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Abstract

The capacity region of the two-user Gaussian Interference Channel (IC) is studied. Three classes of channels are considered:
weak, one-sided, and mixed Gaussian ICs. For the weak Gaussian IC, a new outer bound on the capacity region that outperforms
previously known outer bounds is obtained. The sum capacityof the channel for some certain range of channel’s parameters is
derived. It is shown that the full Han-Kobayashi achievablerate region when Gaussian codebooks are used can be obtainedby
using the naive Han-Kobayashi achievable scheme over threefrequency bands (Equivalently, three subspaces). For the one-sided
Gaussian IC, a new proof for Sato’s outer bound is presented.The full Han-Kobayashi achievable rate region is derived. For the
mixed Gaussian IC, a new outer bound that again outperforms previously known outer bounds is obtained. The sum capacity of
the channel for all ranges of parameters is derived. It is proved that the full Han-Kobayashi achievable rate region is equivalent
to that of the one-sided Gaussian IC for some range of channelgains.

Index Terms

Gaussian interference channels, capacity region, sum capacity, convex regions.

I. I NTRODUCTION

ONE of the fundamental problems in Information Theory, originating from Shannon’s work in [1], is the full capacity
region characterization of the interference channel (IC).The simplest form of IC’s is the two-user IC in which two

transmitters aim to convey independent data to their corresponding receivers through a common channel. Despite some special
cases, such as very strong and strong ICs, where the exact characterization of the capacity region has been derived [2], [3], in
general the characterization of the capacity region is still an open problem. In this paper, we study the capacity regionof the
two-user Gaussian IC.

A limiting expression for the capacity region is obtained in[4], c.f. [5]. Unfortunately, due to computational complexity, this
kind of expressions does not give any tractable approach to fully characterize the capacity region of the Gaussian IC. Toshow
the weakness of the limiting expression, Cheng and Verdú have shown that for the Gaussian Multiple Access Channel (MAC),
which can be considered as a special case of the Gaussian IC (GIC), the limiting expression fails to fully characterize the
capacity region by only relying on Gaussian distributions [6]. However, it is worth noting that there is a point on the boundary
of the capacity region of the MAC that can be obtained directly from limiting expression. This point indeed is achievableby
using simple scheme of FD/TD.

One reason is that, in the limiting expression, the encodingand decoding strategies are the simplest one possible. The
encoding strategy is based on mapping data to a codebook constructed from a unique probability density and the decoding
strategy is to treat the interference from the other user as noise. In contrast, using the more sophisticated encoders and decoders
may result in collapsing the limiting expression into a single letter formula for the capacity region of the IC. As an evidence,
it is known that the joint typical decoder for the MAC indeed achieves the capacity region [7]. Moreover, there are some
special cases, such as strong ICs, where the exact characterization of the capacity region has been derived, c.f. [2] and[3],
and decoding the interference is the main part of the proof.

In their pioneering work [8], Han and Kobayashi proposed a new encoding and decoding strategy in which the receivers are
allowed to decode some part of the interfering user’s data aswell as its own data. Their achievable rate region is stil thebest
inner bound for the capacity region. Specifically, in their scheme the message of each user is split into two independent parts,
the common part and the private part. The common part of data is encoded in such a way that both users can successfully
decode it. The private part, on the other hand, can be decodedonly by the corresponding receiver and the other user treatsit as
noise. Briefly, the resulting region of this scheme is the intersection of the capacity region of two three-user MACs, projected
to a two-dimensional space.

The Han-Kobayashi scheme can be directly applied to the Gaussian IC. Nonetheless, there are two sources of difficulties
in characterizing the full Han-Kobayashi achievable rate region. First, the optimal distributions are unknown. Second, even if
we confine the distributions to be Gaussian, computation of the full Han-Kobayashi region under Gaussian distributionsis still
difficult due to numerous degrees of freedom involved in the problem. The parameter which is the main cause of the difficulty
for characterizing the Han-Kobayashi region with Gaussiandistributions is the time-sharing parameter.

Recently in [9], Chong et.al have obtained a simpler expression with less number of inequalities for the Han-Kobayashi
achievable rate region. Having less number of inequalitiesdecreases the cardinality of the time-sharing parameter, since the
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cardinality of the time-sharing parameter is directly related to the number of inequalities appearing in the achievable rate
region. However, finding the full Han-Kobayashi achievablerate region is still prohibitively difficult.

