outer bounding technique for the two-user

Gaussian IC. The proposed technique relies on an extremal inequality recently proved by Liu and Viswanath [14]. We show

that by using this scheme, one can obtain tighter outer bounds for both weak and mixed Gaussian ICs. More importantly, the

sum capacity of the Gaussian weak IC for a certain range of the channel parameters is derived.

The rest of this paper is organized as follows. In Section II, we present some basic definitions and review the HK achievable

region when Gaussian codebooks are used. We study the time-sharing and the convexification methods as means to enlarge the

basic HK achievable region. We investigate conditions for which the two regions obtained from time-sharing and concavification

coincide. Finally, we consider an optimization problem based on extremal inequality and compute its optimal solution.

In Section III, the notion of an admissible IC is introduced. Some classes of admissible ICs for the two-user Gaussian case is

studied and outer bounds on the capacity regions of these classes are computed. We also obtain the sum capacity of a specific

class of admissible IC where it is shown that using Gaussian codebooks and treating interference as noise is optimal.

In Section IV, we study the capacity region of the weak Gaussian IC. We first derive the sum capacity of this channel for

a certain range of parameters where it is proved that users should treat the interference as noise and transmit at their highest

possible rates. We then derive an outer bound on the capacity region which outperforms the known results. We finally prove

that the basic HK achievable region results in the same enlarged region by using either time-sharing or concavification. This

reduces the complexity of the characterization of the full HK achievable region when Gaussian codebooks are used.

In Section V, we study the capacity region of the one-sided Gaussian IC. We present a new proof for the Sato outer bound

using the extremal inequality. Then, we present methods to simplify the HK achievable region such that the full region can be

characterized.

In Section VI, we study the capacity region of the mixed Gaussian IC. We first obtain the sum capacity of this channel

and then derive an outer bound which outperforms other known results. Finally, by investigating the HK achievable region for

different cases, we prove that for a certain range of channel parameters, the full HK achievable rate region using Gaussian

codebooks is equivalent to that of the one-sided IC. Finally, in Section VII, we conclude the paper.

A. Notations

Throughout this paper, we use the following notations. Vectors are represented by bold faced letters. Random variables,

matrices, and sets are denoted by capital letters where the difference is clear from the context.|A|, tr{A}, andAt represent

the determinant, trace, and transpose of the square matrixA, respectively.I denotes the identity matrix.N and< are the sets

of nonnegative integers and real numbers, respectively. The union, intersection, and Minkowski sum of two setsU andV are

represented byU ∪ V , U ∩ V , andU + V , respectively. We useγ(x) as an abbreviation for the function0.5 log2(1 + x).
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II. PRELIMINARIES

A. The Two-user Interference Channel

Definition 1 (two-user IC):A two-user discrete memoryless IC consists of two finite setsX1 and X2 as input alphabets

and two finite setsY1 and Y2 as the corresponding output alphabets. The channel is governed by conditional probability

distributionsω(y1, y2|x1, x2) where(x1, x2) ∈ X1 ×X2 and (y1, y2) ∈ Y1 × Y2.

Definition 2 (capacity region of the two-user IC):A code (2nR1 , 2nR2 , n, λn
1 , λn

2 ) for the two-user IC consists of the fol-

lowing components for Useri ∈ {1, 2}:
1) A uniform distributed message setMi ∈ [1, 2, ..., 2nRi ].

2) A codebookXi = {xi(1), xi(2), ..., xi(2nRi)} wherexi(·) ∈ X n
i .

3) An encoding functionFi : [1, 2, ..., 2nRi ] → Xi.

4) A decoding functionGi : yi → [1, 2, ..., 2nRi ].

5) The average probability of errorλn
i = P(Gi(yi) 6= Mi).

A rate pair (R1, R2) is achievable if there is a sequence of codes (2nR1 , 2nR2 , n, λn
1 , λn

2 ) with vanishing average error

probabilities. The capacity region of the IC is defined to be the supremum of the set of achievable rates.

Let CIC denote the capacity region of the two-user IC. The limiting expression forCIC can be stated as [5]

CIC = lim
n→∞

closure


 ⋃

P(Xn
1 )P(Xn

2 )



(R1, R2) |

R1 ≤ 1
n I (Xn

1 , Yn
1 )

R2 ≤ 1
n I (Xn

2 , Yn
2 )






 . (1)

In this paper, we focus on the two-user Gaussian IC which can be represented in standard form as [15], [16]

y1 = x1 +
√

ax2 + z1,

y2 =
√

bx1 + x2 + z2,
(2)

wherexi andyi denote the input and output alphabets of Useri ∈ {1, 2}, respectively, andz1 ∼ N (0, 1), z2 ∼ N (0, 1) are

standard Gaussian random variables. Constantsa ≥ 0 and b ≥ 0 represent the gains of the interference links. Furthermore,

Transmitteri, i ∈ {1, 2}, is subject to the power constraintPi. Achievable rates and the capacity region of the Gaussian IC can

be defined in a similar fashion as that of the general IC with the condition that the codewords must satisfy their corresponding

power constraints. The capacity region of the two-user Gaussian IC is denoted byC . Clearly,C is a function of the parameters

P1, P2, a, andb. To emphasize this relationship, we may writeC asC (P1, P2, a, b) as needed.

Remark 1:Since the capacity region of the general IC depends only on the marginal distributions [16], the ICs can be

classified into equivalent classes in which channels within a class have the same capacity region. In particular, for the Gaussian

IC given in (2), any choice of joint distributions for the pair(z1, z2) does not affect the capacity region as long as the marginal

distributions remain Gaussian with zero mean and unit variance.

Depending on the values ofa and b, the two-user Gaussian IC is classified into weak, strong, mixed, one-sided, and

degraded Gaussian IC. In Figure 1, regions inab-plane together with their associated names are shown. Briefly, if0 < a < 1

and0 < b < 1, then the channel is calledweak Gaussian IC. If 1 ≤ a and1 ≤ b, then the channel is calledstrong Gaussian

IC. If either a = 0 or b = 0, the channel is calledone-sided Gaussian IC. If ab = 1, then the channel is calleddegraded

Gaussian IC. If either 0 < a < 1 and1 ≤ b, or 0 < b < 1 and1 ≤ a, then the channel is calledmixed Gaussian IC. Finally,

the symmetric Gaussian IC(used throughout the paper for illustration purposes) corresponds toa = b andP1 = P2.
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Fig. 1. Classes of the two-user ICs.

Among all classes shown in Figure 1, the capacity region of the strong Gaussian IC is fully characterized [3], [2]. In this

case, the capacity region can be stated as the collection of all rate pairs(R1, R2) satisfying

R1 ≤ γ(P1),

R2 ≤ γ(P2),

R1 + R2 ≤ min {γ(P1 + aP2), γ(bP1 + P2)} .

B. Support Functions

Throughout this paper, we use the following facts from convex analysis. There is a one to one correspondence between any

closed convex set and its support function [17]. The support function of any setD ∈ <m is a functionσD : <m → < defined

as

σD(c) = sup{ctR|R ∈ D}. (3)

Clearly, if the setD is compact, then the sup is attained and can be replaced by max. In this case, the solutions of (3)

correspond to the boundary points ofD [17]. The following relation is the dual of (3) and holds whenD is closed and convex

D = {R|ctR ≤ σD(c), ∀ c}. (4)

For any two closed convex setsD andD′, D ⊆ D′, if and only if σD ≤ σD′ .

C. Han-Kobayashi Achievable Region

The best inner bound for the two-user Gaussian IC is the full HK achievable region denoted byCHK [8]. Despite having

a single letter formula,CHK is not fully characterized yet. In fact, finding the optimum distributions achieving boundary

points ofCHK is still an open problem. We defineG as a subset ofCHK where Gaussian distributions are used for codebook

generation. Using a shorter description ofCHK obtained in [9],G can be described as follows.
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Let us first defineG0 as the collection of all rate pairs(R1, R2) ∈ <2
+ satisfying

R1≤ ψ1 = γ

(
P1

1 + aβP2

)
, (5)

R2≤ ψ2 = γ

(
P2

1 + bαP1

)
, (6)

R1 + R2≤ ψ3 = min {ψ31, ψ32, ψ33} , (7)

2R1 + R2≤ ψ4 = γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ

(
αP1

1 + aβP2

)
+ γ

(
βP2 + b(1− α)P1

1 + bαP1

)
, (8)

R1 + 2R2≤ ψ5 = γ

(
βP2

1 + bαP1

)
+ γ

(
P2 + b(1− α)P1

1 + bαP1

)
+ γ

(
αP1 + a(1− β)P2

1 + aβP2

)
, (9)

for fixed α ∈ [0, 1] andβ ∈ [0, 1].1 ψ3 is the minimum ofψ31, ψ32, andψ33 defined as

ψ31= γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ

(
βP2

1 + bαP1

)
, (10)

ψ32= γ

(
αP1

1 + aβP2

)
+ γ

(
P2 + b(1− α)P1

1 + bαP1

)
, (11)

ψ33= γ

(
αP1 + a(1− β)P2

1 + aβP2

)
+ γ

(
βP2 + b(1− α)P1

1 + bαP1

)
. (12)

G0 is a polytope and a function of four variablesP1, P2, α, andβ. To emphasize this relation, we may writeG0(P1, P2, α, β)

as needed. It is convenient to representG0 in a matrix form asG0 = {R|AR ≤ Ψ(P1, P2, α, β)} whereR = (R1, R2)t,

Ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)t, and

A =


 1 0 1 2 1

0 1 1 1 2




t

.

Equivalently,G0 can be represented as the convex hull of its extreme points, i.e.,G0(P1, P2, α, β) = conv {r1, r2, . . . , rK},
where it is assumed thatG0 hasK extreme points. It is easy to show thatK ≤ 7.

Now, G can be defined as a region obtained from enlargingG0 by making use of the time-sharing parameter, i.e.,G is the

collection of all rate pairsR = (R1, R2)t satisfying

AR≤
q∑

i=1

λiΨ(P1i, P2i, αi, βi), (13)

whereq ∈ N and
q∑

i=1

λiP1i≤ P1, (14)

q∑

i=1

λiP2i≤ P2, (15)

q∑

i=1

λi= 1, (16)

λi ≥ 0, (αi, βi)∈ [0, 1]2; ∀i ∈ {1, . . . , q}. (17)

It is easy to show thatG is a closed, bounded and convex region. In fact, the capacity regionC which containsG is inside

the rectangle defined by inequalitiesR1 ≤ γ(P1) andR2 ≤ γ(P2). Moreover,(0, 0), (γ(P1), 0), and (0, γ(P2)) are extreme

1In the HK scheme, two independent messages are encoded at each transmitter, namely thecommon messageand theprivate message. α and β are the

parameters that determine the amount of power allocated to the common and private messages for the two users, i.e.,αP1, βP2 and(1− α)P1, (1− β)P2

of the total power is used for the transmission of the private/common messages to the first/second users, respectively.
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points of bothC and G . Hence, to characterizeG , we need to obtain all extreme points ofG that are in the interior of the

first quadrant (the same argument holds forC ). In other words, we need to obtainσG (c1, c2), the support function ofG , either

when1 ≤ c1 andc2 = 1 or whenc1 = 1 and1 ≤ c2.

We also defineG1 andG2 obtained by enlargingG0 in two different manners.G1 is defined as

G1(P1, P2) =
⋃

(α,β)∈[0,1]2

G0(P1, P2, α, β). (18)

G1 is not necessarily a convex region. Hence, it can be further enlarged by the convex hull operation.G2 is defined as the

collection of all rate pairsR = (R1, R2)t satisfying

R =
q′∑

i=1

λiRi (19)

whereq′ ∈ N and

ARi≤ Ψ(P1i, P2i, αi, βi), (20)
q′∑

i=1

λiP1i≤ P1, (21)

q′∑

i=1

λiP2i≤ P2, (22)

q′∑

i=1

λi= 1, (23)

λi ≥ 0, (αi, βi)∈ [0, 1]2; ∀i ∈ {1, . . . , q′}. (24)

It is easy to show thatG2 is a closed, bounded and convex region. In fact,G2 is obtained by using the simple method of TD/FD.

To see this, let us divide the available frequency band intoq′ sub-bands whereλi represents the length of thei’th band and
∑q′

i=1 λi = 1. User 1 and 2 allocateP1i andP2i in thei’th sub-band, respectively. Therefore, all rate pairs inG0(P1i, P2i, αi, βi)

are achievable in thei’th sub-band for fixed(αi, βi) ∈ [0, 1]2. Hence, all rate pairs in
∑q′

i=1 λiG0(P1i, P2i, αi, βi) are achievable

provided that
∑q′

i=1 λiP1i ≤ P1 and
∑q′

i=1 λiP2i ≤ P2.

Clearly, the chain of inclusionsG0 ⊆ G1 ⊆ G2 ⊆ G ⊆ CHK ⊆ C always holds.

D. Concavification Versus Time-Sharing

In this subsection, we follow two objectives. First, we aim at providing some necessary conditions such thatG2 = G .

Second, we boundq andq′ which are parameters involved in the descriptions ofG andG2, respectively. However, we derive

the required conditions for the more general case where there areM users in the system. To this end, assume an achievable

scheme for anM -user channel with the power constraintP = [P1, P2, . . . , PM ] is given. The corresponding achievable region

can be represented as

D0(P,Θ) = {R|AR ≤ Ψ(P, Θ)} , (25)

whereA is a K ×M matrix andΘ ∈ [0, 1]M . D0 is a polyhedron in general, but for the purpose of this paper, it suffices to

assume that it is a polytope. SinceD0 is a convex region, the convex hull operation does not lead to a new enlarged region.

However, if the extreme points of the region are not a concave function ofP, it is possible to enlargeD0 by using two
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different methods which are explained next. The first method is based on using the time sharing parameter. Let us denote the

corresponding region asD which can be written as

D =

{
R|AR ≤

q∑

i=1

λiΨ(Pi,Θi),
q∑

i=1

λiPi ≤ P,

q∑

i=1

λi = 1, λi ≥ 0, Θi ∈ [0, 1]M ∀i
}

, (26)

whereq ∈ N.

In the second method, we make use of TD/FD to enlarge the achievable rate region. This results in an achievable region

D2 represented as

D2 =



R =

q′∑

i=1

λiRi|ARi ≤ Ψ(Pi, Θi),
q′∑

i=1

λiPi ≤ P,

q′∑

i=1

λi = 1, λi ≥ 0,Θi ∈ [0, 1]M ∀i


 , (27)

whereq′ ∈ N. We refer to this method as concavification. It can be readily shown thatD andD2 are closed and convex, and

D2 ⊆ D. We are interested in situations where the inverse inclusion holds.

The support function ofD0 is a function ofP, Θ, andc. Hence, we have

σD0(c,P,Θ) = max{ctR|AR ≤ Ψ(P, Θ)}. (28)

For fixedP andΘ, (28) is a linear program. Using strong duality of linear programming, we obtain

σD0(c,P, Θ) = min{ytΨ(P,Θ)|Aty = c,y ≥ 0}. (29)

In general,ŷ, the minimizer of (29), is a function ofP, Θ, andc. We sayD0 possessesthe unique minimizer propertyif

ŷ merely depends onc, for all c. In this case, we have

σD0(c,P,Θ) = ŷt(c)Ψ(P, Θ), (30)

whereAtŷ = c. This condition means that for anyc the extreme point ofD0 maximizing the objectivectR is an extreme

point obtained by intersecting a set of specific hyperplanes. A necessary condition forD0 to possess the unique minimizer

property is that each inequality in describingD0 is either redundant or active for allP andΘ.

Theorem 1:If D0 possesses the unique minimizer property, thenD = D2.

Proof: SinceD2 ⊆ D always holds, we need to showD ⊆ D2 which can be equivalently verified by showingσD ≤ σD2 .

The support function ofD can be written as

σD(c,P) = max
{
ctR|R ∈ D

}
. (31)

By fixing P, Pi’s, Θi’s, andλi’s, the above maximization becomes a linear program. Hence, relying on weak duality of linear

programming, we obtain

σD(c,P) ≤ min
Aty=c,y≥0

yt

q∑

i=1

λiΨ(Pi, Θi). (32)

Clearly, ŷ(c), the solution of (29), is a feasible point for (32) and we have

σD(c,P) ≤ ŷt(c)
q∑

i=1

λiΨ(Pi, Θi). (33)

Using (30), we obtain

σD(c,P) ≤
q∑

i=1

λiσD0(c,Pi, Θi). (34)
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Let us assumêRi is the maximizer of (28). In this case, we have

σD(c,P) ≤
q∑

i=1

λictR̂i. (35)

Hence, we have

σD(c,P) ≤ ct

q∑

i=1

λiR̂i. (36)

By definition,
∑q

i=1 λiR̂i is a point inD2. Therefore, we conclude

σD(c,P) ≤ σD2(c,P). (37)

This completes the proof.

Corollary 1 (Han [18]): If D0 is a polymatroid, thenD=D2.

Proof: It is easy to show thatD0 possesses the unique minimizer property. In fact, for givenc, ŷ can be obtained in a

greedy fashion independent ofP andΘ.

In what follows, we upper boundq andq′.

Theorem 2:The cardinality of the time sharing parameterq in (26) is less thanM + K + 1, whereM and K are the

dimensions ofP andΨ(P), respectively. Moreover, ifΨ(P) is a continuous function ofP, thenq ≤ M + K.

Proof: Let us defineE as

E =

{
q∑

i=1

λiΨ(Pi, Θi)|
q∑

i=1

λiPi ≤ P,

q∑

i=1

λi = 1, λi ≥ 0,Θi ∈ [0, 1]M ∀i
}

. (38)

In fact, E is the collection of all possible bounds forD. To proveq ≤ M + K + 1, we define another regionE1 as

E1 = {(P′,S′)|0 ≤ P′,S′ = Ψ(P′, Θ′), Θ′ ∈ [0, 1]M}. (39)

From the direct consequence of the Caratheodory’s theorem [19], the convex hull ofE1 denoted by convE1 can be obtained

by convex combinations of no more thanM + K + 1 points inE1. Moreover, ifΨ(P′, Θ′) is continuous, thenM + K points

are sufficient due to the extension of the Caratheodory’s theorem [19]. Now, we define the regionÊ as

Ê = {S′|(P′,S′) ∈ conv E1,P′ ≤ P}. (40)

Clearly, Ê ⊆ E. To show the other inclusion, let us consider a point inE, sayS =
∑q

i=1 λiΨ(Pi,Θi). Since(Pi,Ψ(Pi, Θi))

is a point inE1,
∑q

i=1 λi(Pi, Ψ(Pi, Θi)) belongs to convE1. Having
∑q

i=1 λiPi ≤ P, we conclude
∑q

i=1 λiΨ(Pi, Θ) ∈ Ê.

Hence,E ⊆ Ê. This completes the proof.

Corollary 2 (Etkin, Parakh, and Tse [20]):For the M -user Gaussian IC where users use Gaussian codebooks for data

transmission and treat the interference as noise, the cardinality of the time sharing parameter is less than2M .

Proof: In this case,D0 = {R|R ≤ Ψ(P)} where bothP and Ψ(P) have dimensionM and Ψ(P) is a continuous

function of P. Applying Theorem 2 yields the desired result.

In the following theorem, we obtain an upper bound onq′.

Theorem 3:To characterize boundary points ofD2, it suffices to setq′ ≤ M + 1.

Proof: Let us assumêR is a boundary point ofD2. Hence, there existsc such that

σD2(c,P) = max
R∈D2

ctR = ctR̂, (41)
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whereR̂ =
∑q′

i=1 λ̂iR̂i and the optimum is achieved for the set of parametersΘ̂i, λ̂i, andP̂i. The optimization problem in

(41) can be written as

σD2(c,P) =max
q′∑

i=1

λig(c,Pi) (42)

subject to:
q′∑

i=1

λi = 1,

q′∑

i=1

λiPi ≤ P,

0 ≤ λi, 0 ≤ Pi, ∀i ∈ {1, 2, . . . , q′},

whereg(c,P) is defined as

g(c,P) =max ctR (43)

subject to:AR ≤ Ψ(P, Θ), 0 ≤ Θ ≤ 1,

In fact, σD2(c,P) in (42) can be viewed as the result of the concavification ofg(c,P) [19]. Hence, using Theorem 2.16 in

[19], we conclude thatq′ ≤ M + 1.

Remarkable point about Theorem 3 is that the upper bound onq′ is independent of the number of inequalities involved in

the description of the achievable rate region.

Corollary 3: For theM -user Gaussian IC where users use Gaussian codebooks and treat the interference as noise, we have

D2 = D andq = q′ = M + 1.

E. Extremal Inequality

In [14], the following optimization problem is studied:

W = max
QX≤S

h(X + Z1)− µh(X + Z2), (44)

where Z1 and Z2 are n-dimensional Gaussian random vectors with the strictly positive definite covariance matricesQZ1

and QZ2 , respectively. The optimization is over all random vectorsX independent ofZ1 and Z2. X is also subject to the

covariance matrix constraintQX ≤ S, whereS is a positive definite matrix. In [14], it is shown that for allµ ≥ 1, this

optimization problem has a Gaussian optimal solution for all positive definite matricesQZ1 andQZ2 . However, for0 ≤ µ < 1

this optimization problem has a Gaussian optimal solution providedQZ1 ≤ QZ2 , i.e., QZ2 −QZ1 is a positive semi-definite

matrix. It is worth noting that forµ = 1 this problem whenQZ1 ≤ QZ2 is studied under the name of the worse additive noise

[21], [22].

In this paper, we consider a special case of (44) whereZ1 andZ2 have the covariance matricesN1I andN2I, respectively,

and the trace constraint is considered, i.e.,

W = max
tr{QX}≤nP

h(X + Z1)− µh(X + Z2). (45)

In the following lemma, we provide the optimal solution for the above optimization problem whenN1 ≤ N2.

Lemma 1: If N1 ≤ N2, the optimal solution of (45) is iid Gaussian for all0 ≤ µ and we have

1) For 0 ≤ µ ≤ N2+P
N1+P , the optimum covariance matrix isPI and the optimum solution is

W =
n

2
log [(2πe)(P + N1)]− µn

2
log [(2πe)(P + N2)] . (46)
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2) For N2+P
N1+P < µ ≤ N2

N1
, the optimum covariance matrix isN2−µN1

µ−1 I and the optimum solution is

W =
n

2
log

[
(2πe)

N2 −N1

µ− 1

]
− µn

2
log

[
µ(2πe)(N2 −N1)

µ− 1

]
. (47)

3) For N2
N1

< µ, the optimum covariance matrix is0 and the optimum solution is

W =
n

2
log(2πeN1)− µn

2
log(2πeN2). (48)

Proof: From the general result for (44), we know that the optimum input distribution is Gaussian. Hence, we need to

solve the following maximization problem:

W =max
1
2

log ((2πe)n|QX + N1I|)− µ

2
log ((2πe)n|QX + N2I|) (49)

subject to:0 ≤ QX, tr{QX} ≤ nP.

Since QX is a positive semi-definite matrix, it can be decomposed asQX = UΛU t, whereΛ is a diagonal matrix with

nonnegative entries andU is a unitary matrix, i.e.,UU t = I. SubstitutingQX = UΛU t in (49) and using the identities

tr{AB} = tr{BA} and |AB + I| = |BA + I|, we obtain

W =max
1
2

log ((2πe)n|Λ + N1I|)− µ

2
log ((2πe)n|Λ + N2I|) (50)

subject to:0 ≤ Λ, tr{Λ} ≤ nP.

This optimization problem can be simplified as

W =max
n

2

n∑

i=1

[log(2πe)(λi + N1)− µ log(2πe)(λi + N2)] (51)

subject to:0 ≤ λi ∀i,
n∑

i=1

λi ≤ nP.

By introducing Lagrange multipliersψ andΦ = {φ1, φ2, . . . , φn}, we obtain

L(Λ, ψ, Φ) = max
n

2

n∑

i=1

[log(2πe)(λi + N1)− µ log(2πe)(λi + N2)] + ψ

(
nP −

n∑

i=1

λi

)
+

n∑

i=1

φiλi. (52)

The first order KKT necessary conditions for the optimum solution of (52) can be written as

1
λi + N1

− µ

λi + N2
− ψ + φi =0, ∀i ∈ {1, 2, . . . , n}, (53)

ψ

(
nP −

n∑

i=1

λi

)
=0, (54)

φiλi =0, ∀i ∈ {1, 2, . . . , n}. (55)

It is easy to show that whenN1 ≤ N2, λ = λ1 = . . . = λn and the only solution forλ is

λ =





P, if 0 ≤ µ ≤ N2+P
N1+P

N2−µN1
µ−1 , if N2+P

N1+P < µ ≤ N2
N1

0, if N2
N1

< µ

(56)

Substitutingλ into the objective function gives the desired result.

In Figure 2, the optimum variance as a function ofµ is plotted. This figure shows that for any value ofµ ≤ P+N2
P+N1

, we

need to use the maximum power to optimize the objective function, whereas forµ > P+N2
P+N1

, we use less power than what is

permissible.
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N2−µN1

µ−1

P+N2

P+N1

N2

N1

1

P

Variance

µ

Fig. 2. Optimum variance versusµ.

Lemma 2: If N1 > N2, the optimal solution of (45) is iid Gaussian for all1 ≤ µ. In this case, the optimum variance is0

and the optimumW is

W =
n

2
log(2πeN1)− µn

2
log(2πeN2). (57)

Proof: The proof is similar to that of Lemma 1 and we omit it here.

Corollary 4: For µ = 1, the optimal solution of (45) is iid Gaussian and the optimumW is

W =





n
2 log

(
P+N1
P+N2

)
, if N1 ≤ N2

n
2 log

(
N1
N2

)
, if N1 > N2.

(58)

We frequently apply the following optimization problem in the rest of the paper:

fh(P,N1, N2, a, µ) = max
tr{QX}≤nP

h(X + Z1)− µh(
√

aX + Z2), (59)

whereN1 ≤ N2/a. Using the identityh(AX) = log(|A|) + h(X), (59) can be written as

fh(P, N1, N2, a, µ) =
n

2
log a + max

tr{QX}≤nP
h(X + Z1)− µh(X +

Z2√
a
). (60)

Now, Lemma 1 can be applied to obtain

fh(P, N1, N2, a, µ) =





1
2 log [(2πe)(P + N1)]− µ

2 log [(2πe)(aP + N2)] if 0 ≤ µ ≤ P+N2/a
P+N1

1
2 log

[
(2πe)N2/a−N1

µ−1

]
− µ

2 log
[

aµ(2πe)(N2/a−N1)
µ−1

]
if P+N2/a

P+N1
< µ ≤ N2

aN1

1
2 log(2πeN1)− µ

2 log(2πeN2) if N2
aN1

< µ

(61)

III. A DMISSIBLE CHANNELS

In this section, we aim at building ICs whose capacity regions contain the capacity region of the two-user Gaussian IC, i.e.,

C . Since we ultimately use these to outer boundC , these ICs need to have a tractable expression (or a tractable outer bound)

for their capacity regions.

Let us consider an IC with the same input letters as that ofC and the output letters̃y1 andỹ2 for Users 1 and 2, respectively.

The capacity region of this channel, sayC ′, containsC if

I(xn
1 ; yn

1 ) ≤I(xn
1 ; ỹn

1 ), (62)

I(xn
2 ; yn

2 ) ≤I(xn
2 ; ỹn

2 ), (63)
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ŷ1

ŷ2

ỹ1

ỹ2

f1

f2

ω(ỹ1, ỹ2|x1, x2)

x1

x2

Fig. 3. An admissible channel.f1 andf2 are deterministic functions.

for all p(xn
1 )p(xn

2 ) and for alln ∈ N.

One way to satisfy (62) and (63) is to provide some extra information to either one or to both receivers. This technique

is known asGenie aided outer bounding. In [12], Kramer has used such a genie to provide some extra information to both

receivers such that they can decode both users’ messages. Since the capacity region of this new interference channel is equivalent

to that of theCompound Multiple Access Channelwhose capacity region is known, reference [12] obtains an outer bound

on the capacity region. To obtain a tighter outer bound, reference [12] further uses the fact that if a genie provides the exact

information about the interfering signal to one of the receivers, then the new channel becomes the one-sided Gaussian IC.

Although the capacity region of the one-sided Gaussian IC is unknown for all ranges of parameters, there exists an outer bound

for it due to Sato and Costa [23], [11] that can be applied to the original channel. In [13], Etkinet al use a different genie that

provides some extra information about the intended signal. Even though at first glance their proposed method appears to be

far from achieving a tight bound, remarkably they show that the corresponding bound is tighter than the one due to Kramer

for certain ranges of parameters.

Next, we introduce the notion of admissible channels to satisfy (62) and (63).

Definition 3 (Admissible Channel):An IC C ′ with input letterxi and output letter̃yi for User i ∈ {1, 2} is an admissible

channel if there exist two deterministic functionsŷn
1 = f1(ỹn

1 ) and ŷn
2 = f2(ỹn

2 ) such that

I(xn
1 ; yn

1 ) ≤I(xn
1 ; ŷn

1 ), (64)

I(xn
2 ; yn

2 ) ≤I(xn
2 ; ŷn

2 ) (65)

hold for all p(xn
1 )p(xn

2 ) and for alln ∈ N. E denotes the collection of all admissible channels (see Figure 3).

Remark 2:Genie aided channels are among admissible channels. To see this, let us assume a genie providess1 ands2 as

side information for User 1 and 2, respectively. In this case,ỹi = (yi, si) for i ∈ {1, 2}. By choosingfi(yi, si) = yi, we

observe that̂yi = yi, and hence, (64) and (65) trivially hold.

To obtain the tightest outer bound, we need to find the intersection of the capacity regions of all admissible channels.

Nonetheless, it may happen that finding the capacity region of an admissible channel is as hard as that of the original one (in

fact, based on the definition, the channel itself is one of its admissible channels). Hence, we need to find classes of admissible

channels, sayF , which possess two important properties. First, their capacity regions are close toC . Second, either their

exact capacity regions are computable or there exist good outer bounds for them. SinceF ⊆ E , we have

C ⊆
⋂

F

C ′. (66)
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Recall that there is a one to one correspondence between a closed convex set and its support function. SinceC is closed and

convex, there is a one to one correspondence betweenC andσC . In fact, boundary points ofC correspond to the solutions

of the following optimization problem

σC (c1, c2) = max
(R1,R2)∈C

c1R1 + c2R2. (67)

Since we are interested in the boundary points excluding theR1 andR2 axes, it suffices to consider0 ≤ c1 and0 ≤ c2 where

c1 + c2 = 1.

SinceC ⊆ C ′, we have

σC (c1, c2) ≤ σC ′(c1, c2). (68)

Taking the minimum of the right hand side, we obtain

σC (c1, c2) ≤ min
C ′∈F

σC ′(c1, c2), (69)

which can be written as

σC (c1, c2) ≤ min
C ′∈F

max
(R1,R2)∈C ′

c1R1 + c2R2. (70)

For convenience, we use the following two optimization problems

σC (µ, 1) = max
(R1,R2)∈C

µR1 + R2, (71)

σC (1, µ) = max
(R1,R2)∈C

R1 + µR2, (72)

where1 ≤ µ. It is easy to show that the solutions of (71) and (72) correspond to the boundary points of the capacity region.

In the rest of this section, we introduce classes of admissible channels and obtain upper bounds onσC ′(µ, 1) andσC ′(1, µ).

A. Classes of Admissible Channels

1) Class A1:This class is designed to obtain an upper bound onσC (µ, 1). Therefore, we need to find a tight upper bound

on σC ′(µ, 1). A member of this class is a channel in which User 1 has one transmit and one receive antenna whereas User 2

has one transmit antenna and two receive antennas (see Figure 4). The channel model can be written as

ỹ1 = x1 +
√

ax2 + z1,

ỹ21 = x2 +
√

b′x1 + z21,

ỹ22 = x2 + z22,

(73)

where ỹ1 is the signal at the first receiver,̃y21 and ỹ22 are the signals at the second receiver,z1 is additive Gaussian noise

with unit variance,z21 and z22 are additive Gaussian noise with variancesN21 and N22, respectively. Transmitters 1 and 2

are subject to the power constraints ofP1 andP2, respectively.

To investigate admissibility conditions in (64) and (65), we introduce two deterministic functionsf1 andf2 as follows (see

Figure 4)

f1(ỹn
1 )= ỹn

1 , (74)

f2(ỹn
22, ỹ

n
21)= (1−√g2)ỹn

22 +
√

g2ỹ
n
21, (75)
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Admissible Channel f2(ỹ22, ỹ21) = (1 −
√

g2)ỹ22 +
√

g2ỹ21

ŷ1

ŷ2

f1(ỹ1) = ỹ1

ỹ1

x2

z21

z22

√

a

x1

z1

√
g2ỹ21

ỹ22
1 −

√
g2

√

b′

Fig. 4. Class A1 admissible channels.

where0 ≤ g2. For g2 = 0, the channel can be converted to the one-sided Gaussian IC by lettingN21 → ∞ and N22 = 1.

Hence, Class A1 contains the one-sided Gaussian IC obtained by removing the link between Transmitter 1 and Receiver 2.

Using f1 andf2, we obtain

ŷn
1 =xn

1 +
√

axn
2 + zn

1 , (76)

ŷn
2 =

√
b′g2x

n
1 + xn

2 + (1−√g2)zn
22 +

√
g2z

n
21. (77)

Hence, this channel is admissible if the corresponding parameters satisfy

b′g2 = b,

(1−√g2)2N22 + g2N21 = 1.
(78)

We further add the following constraints to the conditions of the channels in Class A1:

b′ ≤ N21,

aN22 ≤ 1.
(79)

Although these additional conditions reduce the number of admissible channels within the class, they are needed to get a

closed form formula for an upper bound onσC ′(µ, 1). In the following lemma, we obtain the required upper bound.

Lemma 3:For the channels modeled by (73) and satisfying (79), we have

σC ′(µ, 1) ≤min
µ1

2
log [2πe(P1 + aP2 + 1)]− µ2

2
log(2πe) +

1
2

log
(

N21

N22
+

b′P1

N22
+

P2

P2 + N22

)
(80)

+ µ2fh

(
P1, 1, N21, b

′,
1
µ2

)
+ fh(P2, N22, 1, a, µ1)

subject to:µ1 + µ2 = µ, µ1, µ2 ≥ 0.

Proof: Let us assumeR1 andR2 are achievable rates for User 1 and 2, respectively. Furthermore, we splitµ into µ1 ≥ 0
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andµ2 ≥ 0 such thatµ = µ1 + µ2. Using Fano’s inequality, we obtain

n(µR1 + R2) ≤µI(xn
1 ; ỹn

1 ) + I(xn
2 ; ỹn

22, ỹ
n
21) + nεn

=µ1I(xn
1 ; ỹn

1 ) + µ2I(xn
1 ; ỹn

1 ) + I(xn
2 ; ỹn

22, ỹ
n
21) + nεn

(a)

≤µ1I(xn
1 ; ỹn

1 ) + µ2I(xn
1 ; ỹn

1 |xn
2 ) + I(xn

2 ; ỹn
22, ỹ

n
21) + nεn

=µ1I(xn
1 ; ỹn

1 ) + µ2I(xn
1 ; ỹn

1 |xn
2 ) + I(xn

2 ; ỹn
21|ỹn

22) + I(xn
2 ; ỹn

22) + nεn

=µ1h(ỹn
1 )− µ1h(ỹn

1 |xn
1 ) + µ2h(ỹn

1 |xn
2 )− µ2h(ỹn

1 |xn
1 , xn

2 )

+h(ỹn
21|ỹn

22)− h(ỹn
21|xn

2 , ỹn
22) + h(ỹn

22)− h(ỹn
22|xn

2 ) + nεn

=
[
µ1h(ỹn

1 )− µ2h(ỹn
1 |xn

1 , xn
2 )

]
+

[
µ2h(ỹn

1 |xn
2 )− h(ỹn

21|xn
2 , ỹn

22)
]

+
[
h(ỹn

21|ỹn
22)− h(ỹn

22|xn
2 )

]
+

[
h(ỹn

22)− µ1h(ỹn
1 |xn

1 )
]
+ nεn, (81)

where (a) follows from the fact thatxn
1 andxn

2 are independent. Now, we separately upper bound the terms within each bracket

in (81).

To maximize the terms within the first bracket, we use the fact that Gaussian distribution maximizes the differential entropy

subject to a constraint on the covariance matrix. Hence, we have

µ1h(ỹn
1 )− µ2h(ỹn

1 |xn
1 , xn

2 )= µ1h(xn
1 +

√
axn

2 + zn
1 )− µ2h(zn

1 )

≤ µ1n

2
log [2πe(P1 + aP2 + 1)]− µ2n

2
log(2πe). (82)

Sinceb′ ≤ N21, we can make use of Lemma 1 to upper bound the second bracket. In this case, we have

µ2h(ỹn
1 |xn

2 )− h(ỹn
21|xn

2 , ỹn
22)= µ2

(
h(xn

1 + zn
1 )− 1

µ2
h(
√

b′xn
1 + zn

21)
)

≤ µ2nfh

(
P1, 1, N21, b

′,
1
µ2

)
, (83)

wherefh is defined in (61).

We upper bound the terms within the third bracket as follows [13]:

h(ỹn
21|ỹn

22)− h(ỹn
22|xn

2 )
(a)

≤
n∑

i=1

h(ỹ21[i]|ỹ22[i])− h(zn
22)

(b)

≤
n∑

i=1

1
2

log
[
2πe

(
N21 + b′P1[i] +

P2[i]N22

P2[i] + N22

)]
− n

2
log (2πeN22)

(c)

≤ n

2
log

[
2πe

(
N21 +

1
n

n∑

i=1

b′P1[i] +
1
n

∑n
i=1 P2[i]N22

1
n

∑n
i=1 P2[i] + N22

)]
− n

2
log (2πeN22)

≤n

2
log

[
2πe

(
N21 + b′P1 +

P2N22

P2 + N22

)]
− n

2
log (2πeN22)

≤n

2
log

(
N21

N22
+

b′P1

N22
+

P2

P2 + N22

)
, (84)

where (a) follows from the chain rule and the fact that removing independent conditions does not decrease differential entropy,

(b) follows from the fact that Gaussian distribution maximizes the conditional entropy for a given covariance matrix, and (c)

follows form Jenson’s inequality.
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Admissible Channel

f1(ỹ11, ỹ12) = (1 −
√

g1)ỹ11 +
√

g1ỹ12

√

a′

x2

x1

ỹ2

ỹ12

ỹ11

f2(ỹ2) = ỹ2

ŷ1

ŷ2

√
g1

1 −
√

g1

z11

z12

z2

√

b

Fig. 5. Class A2 admissible channels.

For the last bracket, we again make use of the definition offh. In fact, sinceaN22 ≤ 1, we have

h(ỹn
22)− µ1h(ỹn

1 |xn
1 )= h(xn

2 + zn
22)− µ1h(

√
axn

2 + zn
1 )

≤ nfh(P2, N22, 1, a, µ1). (85)

Adding all inequalities, we obtain

µR1 + R2 ≤µ1

2
log [2πe(P1 + aP2 + 1)]− µ2

2
log(2πe) +

1
2

log
(

N21

N22
+

b′P1

N22
+

P2

P2 + N22

)

+µ2fh

(
P1, 1, N21, b

′,
1
µ2

)
+ fh(P2, N22, 1, a, µ1), (86)

where the fact thatεn → 0 asn →∞ is used to eliminateεn form the right hand side of the inequality. Now, by taking the

minimum of the right hand side of (86) over allµ1 andµ2, we obtain the desired result. This completes the proof.

2) Class A2:This class is the complement of Class A1 in the sense that we use it to upper boundσC (1, µ). A member of

this class is a channel in which User 1 is equipped with one transmit and two receive antennas, whereas User 2 is equipped

with one antenna at both transmitter and receiver sides (see Figure 5). The channel model can be written as

ỹ11 = x1 + z11,

ỹ12 = x1 +
√

a′x2 + z12,

ỹ2 = x2 +
√

bx1 + z2,

(87)

where ỹ11 and ỹ12 are the signals at the first receiver,ỹ2 is the signal at the second receiver,z2 is additive Gaussian noise

with unit variance,z11 andz12 are additive Gaussian noise with variancesN11 andN12, respectively. Transmitter 1 and 2 are

subject to the power constraintsP1 andP2, respectively.

For this class, we consider two linear functionsf1 andf2 as follows (see Figure 5):

f1(ỹn
11, ỹ

n
12)= (1−√g1)ỹn

11 +
√

g1ỹ
n
12, (88)

f2(ỹn
2 )= ỹn

2 . (89)

Similar to Class A1, wheng1 = 0, the admissible channels in Class A2 become the one-sided Gaussian IC by lettingN12 →∞
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andN11 = 1. Therefore, we have

ŷn
1 =xn

1 +
√

a′g1x
n
2 + (1−√g1)zn

11 +
√

g1z
n
12, (90)

ŷn
2 =

√
bxn

1 + xn
2 + zn

2 . (91)

We conclude that the channel modeled by (87) is admissible if the corresponding parameters satisfy

a′g1 = a,

(1−√g1)2N11 + g1N12 = 1.
(92)

Similar to Class A1, we further add the following constraints to the conditions of Class A2 channels:

a′ ≤ N12,

bN11 ≤ 1.
(93)

In the following lemma, we obtain the required upper bound.

Lemma 4:For the channels modeled by (87) and satisfying (93), we have

σC ′(1, µ) ≤min
µ1

2
log [2πe(bP1 + P2 + 1)]− µ2

2
log(2πe) +

1
2

log
(

N12

N11
+

a′P2

N11
+

P1

P1 + N11

)
(94)

+ µ2fh

(
P2, 1, N12, a

′,
1
µ2

)
+ fh(P1, N11, 1, b, µ1)

subject to:µ1 + µ2 = µ, µ1, µ2 ≥ 0.

Proof: The proof is similar to that of Lemma 3 and we omit it here.

3) Class B: A member of this class is a channel with one transmit antenna and two receive antennas for each user modeled

by (see Figure 6)

ỹ11 = x1 + z11,

ỹ12 = x1 +
√

a′x2 + z12,

ỹ21 = x2 +
√

b′x1 + z21,

ỹ22 = x2 + z22,

(95)

where ỹ11 and ỹ12 are the signals at the first receiver,ỹ21 and ỹ22 are the signals at the second receiver, andzij is additive

Gaussian noise with varianceNij for i, j ∈ {1, 2}. Transmitter 1 and 2 are subject to the power constraintsP1 and P2,

respectively. In fact, this channel is designed to upper bound bothσC (µ, 1) andσC (1, µ).

Next, we investigate admissibility of this channel and the conditions that must be imposed on the underlying parameters.

Let us consider two linear deterministic functionsf1 andf2 with parameters0 ≤ g1 and0 ≤ g2, respectively, as follows (see

Figure 6)

f1(ỹn
11, ỹ

n
12)= (1−√g1)ỹn

11 +
√

g1ỹ
n
12, (96)

f2(ỹn
22, ỹ

n
21)= (1−√g2)ỹn

22 +
√

g2ỹ
n
21. (97)

Therefore, we have

ŷn
1 =xn

1 +
√

a′g1x
n
2 + (1−√g1)zn

11 +
√

g1z
n
12, (98)

ŷn
2 =

√
b′g2x

n
1 + xn

2 + (1−√g2)zn
22 +

√
g2z

n
21. (99)
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Admissible Channel

ỹ12

x2

x1

z11

z12

z21

z22

ỹ22

ỹ21

ỹ11

√
g1

1 −
√

g1

ŷ1

ŷ2

1 −
√

g2

√
g2

√

b′

√

a′

f1(ỹ11, ỹ12) = (1 −
√

g1)ỹ11 +
√

g1ỹ12

f2(ỹ22, ỹ21) = (1 −
√

g2)ỹ22 +
√

g2ỹ21

Fig. 6. Class B admissible channels.

To satisfy (64) and (65), it suffices to have

a′g1 = a,

b′g2 = b,

(1−√g1)2N11 + g1N12 = 1,

(1−√g2)2N22 + g2N21 = 1.

(100)

Hence, a channel modeled by (95) is admissible if there exist two nonnegative numbersg1 andg2 such that the equalities in

(100) are satisfied. We further add the following two constraints to the equality conditions in (100):

b′N11 ≤ N21,

a′N22 ≤ N12.
(101)

Although adding more constraints reduces the number of the admissible channels, it enables us to compute an outer bound on

σC ′(µ, 1) andσC ′(1, µ).

Lemma 5:For the channels modeled by (95) and satisfying (101), we have

σC ′(µ, 1) ≤µγ

(
P1

N11
+

P1

a′P2 + N12

)
+ γ

(
P2

N22
+

P2

b′P1 + N21

)

+fh(P2, N22, N12, a
′, µ) +

µ

2
log((2πe)(a′P2 + N12))− 1

2
log((2πe)(P2 + N22)), (102)

σC ′(1, µ) ≤γ

(
P1

N11
+

P1

a′P2 + N12

)
+ µγ

(
P2

N22
+

P2

b′P1 + N21

)

+fh(P1, N11, N21, b
′, µ) +

µ

2
log((2πe)(b′P1 + N21))− 1

2
log((2πe)(P1 + N11)). (103)

Proof: We only upper boundσC ′(µ, 1) and an upper bound onσC ′(1, µ) can be similarly obtained. Let us assumeR1
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andR2 are achievable rates for User 1 and User 2, respectively. Using Fano’s inequality, we obtain

n(µR1 + R2) ≤µI(xn
1 ; ỹn

11, ỹ
n
12) + I(xn

2 ; ỹn
22, ỹ

n
21) + nεn

=µI(xn
1 ; ỹn

12|ỹn
11) + µI(xn

1 ; ỹn
11)

+I(xn
2 ; ỹn

21|ỹn
22, ) + I(xn

2 ; ỹn
22) + nεn

=µh(ỹn
12|ỹn

11)− µh(ỹn
12|xn

1 , ỹn
11) + µh(ỹn

11)− µh(ỹn
11|xn

1 )

+h(ỹn
21|ỹn

22)− h(ỹn
21|xn

2 , ỹn
22) + h(ỹn

22)− h(ỹn
22|xn

2 ) + nεn

=
[
µh(ỹn

12|ỹn
11)− µh(ỹn

11|xn
1 )

]
+

[
h(ỹn

21|ỹn
22)− h(ỹn

22|xn
2 )

]

+
[
µh(ỹn

11)− h(ỹn
21|xn

2 , ỹn
22)

]
+

[
h(ỹn

22)− µh(ỹn
12|xn

1 , ỹn
11)

]
+ nεn. (104)

Next, we upper bound the terms within each bracket in (104) separately. For the first bracket, we have

µh(ỹn
12|ỹn

11)− µh(ỹn
11|xn

1 )
(a)

≤µ

n∑

i=1

h(ỹ12[i]|ỹ11[i])− µn

2
log (2πeN11)

(b)

≤µ

n∑

i=1

1
2

log
[
2πe

(
N12 + a′P2[i] +

P1[i]N11

P1[i] + N11

)]
− µn

2
log (2πeN11)

(c)

≤ µn

2
log

[
2πe

(
N12 +

1
n

n∑

i=1

a′P2[i] +
1
n

∑n
i=1 P1[i]N11

1
n

∑n
i=1 P1[i] + N11

)]
− µn

2
log (2πeN11)

≤µn

2
log

[
2πe

(
N12 + a′P2 +

P1N11

P1 + N11

)]
− µn

2
log (2πeN11)

=
µn

2
log

(
N12

N11
+

a′P2

N11
+

P1

P1 + N11

)
, (105)

where (a) follows from the chain rule and the fact that removing independent conditions increases differential entropy, (b)

follows from the fact that Gaussian distribution optimizes conditional entropy for a given covariance matrix, and (c) follows

form Jenson’s inequality.

Similarly, the terms within the second bracket can be upper bounded as

h(ỹn
21|ỹn

22)− h(ỹn
22|xn

2 ) ≤ n

2
log

(
N21

N22
+

b′P1

N22
+

P2

P2 + N22

)
. (106)

Using Lemma 1 and the fact thatN11 ≤ N21/b′, the terms within the third bracket can be upper bounded as

µh(ỹn
11)− h(ỹn

21|xn
2 , ỹn

22)= µ

(
h(xn

1 + zn
11)−

1
µ

h(
√

b′xn
1 + zn

21)
)

≤ µnfh

(
P1, N11, N21, b

′,
1
µ

)
. (107)

Since1 ≤ µ, from (61) we obtain

µh(ỹn
11)− h(ỹn

21|xn
2 , ỹn

22) ≤
µn

2
log((2πe)(P1 + N11))− n

2
log((2πe)(b′P1 + N21)). (108)

For the last bracket, again we use Lemma 1 to obtain

h(ỹn
22)− µh(ỹn

12|xn
1 , ỹn

11)= h(xn
2 + zn

22)− µh(
√

a′xn
2 + zn

12)

≤ nfh(P2, N22, N12, a
′, µ). (109)
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Adding all inequalities, we have

µR1 + R2 ≤µ

2
log

(
N12

N11
+

a′P2

N11
+

P1

P1 + N11

)
+

1
2

log
(

N21

N22
+

b′P1

N22
+

P2

P2 + N22

)

+
µ

2
log((2πe)(P1 + N11))− 1

2
log((2πe)(b′P1 + N21)) + fh(P2, N22, N12, a

′, µ), (110)

where the fact thatεn → 0 asn → ∞ is used to eliminateεn from the right hand side of the inequality. By rearranging the

terms, we obtain

µR1 + R2 ≤µγ

(
P1

N11
+

P1

a′P2 + N12

)
+ γ

(
P2

N22
+

P2

b′P1 + N21

)

+fh(P2, N22, N12, a
′, µ) +

µ

2
log((2πe)(a′P2 + N12))− 1

2
log((2πe)(P2 + N22)).

This completes the proof.

A unique feature of the channels within Class B is that for1 ≤ µ ≤ P2+N12/a′

P2+N22
and1 ≤ µ ≤ P1+N21/b′

P1+N11
, the upper bounds

in (102) and (103) become, respectively,

µR1 + R2 ≤µγ

(
P1

N11
+

P1

a′P2 + N12

)
+ γ

(
P2

N22
+

P2

b′P1 + N21

)
(111)

and

R1 + µR2 ≤γ

(
P1

N11
+

P1

a′P2 + N12

)
+ µγ

(
P2

N22
+

P2

b′P1 + N21

)
. (112)

On the other hand, if the receivers treat the interference as noise, it can be shown that

R1 = γ

(
P1

N11
+

P1

a′P2 + N12

)
(113)

and

R2 = γ

(
P2

N22
+

P2

b′P1 + N21

)
(114)

are achievable. Comparing upper bounds and achievable rates, we conclude that the upper bounds are indeed tight. In fact,

this property is first observed by Etkinet al in [13]. We summarize this result in the following theorem:

Theorem 4:The sum capacity in Class B is attained when transmitters use Gaussian codebooks and receivers treat the

interference as noise. In this case, the sum capacity is

C ′
sum =γ

(
P1

N11
+

P1

a′P2 + N12

)
+ γ

(
P2

N22
+

P2

b′P1 + N21

)
. (115)

Proof: By substitutingµ = 1 in (111), we obtain the desired result.

4) Class C: Class C is designed to upper boundσC (µ, 1) for the mixed Gaussian IC where1 ≤ b. Class C is similar to

Class A1 (see Figure 4), however we impose different constraints on the parameters of the channels within Class C. These

constraints assist us in providing upper bounds by using the fact that at one of the receivers both signals are decodable.

For channels in Class C, we use the same model that is given in (73). Therefore, similar to channels in Class A1, this

channel is admissible if the corresponding parameters satisfy

b′g2 = b,

(1−√g2)2N22 + g2N21 = 1.
(116)
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Next, we change the constraints in (79) as

b′ ≥ N21,

aN22 ≤ 1.
(117)

Through this change of constraints, the second receiver after decoding its own signal will have a less noisy version of the

first user’s signal, and consequently, it is able to decode the signal of the first user as well as its own signal. Relying on this

observation, we have the following lemma.

Lemma 6:For a channel in Class C, we have

σC ′(µ, 1) ≤µ− 1
2

log (2πe(P1 + aP2 + 1)) +
1
2

log
(

2πe

(
P2N22

P2 + N22
+ b′P1 + N21

))

− 1
2

log(2πeN21)− 1
2

log(2πeN22) + fh(P2, N22, 1, a, µ− 1). (118)

Proof: Since the second user is able to decode both users’ messages, we have

R1≤ 1
n

I(xn
1 ; ỹn

1 ), (119)

R1≤ 1
n

I(xn
1 ; ỹn

21, ỹ
n
22|xn

2 ), (120)

R2≤ 1
n

I(xn
2 ; ỹn

21, ỹ
n
22|xn

1 ), (121)

R1 + R2≤ 1
n

I(xn
1 , xn

2 ; ỹn
21, ỹ

n
22). (122)

From aN22 ≤ 1, we haveI(xn
1 ; ỹn

1 ) ≤ I(xn
1 ; ỹn

21|xn
2 ) = I(xn

1 ; ỹn
21, ỹ

n
22|xn

2 ). Hence, (120) is redundant. It can be shown that

µR1 + R2 ≤ µ− 1
n

I(xn
1 ; ỹn

1 ) +
1
n

I(xn
1 , xn

2 ; ỹn
21, ỹ

n
22). (123)

Hence, we have

µR1 + R2≤ µ− 1
n

h(ỹn
1 )− µ− 1

n
h(ỹn

1 |xn
1 ) +

1
n

h(ỹn
21, ỹ

n
22)−

1
n

h(ỹn
21, ỹ

n
22|xn

1 , xn
2 )

=
µ− 1

n
h(ỹn

1 ) +
1
n

h(ỹn
21|ỹn

22)−
1
n

h(ỹn
21, ỹ

n
22|xn

1 , xn
2 )

+
[

1
n

h(ỹn
22)−

µ− 1
n

h(ỹn
1 |xn

1 )
]

(124)

Next, we bound the different terms in (124). For the first term, we have

µ− 1
n

h(ỹn
1 ) ≤ µ− 1

2
log (2πe(P1 + aP2 + 1)) . (125)

The second term can be bounded as

1
n

h(ỹn
21|ỹn

22) ≤
1
2

log
(

2πe

(
P2N22

P2 + N22
+ b′P1 + N21

))
. (126)

The third term can be bounded as

1
n

h(ỹn
21, ỹ

n
22|xn

1 , xn
2 ) =

1
2

log(2πeN21) +
1
2

log(2πeN22). (127)

The last terms can be bounded as

1
n

h(ỹn
22)−

µ− 1
n

h(ỹn
1 |xn

1 )=
1
n

h(xn
2 + zn

22)−
µ− 1

n
h(
√

axn
2 + z1) (128)

≤ fh(P2, N22, 1, a, µ− 1). (129)

Adding all inequalities, we obtain the desired result.
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IV. W EAK GAUSSIAN INTERFERENCECHANNEL

In this section, we focus on the weak Gaussian IC. We first obtain the sum capacity of this channel for a certain range of

parameters. Then, we obtain an outer bound on the capacity region which is tighter than the previously known outer bounds.

Finally, we show that time-sharing and concavification result in the same achievable region for Gaussian codebooks.

A. Sum Capacity

In this subsection, we use the Class B channels to obtain the sum capacity of the weak IC for a certain range of parameters.

To this end, let us consider the following minimization problem:

W =min γ

(
P1

N11
+

P1

a′P2 + N12

)
+ γ

(
P2

N22
+

P2

b′P1 + N21

)
(130)

subject to:

a′g1 = a

b′g2 = b

b′N11 ≤ N21

a′N22 ≤ N12

(1−√g1)2N11 + g1N12 = 1

(1−√g2)2N22 + g2N21 = 1

0 ≤ [a′, b′, g1, g2, N11, N12, N22, N21].

The objective function in (130) is the sum capacity of Class B channels obtained in Theorem 4. The constraints are the

combination of (100) and (101) where applied to confirm the admissibility of the channel and to validate the sum capacity

result. Since every channel in the class is admissible, we haveCsum ≤ W . SubstitutingS1 = g1N12 and S2 = g2N21, we

have

W =min γ

(
(1−√g1)2P1

1− S1
+

g1P1

aP2 + S1

)
+ γ

(
(1−√g2)2P2

1− S2
+

g2P2

bP1 + S2

)
(131)

subject to:

b(1− S1)
(1−√g1)2

≤ S2 < 1

a(1− S2)
(1−√g2)2

≤ S1 < 1

0 < [g1, g2].

By first minimizing with respect tog1 andg2, the optimization problem (131) can be decomposed as

W =minW1 + W2 (132)

subject to:0 < S1 < 1, 0 < S2 < 1.

whereW1 is defined as

W1 =min
g1

γ

(
(1−√g1)2P1

1− S1
+

g1P1

aP2 + S1

)
(133)

subject to:
b(1− S1)

S2
≤ (1−√g1)2, 0 < g1.
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Similarly, W2 is defined as

W2 =min
g2

γ

(
(1−√g2)2P2

1− S2
+

g2P2

bP1 + S2

)
(134)

subject to:
a(1− S2)

S1
≤ (1−√g2)2, 0 < g2.

The optimization problems (133) and (134) are easy to solve. In fact, we have

W1 =





γ
(

P1
1+aP2

)
if
√

b(1 + aP2) ≤
√

S2(1− S1)

γ

(
bP1
S2

+ (1−
√

b(1−S1)/S2)
2P1

aP2+S1

)
Otherwise

(135)

W2 =





γ
(

P2
1+bP1

)
if
√

a(1 + bP1) ≤
√

S1(1− S2)

γ

(
aP2
S1

+ (1−
√

a(1−S2)/S1)
2P2

bP1+S2

)
Otherwise

(136)

From (135) and (136), we observe that forS1 and S2 satisfying
√

b(1 + aP2) ≤
√

S2(1− S1) and
√

a(1 + bP1) ≤
√

S1(1− S2), the objective function becomes independent ofS1 andS2. In this case, we have

W = γ

(
P1

1 + aP2

)
+ γ

(
P2

1 + bP1

)
, (137)

which is achievable by treating interference as noise. In the following theorem, we prove that it is possible to find a certain

range of parameters such that there existS1 andS2 yielding (137).

Theorem 5:The sum capacity of the two-user Gaussian IC is

Csum = γ

(
P1

1 + aP2

)
+ γ

(
P2

1 + bP1

)
, (138)

for the range of parameters satisfying
√

bP1 +
√

aP2 ≤ 1−√a−
√

b√
ab

. (139)

Proof: Let us fix a andb, and defineD as

D =

{
(P1, P2)|P1 ≤

√
S1(1− S2)

b
√

a
− 1

b
, P2 ≤

√
S2(1− S1)

a
√

b
− 1

a
, 0 < S1 < 1, 0 < S2 < 1

}
. (140)

In fact, if D is feasible then there exist0 < S1 < 1 and 0 < S2 < 1 satisfying
√

b(1 + aP2) ≤
√

S2(1− S1) and
√

a(1 + bP1) ≤
√

S1(1− S2). Therefore, the sum capacity of the channel for all feasible points is attained due to (137).

We claim thatD = D′, whereD′ is defined as

D′ =

{
(P1, P2)|

√
bP1 +

√
aP2 ≤ 1−√a−

√
b√

ab

}
. (141)

To showD′ ⊆ D, we setS1 = 1− S2 in (140) to get
{

(P1, P2)|P1 ≤ S1

b
√

a
− 1

b
, P2 ≤ 1− S1

a
√

b
− 1

a
, 0 < S1 < 1

}
⊆ D. (142)

It is easy to show that the left hand side of the above equation is another representation of the regionD′. Hence, we have

D′ ⊆ D.

To showD ⊆ D′, it suffices to prove that for any(P1, P2) ∈ D,
√

bP1 +
√

aP2 ≤ 1−√a−
√

b√
ab

holds. To this end, we introduce

the following maximization problem:

J = max
(P1,P2)∈D

√
bP1 +

√
aP2, (143)
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a

Fig. 7. The shaded area is the region where treating interference as noise is optimal for obtaining the sum capacity of the symmetric Gaussian IC.

which can be written as

J = max
(S1,S2)∈(0,1)2

√
S1(1− S2) +

√
S2(1− S1)√

ab
− 1√

a
− 1√

b
. (144)

It is easy to show that the solution to the above optimization problem is

J =
1√
ab
− 1√

a
− 1√

b
. (145)

Hence, we deduce thatD ⊆ D′. This completes the proof.

Remark 3:The above sum capacity result for the weak Gaussian IC (see also [24]) has been established independently in

[25] and [26].

As an example, let us consider the symmetric Gaussian IC. In this case, the constraint in (139) becomes

P ≤ 1− 2
√

a

2a
√

a
. (146)

In Figure 7, the admissible region forP , where treating interference as noise is optimal, versus
√

a is plotted. For a fixedP

and all0 ≤ a ≤ 1, the upper bound in (130) and the lower bound when receivers treat the interference as noise are plotted in

Figure 8. We observe that up to a certain value ofa, the upper bound coincides with the lower bound.

B. New Outer Bound

For the weak Gaussian IC, there are two outer bounds that are tighter than the other known bounds. The first one, due to

Kramer [12], is obtained by relying on the fact that the capacity region of the Gaussian IC is inside the capacity regions of

the two underlying one-sided Gaussian ICs. Even though the capacity region of the one-sided Gaussian IC is unknown, there

exists an outer bound for this channel that can be used instead. Kramers’ outer bound is the intersection of two regionsE1
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Fig. 8. The upper bound obtained by solving (130). The lower bound is obtained by treating the interference as noise.

andE2. E1 is the collection of all rate pairs(R1, R2) satisfying

R1≤ γ

(
(1− β)P ′

βP ′ + 1/a

)
, (147)

R2≤ γ(βP ′), (148)

for all β ∈ [0, βmax], whereP ′ = P1/a + P2 and βmax = P2
P ′(1+P1)

. Similarly, E2 is the collection of all rate pairs(R1, R2)

satisfying

R1≤ γ(αP ′′), (149)

R2≤ γ

(
(1− α)P ′′

αP ′′ + 1/b

)
, (150)

for all α ∈ [0, αmax], whereP ′′ = P1 + P2/b andαmax = P1
P ′′(1+P2)

.

The second outer bound, due to Etkinet al [13], is obtained by using Genie aided technique to upper bound different

linear combinations of rates that appear in the HK achievable region. Their outer bound is the union of all rate pairs(R1, R2)
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satisfying

R1≤ γ(P1), (151)

R2≤ γ(P2), (152)

R1 + R2≤ γ(P1) + γ

(
P2

1 + bP1

)
, (153)

R1 + R2≤ γ(P2) + γ

(
P1

1 + aP2

)
, (154)

R1 + R2≤ γ

(
aP2 +

P1

1 + bP1

)
+ γ

(
bP1 +

P2

1 + aP2

)
, (155)

2R1 + R2≤ γ(P1 + aP2) + γ

(
bP1 +

P2

1 + aP2

)
+ 0.5 log

(
1 + P1

1 + bP1

)
, (156)

R1 + 2R2≤ γ(bP1 + P2) + γ

(
aP2 +

P1

1 + bP1

)
+ 0.5 log

(
1 + P2

1 + aP2

)
. (157)

In the outer bound proposed here, we derive an upper bound on all linear combinations of the rates. Recall that to obtain the

boundary points of the capacity regionC , it suffices to calculateσC (µ, 1) andσC (1, µ) for all 1 ≤ µ. To this end, we make

use of channels in A1 and B classes and channels in A2 and B classes to obtain upper bounds onσC (µ, 1) and σC (1, µ),

respectively.

In order to obtain an upper bound onσC (µ, 1), we introduce two optimization problems as follows. The first optimization

problem is written as

W1(µ) =min
µ1

2
log [2πe(P1 + aP2 + 1)]− µ2

2
log(2πe) +

1
2

log
(

N21

N22
+

b′P1

N22
+

P2

P2 + N22

)
(158)

+ µ2fh

(
P1, 1, N21, b

′,
1
µ2

)
+ fh(P2, N22, 1, a, µ1)

subject to:

µ1 + µ2 = µ

b′g2 = b

b′ ≤ N21

aN22 ≤ 1

(1−√g2)2N22 + g2N21 = 1

0 ≤ [µ1, µ2, b
′, g2, N22, N21].

In fact, the objective of the above minimization problem is an upper bound on the support function of a channel within Class

A1 which is obtained in Lemma 3. The constraints are the combination of (78) and (79) which are applied to guarantee the

admissibility of the channel and to validate the upper bound obtained in Lemma 3. Hence,σC (µ, 1) ≤ W1(µ). By using a

new variableS = (1−√g2)2N22, we obtain
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W1(µ) =min
µ1

2
log [2πe(P1 + aP2 + 1)] +

1
2

log
[
(1−√g2)2(

1− S + bP1

g2S
+

P2

(1−√g2)2P2 + S
)
]

(159)

+ µ2fh

(
P1, 1,

1− S

g2
,

b

g2
,

1
µ2

)
+ fh(P2,

S

(1−√g2)2
, 1, a, µ1)− µ2

2
log(2πe)

subject to:

µ1 + µ2 = µ

S ≤ 1− b

S ≤ (1−√g2)2

a

0 ≤ [µ1, µ2, S, g2].

The second optimization problem is written as

W2(µ) =min µγ

(
P1

N11
+

P1

a′P2 + N12

)
+ γ

(
P2

N22
+

P2

b′P1 + N21

)
+ fh(P2, N22, N12, a

′, µ) (160)

+
µ

2
log((2πe)(a′P2 + N12))− 1

2
log((2πe)(P2 + N22))

subject to:

a′g1 = a

b′g2 = b

b′N11 ≤ N21

a′N22 ≤ N12

(1−√g1)2N11 + g1N12 = 1

(1−√g2)2N22 + g2N21 = 1

0 ≤ [a′, b′, g1, g2, N11, N12, N22, N21].

For this problem, Class B channels are used. In fact, the objective is the upper bound on the support function of channels

within the class obtained in Lemma 5 and the constraints are defined to obtain the closed form formula for the upper bound

and to confirm that the channels are admissible. Hence, we deduceσC (µ, 1) ≤ W2(µ). By using new variablesS1 = g1N12

andS2 = g2N21 , we obtain

W2(µ) =min µγ

(
(1−√g1)2P1

1− S1
+

g1P1

aP2 + S1

)
+ γ

(
(1−√g2)2P2

1− S2
+

g2P2

bP1 + S2

)
(161)

+ fh

(
P2,

1− S2

(1−√g2)2
,
S1

g1
,

a

g1
, µ

)
+

µ

2
log

(
(2πe)(

aP2 + S1

g1
)
)
− 1

2
log

(
(2πe)(P2 +

1− S2

(1−√g2)2
)
)

subject to:

b(1− S1)
(1−√g1)2

≤ S2 < 1

a(1− S2)
(1−√g2)2

≤ S1 < 1

0 < [g1, g2].
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2R1 +R2 = ψ4
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r′2

r′3

r′6

Fig. 9. G0 for the weak Gaussian IC.r1, r2, r3, andr4 are extreme points ofG0 in the interior of the first quadrant.

In a similar fashion, one can introduce two other optimization problems, sayW̃1(µ) andW̃2(µ), to obtain upper bounds on

σC (1, µ) by using the upper bounds on the support functions of channels in Class A2 and Class B.

Theorem 6 (New Outer Bound):For any rate pair(R1, R2) achievable for the two-user weak Gaussian IC, the inequalities

µ1R1 + R2 ≤ W (µ1) = min{W1(µ1),W2(µ1)}, (162)

R1 + µ2R2 ≤ W̃ (µ2) = min{W̃1(µ2), W̃2(µ2)}, (163)

hold for all 1 ≤ µ1, µ2.

To obtain an upper bound on the sum rate, we can apply the following inequality:

Csum≤ min
1≤µ1,µ2

(µ2 − 1)W (µ1) + (µ1 − 1)W̃ (µ2)
µ1µ2 − 1

. (164)

C. Han-Kobayashi Achievable region

In this sub-section, we aim at characterizingG for the weak Gaussian IC. To this end, we first investigate some properties of

G0(P1, P2, α, β). First of all, we show that none of the inequalities in describingG0 is redundant. In Figure 9, all possible extreme

points are shown. It is easy to prove thatr′i /∈ G0 for i ∈ {1, 2, . . . , 6}. For instance, we considerr′6 =
(

2ψ4−ψ5
3 , 2ψ5−ψ4

3

)
.

Sinceψ31 + ψ32 + ψ33 = ψ4 + ψ5 (see Section II.C), we have

ψ3= min{ψ31, ψ32, ψ33}

≤ 1
3
(ψ31 + ψ32 + ψ33)

=
1
3
(ψ4 + ψ5).

However, 1
3 (ψ4 + ψ5) is the sum of the components ofr′6. Therefore,r′6 violates (7) in the definition of the HK achievable

region. Hence,r′6 /∈ G0. As another example, let us considerr′1 = (ψ1, ψ3 − ψ1). We claim thatr′1 violates (8). To this end,

we need to show thatψ4 ≤ ψ3 + ψ1. However, it is easy to see thatψ4 ≤ ψ31 + ψ1, ψ4 ≤ ψ32 + ψ1, andψ4 ≤ ψ33 + ψ1

reduce to0 ≤ (1 − α)(1 − b + β(1 − ab)P2), 0 ≤ (1 − β)(1 − a + (1 − ab)P1), and0 ≤ (1 − α)(1 − β)aP2, respectively.

Therefore,r′1 /∈ G0.
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We conclude thatG has four extreme points in the interior of the first quadrant, namely

r1= (ψ1, ψ4 − 2ψ1), (165)

r2= (ψ4 − ψ3, 2ψ3 − ψ4), (166)

r3= (2ψ3 − ψ5, ψ5 − ψ3), (167)

r4= (ψ5 − 2ψ2, ψ2). (168)

Most importantly,G0 possesses the unique minimizer property. To prove this, we need to show thatŷ, the minimizer of the

optimization problem

σD0(c1, c2, P1, P2, α, β)= max{c1R1 + c2R2|AR ≤ Ψ(P1, P2, α, β)}

= min{ytΨ(P1, P2, α, β)|Aty = (c1, c2)t,y ≥ 0}, (169)

is independent of the parametersP1, P2, α, andβ and only depends onc1 andc2. We first consider the case(c1, c2) = (µ, 1)

for all 1 ≤ µ. It can be shown that for2 < µ, the maximum of (169) is attained atr1 regardless ofP1, P2, α, andβ. Therefore,

the dual program has the minimizerŷ = (µ− 2, 0, 0, 1, 0)t which is clearly independent ofP1, P2, α, andβ. In this case, we

have

σD0(µ, 1, P1, P2, α, β) = (µ− 2)ψ1 + ψ4, 2 < µ. (170)

For 1 ≤ µ ≤ 2, one can show thatr2 andŷ = (0, 0, 2−µ, µ−1, 0)t are the maximizer and the minimizer of (169), respectively.

In this case, we have

σD0(µ, 1, P1, P2, α, β) = (2− µ)ψ3 + (µ− 1)ψ4, 1 ≤ µ ≤ 2. (171)

Next, we consider the case(c1, c2) = (1, µ) for all 1 ≤ µ. Again, it can be shown that for2 < µ and 1 ≤ µ ≤ 2,

ŷ = (0, µ− 2, 0, 0, 1)t and ŷ = (0, 0, 2− µ, 0, µ− 1)t minimizes (169), respectively. Hence, we have

σD0(1, µ, P1, P2, α, β)= (µ− 2)ψ2 + ψ5, if 2 < µ, (172)

σD0(1, µ, P1, P2, α, β)= (2− µ)ψ3 + (µ− 1)ψ5, if 1 ≤ µ ≤ 2. (173)

We conclude that the solutions of the dual program are always independent ofP1, P2, α, and β. Hence,G0 possesses the

unique minimizer property.

Theorem 7:For the two-user weak Gaussian IC, time-sharing and concavification result in the same region. In other words,

G can be fully characterized by using TD/FD and allocating power over three different dimensions.

Proof: SinceG0 possesses the unique minimizer property, from Theorem 1, we deduce thatG = G2. Moreover, using

Theorem 3, the number of frequency bands is at most three.

To obtain the support function ofG2, we need to obtaing(c1, c2, P1, P2, α, β) defined in (43). SinceG0 possesses the unique

minimizer property, (43) can be simplified. Let us consider the case where(c1, c2) = (µ, 1) for µ > 2. It can be shown that

for this case

g = max
(α,β)∈[0,1]2

(µ− 2)ψ1(P1, P2, α, β) + ψ4(P1, P2, α, β). (174)
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Fig. 10. Comparison between different bounds for the symmetric weak Gaussian IC whenP = 7 anda = 0.2.

Substituting into (42), we obtain

σG2(µ, 1, P1, P2) =max
3∑

i=1

λi [(µ− 2)ψ1(P1i, P2i, αi, βi) + ψ4(P1i, P2i, αi, βi)] (175)

subject to:
3∑

i=1

λi = 1

3∑

i=1

λiP1i ≤ P1

3∑

i=1

λiP2i ≤ P2

0 ≤ λi, 0 ≤ P1i, 0 ≤ P2i, ∀i ∈ {1, 2, 3}

0 ≤ αi ≤ 1, 0 ≤ βi ≤ 1, ∀i ∈ {1, 2, 3}.

For other ranges of(c1, c2), a similar optimization problem can be formed. It is worth noting that even though the number

of parameters in characterizingG is reduced, it is still prohibitively difficult to characterize boundary points ofG . In Figures

(10) and (11), different bounds for the symmetric weak Gaussian IC are plotted. As shown in these figures, the new outer

bound is tighter than the previously known bounds.

V. ONE-SIDED GAUSSIAN INTERFERENCECHANNELS

Throughout this section, we consider the one-sided Gaussian IC obtained by settingb = 0, i.e, the second receiver incurs no

interference from the first transmitter. One can further split the class of one-sided ICs into two subclasses: thestrong one-sided

IC and theweak one-sided IC. For the former,a ≥ 1 and the capacity region is fully characterized [16]. In this case, the
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Fig. 11. Comparison between different bounds for the symmetric weak Gaussian IC whenP = 100 anda = 0.1.

capacity region is the union of all rate pairs(R1, R2) satisfying

R1≤ γ(P1),

R2≤ γ(P2),

R1 + R2≤ γ(P1 + aP2).

For the latter,a < 1 and the full characterization of the capacity region is still an open problem. Therefore, we always assume

a < 1. Three important results are proved for this channel. The first one, proved by Costa in [11], states that the capacity

region of the weak one-sided IC is equivalent to that of the degraded IC with an appropriate change of parameters. The second

one, proved by Sato in [10], states that the capacity region of the degraded Gaussian IC is outer bounded by the capacity

region of a certain degraded broadcast channel. The third one, proved by Sason in [16], characterizes the sum capacity by

combining Costa’s and Sato’s results.

In this section, we provide an alternative proof for the outer bound obtained by Sato. We then characterize the full HK

achievable region where Gaussian codebooks are used, i.e.,G .

A. Sum Capacity

For the sake of completeness, we first state the sum capacity result obtained by Sason.

Theorem 8 (Sason):The rate pair
(
γ

(
P1

1+aP2

)
, γ(P2)

)
is an extreme point of the capacity region of the one-sided Gaussian

IC. Moreover, the sum capacity of the channel is attained at this point.

B. Outer Bound

In [10], Sato derived an outer bound on the capacity of the degraded IC. This outer bound can be used for the weak one-sided

IC as well. This is due to Costa’s result which states that the capacity region of the degraded Gaussian IC is equivalent to that

of the weak one-sided IC with an appropriate change of parameters.
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Theorem 9 (Sato):If the rate pair(R1, R2) belongs to the capacity region of the weak one-sided IC, then it satisfies

R1 ≤ γ
(

(1−β)P
1/a+βP

)
,

R2 ≤ γ(βP ),
(176)

for all β ∈ [0, 1] whereP = P1/a + P2.

Proof: Since the sum capacity is attained at the point where User 2 transmits at its maximum rateR2 = γ(P2), other bound-

ary points of the capacity region can be obtained by characterizing the solutions ofσC (µ, 1) = max {µR1 + R2|(R1, R2) ∈ C }
for all 1 ≤ µ. Using Fano’s inequality, we have

n(µR1 + R2) ≤µI(xn
1 ; yn

1 ) + I(xn
2 ; yn

2 ) + nεn

=µh(yn
1 )− µh(yn

1 |xn
1 ) + h(yn

2 )− h(yn
2 |xn

2 ) + nεn

=[µh(xn
1 +

√
axn

2 + zn
1 )− h(zn

2 )] + [h(xn
2 + zn

2 )− µh(
√

axn
2 + zn

1 )] + nεn

(a)

≤ µn

2
log [2πe(P1 + aP2 + 1)]− n

2
log(2πe) + [h(xn

2 + zn
2 )− µh(

√
axn

2 + zn
1 )] + nεn

(b)

≤ µn

2
log [2πe(P1 + aP2 + 1)]− n

2
log(2πe) + nfh(P2, 1, 1, a, µ) + nεn,

where (a) follows from the fact that Gaussian distribution maximizes the differential entropy for a given constraint on the

covariance matrix and (b) follows from the definition offh in (59).

Depending on the value ofµ, we consider the following two cases:

1- For 1 ≤ µ ≤ P2+1/a
P2+1 , we have

µR1 + R2 ≤ µγ

(
P1

1 + aP2

)
+ γ(P2). (177)

In fact, the point
(
γ

(
P1

1+aP2

)
, γ(P2)

)
which is achievable by treating interference as noise at Receiver 1, satisfies (177) with

equality. Therefore, it belongs to the capacity region. Moreover, by settingµ = 1, we deduce that this point corresponds to

the sum capacity of the one-sided Gaussian IC. This is in fact an alternative proof for Sason’s result.

2- For P2+1/a
P2+1 < µ ≤ 1

a , we have

µR1 + R2 ≤ µ

2
log (P1 + aP2 + 1) +

1
2

log
(

1/a− 1
µ− 1

)
− µ

2
log

(
aµ(1/a− 1)

µ− 1

)
. (178)

Equivalently, we have

µR1 + R2 ≤ µ

2
log

(
(aP + 1)(µ− 1)

µ(1− a)

)
+

1
2

log
(

1/a− 1
µ− 1

)
, (179)

whereP = P1/a + P2. Let us defineE1 as the set of all rate pairs(R1, R2) satisfying (179), i.e.

E1 =
{

(R1, R2)|µR1 + R2 ≤ µ

2
log

(
(aP + 1)(µ− 1)

µ(1− a)

)
+

1
2

log
(

1/a− 1
µ− 1

)
, ∀P2 + 1/a

P2 + 1
< µ ≤ 1

a

}
. (180)

We claim thatE1 is the dual representation of the region defined in the statement of the theorem, see (4). To this end, we

defineE2 as

E2 =
{

(R1, R2)|R1 ≤ γ

(
(1− β)P
1/a + βP

)
, R2 ≤ γ(βP ), ∀β ∈ [0, 1]

}
(181)

We evaluate the support function ofE2 as

σE2(µ, 1) = max {µR1 + R2|(R1, R2) ∈ E2} . (182)
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It is easy to show thatβ = 1/a−1
P (µ−1) maximizes the above optimization problem. Therefore, we have

σE2(µ, 1) =
µ

2
log

(
(aP + 1)(µ− 1)

µ(1− a)

)
+

1
2

log
(

1/a− 1
µ− 1

)
. (183)

SinceE2 is a closed convex set, we can use (4) to obtain its dual representation which is indeed equivalent to (180). This

completes the proof.

C. Han-Kobayashi Achievable Region

In this subsection, we characterizeG0, G1, G2, and G for the weak one-sided Gaussian IC.G0 can be characterized as

follows. Since there is no link between Transmitter 1 and Receiver 2, User 1’s message in the HK achievable region is only

the private message, i.e.,α = 1. In this case, we have

ψ1= γ

(
P1

1 + aβP2

)
, (184)

ψ2= γ(P2), (185)

ψ31= γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2), (186)

ψ32= γ

(
P1

1 + aβP2

)
+ γ(P2), (187)

ψ33= γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2), (188)

ψ4= γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ

(
P1

1 + aβP2

)
+ γ(βP2), (189)

ψ5= γ(βP2) + γ(P2) + γ

(
P1 + a(1− β)P2

1 + aβP2

)
, (190)

It is easy to show thatψ3 = min{ψ31, ψ32, ψ33} = ψ31, ψ31 + ψ1 = ψ4, ψ31 + ψ2 = ψ5. Hence,G0 can be represented as all

rate pairs(R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)
, (191)

R2≤ γ(P2), (192)

R1 + R2≤ γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2). (193)

We claim thatG2 = G . To prove this, we need to show thatG0 possesses the unique minimizer property.G0 is a pentagon

with two extreme points in the interior of the first quadrant, namelyr1 andr2 where

r1=
(

γ

(
P1

1 + aβP2

)
, γ

(
(1− β)aP2

1 + P1 + βaP2

)
+ γ(βP2)

)
, (194)

r2=
(

γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2)− γ(P2), γ(P2)

)
. (195)

Using above, it can be verified thatG0 possesses the unique minimizer property.

Next, we can use the optimization problem in (42) to obtain the support function ofG . However, we only need to consider

(c1, c2) = (µ, 1) for µ > 1. Therefore, we have

g(µ, 1, P1, P2, β) = max
0≤β≤1

µγ

(
P1

1 + βaP2

)
+ γ(βP2) + γ

(
(1− β)aP2

1 + P1 + βaP2

)
. (196)
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Substituting into (42), we conclude that boundary points ofG can be characterized by solving the following optimization

problem:

W =max
3∑

i=1

λi

[
µγ

(
P1i

1 + βiaP2i

)
+ γ(βiP2i) + γ

(
(1− βi)aP2i

1 + P1i + βiaP2i

)]
(197)

subject to:
3∑

i=1

λi = 1

3∑

i=1

λiP1i ≤ P1

3∑

i=1

λiP2i ≤ P2

0 ≤ βi ≤ 1, ∀i ∈ {1, 2, 3}

0 ≤ [P1i, P2i, λi], ∀i ∈ {1, 2, 3}.

For the sake of completeness, we provide a simple description forG1 in the next lemma.

Lemma 7:The regionG1 can be represented as the collection of all rate pairs(R1, R2) satisfying

R1≤ γ

(
P1

1 + aβ′P2

)
, (198)

R2≤ γ(β′P2) + γ

(
a(1− β′)P2

1 + P1 + aβ′P2

)
, (199)

for all β′ ∈ [0, 1]. Moreover,G1 is convex and any point that lies on its boundary can be achieved by using superposition

coding and successive decoding.

Proof: Let E denote the set defined in the above lemma. It is easy to show thatE is convex andE ⊆ G1. To prove

the inverse inclusion, it suffices to show that the extreme points ofG0, r1 and r2 (see (194) and (195)) are insideE for all

β ∈ [0, 1]. By settingβ′ = β, we see thatr1 ∈ E. To prover2 ∈ E, we setβ′ = 1. We conclude thatr2 ∈ E if the following

inequality holds

γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2)− γ(P2) ≤ γ

(
P1

1 + aP2

)
, (200)

for all β ∈ [0, 1]. However, (200) reduces to0 ≤ (1− a)(1−β)P2 which holds for allβ ∈ [0, 1]. Hence,G1 ⊆ E. Using these

facts, it is straightforward to show that the boundary pointsG1 are achievable by using superposition coding and successive

decoding.

Figure 12 compares different bounds for the one-sided Gaussian IC.

VI. M IXED GAUSSIAN INTERFERENCECHANNELS

In this section, we focus on the mixed Gaussian Interference channel. We first characterize the sum capacity of this channel.

Then, we provide an outer bound on the capacity region. Finally, we investigate the HK achievable region. Without loss of

generality, we assumea < 1 andb ≥ 1.
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1

Fig. 12. Comparison between different bounds for the one-sided Gaussian IC whenP1 = 1, P2 = 7, anda = 0.4.

A. Sum Capacity

Theorem 10:The sum capacity of the mixed Gaussian IC witha < 1 andb ≥ 1 can be stated as

Csum = γ (P2) + min
{

γ

(
P1

1 + aP2

)
, γ

(
bP1

1 + P2

)}
. (201)

Proof: We need to prove the achievability and converse for the theorem.

Achievability part : Transmitter 1 sends a common message to both receivers, while the first user’s signal is considered as

noise at both receivers. In this case, the rate

R1 = min
{

γ

(
P1

1 + aP2

)
, γ

(
bP1

1 + P2

)}
(202)

is achievable. At Receiver 2, the signal from Transmitter 1 can be decoded and removed. Therefore, User 2 is left with a

channel without interference and it can communicate at its maximum rate which is

R2 = γ(P2). (203)

By adding (202) and (203), we obtain the desired result.

Converse part: The sum capacity of the Gaussian IC is upper bounded by that of the two underlying one-sided Gaussian

ICs. Hence, we can obtain two upper bounds on the sum rate. We first remove the interfering link between Transmitter 1 and

Receiver 2. In this case, we have a one-sided Gaussian IC with weak interference. The sum capacity of this channel is known
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[16]. Hence, we have

Csum ≤ γ(P2) + γ

(
P1

1 + aP2

)
. (204)

By removing the interfering link between Transmitter 2 and Receiver 1, we obtain a one-sided Gaussian IC with strong

interference. The sum capacity of this channel is known. Hence, we have

Csum ≤ γ (bP1 + P2) , (205)

which equivalently can be written as

Csum ≤ γ(P2) + γ

(
bP1

1 + P2

)
. (206)

By taking the minimum of the right hand sides of (204) and (206), we obtain

Csum ≤ γ (P2) + min
{

γ

(
P1

1 + aP2

)
, γ

(
bP1

1 + P2

)}
. (207)

This completes the proof.

Remark 4: In an independent work [25], the sum capacity of the mixed Gaussian IC is obtained for a certain range of

parameters, whereas in the above theorem, we characterize the sum capacity of this channel for the entire range of its parameters

(see also [24]).

By comparingγ
(

P1
1+aP2

)
with γ

(
bP1

1+P2

)
, we observe that if1 + P2 ≤ b + abP2, then the sum capacity corresponds to the

sum capacity of the one-sided weak Gaussian IC, whereas if1 + P2 > b + abP2, then the sum capacity corresponds to the

sum capacity of the one-sided strong IC. Similar to the one-sided Gaussian IC, since the sum capacity is attained at the point

where User 2 transmits at its maximum rateR2 = γ(P2), other boundary points of the capacity region can be obtained by

characterizing the solutions ofσC (µ, 1) = max {µR1 + R2|(R1, R2) ∈ C } for all 1 ≤ µ.

B. New Outer Bound

The best outer bound to date, due to Etkinet al [13], is obtained by using the Genie aided technique. This bound is the

union of all rate pairs(R1, R2) satisfying

R1≤ γ(P1), (208)

R2≤ γ(P2), (209)

R1 + R2≤ γ(P2) + γ

(
P1

1 + aP2

)
, (210)

R1 + R2≤ γ(P2 + bP1), (211)

2R1 + R2≤ γ(P1 + aP2) + γ

(
bP1 +

P2

1 + aP2

)
+ γ

(
P1

1 + bP1

)
. (212)

The capacity region of the mixed Gaussian IC is inside the intersection of the capacity regions of the two underlying one-

sided Gaussian ICs. Removing the link between Transmitter 1 and Receiver 2 results in a weak one-sided Gaussian IC whose

outer boundE1 is the collection of all rate pairs(R1, R2) satisfying

R1≤ γ

(
(1− β)P ′

βP ′ + 1/a

)
, (213)

R2≤ γ(βP ′), (214)
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for all β ∈ [0, βmax], whereP ′ = P1/a + P2 andβmax = P2
P ′(1+P1)

. On the other hand, removing the link between Transmitter

2 and Receiver 1 results in a strong one-sided Gaussian IC whose capacity regionE2 is fully characterized as the collection

of all rate pairs(R1, R2) satisfying

R1≤ γ(bP1), (215)

R2≤ γ (P2) , (216)

R1 + R2≤ γ(bP1 + P2). (217)

Using the channels in Class C, we upper boundσC (µ, 1) based on the following optimization problem:

W (µ) =min
µ− 1

2
log (2πe(P1 + aP2 + 1)) +

1
2

log
(

2πe

(
P2N22

P2 + N22
+ b′P1 + N21

))
(218)

− 1
2

log(2πeN21)− 1
2

log(2πeN22) + fh(P2, N22, 1, a, µ− 1)

subject to:

b′g2 = b

b′ ≥ N21

aN22 ≤ 1

(1−√g2)2N22 + g2N21 = 1

0 ≤ [b′, g2, N22, N21].

By substitutingS = g2N21, we obtain

W (µ) =min
µ− 1

2
log (2πe(P1 + aP2 + 1)) +

1
2

log
(

2πe

(
P2(1− S)

(1−√g2)2P2 + 1− S
+

bP1 + S

g2

))
(219)

− 1
2

log
(

2πeS

g2

)
− 1

2
log

(
2πe(1− S)
(1−√g2)2

)
+ fh

(
P2,

1− S

(1−√g2)2
, 1, a, µ− 1

)

subject to:

S < 1

a(1− S) ≤ (1−√g2)2

0 ≤ [S, g2].

Hence, we have the following theorem that provides an outer bound on the capacity region of the mixed Gaussian IC.

Theorem 11:For any rate pair(R1, R2) achievable for the two-user mixed Gaussian IC,(R1, R2) ∈ E1

⋂
E2. Moreover,

the inequality

µR1 + R2 ≤ W (µ) (220)

holds for all1 ≤ µ.

C. Han-Kobayashi Achievable Region

In this subsection, we study the HK achievable region for the mixed Gaussian IC. Since Receiver 2 can always decode the

message of the first user, User 1 associates all its power to the common message. User 2, on the other hand, allocatesβP2



39

R1

R2

γ(P2)
r4

r3

r2

r1

G
′

0

Alternating Regions

Fig. 13. The new regionG ′0 which is obtained by enlargingG0.

and (1− β)P2 of its total power to its private and common messages, respectively, whereβ ∈ [0, 1]. Therefore, we have

ψ1= γ

(
P1

1 + aβP2

)
, (221)

ψ2= γ(P2), (222)

ψ31= γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2), (223)

ψ32= γ(P2 + bP1), (224)

ψ33= γ

(
a(1− β)P2

1 + aβP2

)
+ γ(βP2 + bP1), (225)

ψ4= γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2 + bP1), (226)

ψ5= γ(βP2) + γ(P2 + bP1) + γ

(
a(1− β)P2

1 + aβP2

)
. (227)

Due to the fact that the sum capacity is attained at the point where the second user transmits at its maximum rate, the

last inequality in the description of the HK achievable region can be removed. Although the pointr′5 = (ψ3 − γ(P2), γ(P1))

in Figure 9 may not be inG0, this point is always achievable due to the sum capacity result. Hence, we can enlargeG0 by

removingr3 andr4. Let us denote the resulting region asG ′0. Moreover, one can show thatr′2, r′3, r′4, andr′6 are still outside

G ′0. However, for the mixed Gaussian IC, it is possible thatr′1 belongs toG ′0. In Figure 13, two alternative cases for the region

G ′0 along with the new labeling of its extreme points are plotted. The new extreme points can be written as

r1= (ψ1, ψ4 − 2ψ1),

r2= (ψ1, ψ3 − ψ1),

r3= (ψ4 − ψ3, 2ψ3 − ψ4),

r4= (ψ3 − ψ2, ψ2).

In fact, we have eitherG ′0 = conv{r1, r3, r4} or G ′0 = conv{r2, r4}.
To simplify the characterization ofG1, we consider three cases:

Case I: 1 + P2 ≤ b + abP2.

Case II: 1 + P2 > b + abP2 and1− a ≤ abP1.

Case III:1 + P2 > b + abP2 and1− a > abP1.
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Case I (1 + P2 ≤ b + abP2): In this case,ψ3 = ψ31. Moreover, it is easy to verify thatψ31 + ψ1 ≤ ψ4 which means (8) is

redundant for the entire range of parameters. Hence,G ′0 = conv{r2, r4} consists of all rate pairs(R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)
, (228)

R2≤ γ (P2) , (229)

R1 + R2≤ γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2), (230)

whereβ ∈ [0, 1]. Using a reasoning similar to the one used to express boundary points ofG1 for the one-sided Gaussian IC,

we can express boundary points ofG1 as

R1≤ γ

(
P1

1 + aβP2

)
, (231)

R2≤ γ(βP2) + γ

(
a(1− β)P2

1 + P1 + aβP2

)
, (232)

for all β ∈ [0, 1].

Theorem 12:For the mixed Gaussian IC satisfying1 ≤ ab, region G is equivalent to that of the one sided Gaussian IC

obtained from removing the interfering link between Transmitter 1 and Receiver 2.

Proof: If 1 ≤ ab, then1 + P2 ≤ b + abP2 holds for allP1 andP2. Hence,G ′0(P1, P2, β) is a pentagon defined by (228),

(229), and (229). Comparing with the corresponding region for the one-sided Gaussian IC, we see thatG ′0 is equivalent toG0

obtained for the one-sided Gaussian IC. This directly implies thatG is the same for both channels.

Case II (1 + P2 > b + abP2 and1− a ≤ abP1): In this case,ψ3 = min{ψ31, ψ32}. It can be shown thatG1 is the union

of three regionsE1, E2, andE3, i.e, G0 = E1

⋃
E2

⋃
E3. RegionE1 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)
, (233)

R2≤ γ(βP2) + γ

(
a(1− β)P2

1 + P1 + aβP2

)
. (234)

for all β ∈ [0, b−1
(1−ab)P2

]. RegionE2 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(
bP1

1 + βP2

)
, (235)

R2≤ γ

(
P1 + a(1− β)P2

1 + aβP2

)
+ γ(βP2)− γ

(
bP1

1 + βP2

)
. (236)

for all β ∈ [ b−1
(1−ab)P2

, (b−1)P1+(1−a)P2
(1−ab)P1P2+(1−a)P2

]. RegionE3 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(
bP1(1 + (1−ab)P1

1−a )
1 + bP1 + P2

)
, (237)

R2≤ γ (P2) , (238)

R1 + R2≤ γ(bP1 + P2). (239)

Case III (1 + P2 > b + abP2 and1− a > abP1): In this case,ψ3 = min{ψ31, ψ32}. Similar to Case II, we haveG1 =

E1

⋃
E2

⋃
E3, where regionsE1, E2, and E3 are defined as follows. RegionE1 is the union of all rate pairs(R1, R2)

satisfying

R1≤ γ

(
P1

1 + aβP2

)
, (240)

R2≤ γ(βP2) + γ

(
a(1− β)P2

1 + P1 + aβP2

)
. (241)
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Fig. 14. Comparison between different bounds for the mixed Gaussian IC when1 + P2 ≤ b + abP2 (Case I) forP1 = 7, P2 = 7, a = 0.6, andb = 2.

for all β ∈ [0, b−1
(1−ab)P2

]. RegionE2 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)
, (242)

R2≤ γ

(
a(1− β)P2

1 + P1 + aβP2

)
+ γ(βP2 + bP1)− γ

(
P1

1 + aβP2

)
. (243)

for all β ∈ [ b−1
(1−ab)P2

, 1]. RegionE3 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(
P1

1 + aP2

)
, (244)

R2≤ γ (P2) , (245)

R1 + R2≤ γ(bP1 + P2). (246)

Remark 5:RegionE3 in Case II and Case III represents a facet that belongs to the capacity region of the mixed Gaussian

IC. It is important to note that, surprisingly, this facet is obtainable when the second transmitter uses both the common message

and the private message.

Different bounds are compared for the mixed Gaussian IC for Cases I, II, and III in Figures 14, 15, and 16, respectively.

VII. C ONCLUSION

We have studied the capacity region of the two-user Gaussian IC. The sum capacities, inner bounds, and outer bounds have

been considered for three classes of channels: weak, one-sided, and mixed Gaussian IC. We have used admissible channels as

the main tool for deriving outer bounds on the capacity regions.

For the weak Gaussian IC, we have derived the sum capacity for a certain range of channel parameters. In this range, the

sum capacity is attained when Gaussian codebooks are used and interference is treated as noise. Moreover, we have derived a

new outer bound on the capacity region. This outer bound is tighter than the Kramer’s bound and the ETW’s bound. Regarding

inner bounds, we have reduced the computational complexity of the HK achievable region. In fact, we have shown that when
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Fig. 15. Comparison between different bounds for the mixed Gaussian IC when1 + P2 > b + abP2 and1 − a ≤ abP1 (Case II) forP1 = 7, P2 = 7,

a = 0.4, andb = 1.5.

Fig. 16. Comparison between different bounds for the mixed Gaussian IC when1 + P2 > b + abP2 and1− a > abP1 (Case III) forP1 = 7, P2 = 700,

a = 0.01, andb = 1.5.
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Gaussian codebooks are used, the full HK achievable region can be obtained by using the naive HK achievable scheme over

three frequency bands.

For the one-sided Gaussian IC, we have presented an alternative proof for the Sato’s outer bound. We have also derived the

full HK achievable region when Gaussian codebooks are used.

For the mixed Gaussian IC, we have derived the sum capacity for the entire range of its parameters. Moreover, we have

presented a new outer bound on the capacity region that outperforms ETW’s bound. We have proved that the full HK achievable

region using Gaussian codebooks is equivalent to that of the one-sided Gaussian IC for a particular range of channel gains.

We have also derived a facet that belongs to the capacity region for a certain range of parameters. Surprisingly, this facet is

obtainable when one of the transmitters uses both the common message and the private message.
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