Regarding outer bounds on the capacity region, there are three results that outperforms other outer bounds. The first one
obtained by Sato in [10] is originally derived for the degraded Gaussian IC. Sato has shown that The capacity region of the
degraded Gaussian IC is outer bounded with a certain degraded broadcast channel that its capacity region is fully characterized.
In [11], Costa has proved that the capacity region of the degraded broadcast channel is equivalent to that of the one-sided
weak Gaussian IC. Hence, Sato’s outer bound can be used for the one-sided Gaussian IC as well.

The second outer bound obtained for the weak Gaussian IC is due to Kramer [12]. Kramer’s outer bound is based on the
fact that removing one of the interfering links in the channel increases the capacity region. Therefore, the capacity region
of the two-user Gaussian IC is inside the intersection of thecapacity regions of two underlying one-sided Gaussian ICs.For
the case of weak Gaussian IC, the underlying one-sided Gaussian IC is weak and the capacity region is unknown. However,
Kramer has used the outer bound obtained by Sato to obtain an outer bound for the Gaussian IC.

The third outer bound due to Etkin, Tse, and Wang is based on the Genie aided technique. A genie that provides some extra
information to the receivers can only enlarge the capacity region. At first glance, it seems a clever genie must provide some
information about the interference to the receiver so that the receiver can decode its own signal more easily by removingthe
interference. But, Etkin, Tse, and Wang’s genie provides information about the intended signal to the receiver. Remarkably,
they have shown that the new outer bound outperforms Kramer’s one for some range of parameters. Moreover, using similar
method, they have obtained an outer bound for the mixed Gaussian IC.

In this paper, by introducing the notion of admissible ICs wepropose a new outer bounding scheme for the two-user
Gaussian IC. This scheme relies on an extremal inequality recently proved by Liu and Viswanath [13]. we show that by using
this method, one can obtain outer bounds tighter than previously proposed outer bounds for both weak and mixed Gaussian
ICs. More importantly, the sum capacity of the Gaussian weakIC for some certain range of channel’s parameters is derived
by using this scheme.

The rest of this paper is organized as follows. In Section II,we rewrite some basic definitions and review Han-Kobayashi
achievable rate region when Gaussian codebooks are used. Westudy the two methods, time-sharing and concavification,
that enlarge the basic Han-Kobayashi achievable rate region. We investigate conditions for which the two regions obtained
from time-sharing and concavification coincide. Finally, we consider an optimization problem (extremal inequality) and derive
optimum solutions of the problem. In fact, the extremal inequality is used thought the paper.

In Section III, admissible channels are introduced. Some classes of admissible channels for the two-user Gaussian IC is
considered. Moreover, outer bound on the capacity region ofthese classes are obtained.

In Section IV, we study capacity region of the weak Gaussian IC. We first derive the sum capacity of this channel for
some range of parameters. It is shown that for this range of parameters, it suffices that users treat the interference as Gaussian
noise and transmit at their highest rate. We then obtain an outer bound on the capacity region which is the best known upper
bound to date. We finally prove that the basic Han-Kobayashi achievable rate region possesses the desired property of having
the same enlarged region by using time-sharing or concavification. This reduces the complexity of characterization of the full
Han-Kobayashi achievable rate region when Gaussian codebooks are used.

In Section V, we study capacity region of the one-sided Gaussian IC. We present a new proof on Sato’s outer bound using the
extremal inequality. Then, we simplify the Han-Kobayashi achievable rate region so that the full region can be characterized.

In Section VI, we study capacity region of the mixed GaussianIC. We first obtain the sum capacity of this channel. Then, we
derive an outer bound which outperforms other existing outer bounds. Finally, by investigating the Han-Kobayashi achievable
rate region for different cases, we prove that for some rangeof channel parameters the full Han-Kobayashi achievable rate
region is equivalent to that of the one-sided case. Finally,in Section VII, we conclude the paper.

II. PRELIMINARIES

A. Notations

Throughout this paper, we use the following notations. Vectors are represented by bold faced letters. However, for vectors
representing codewords we use the usual notationxn. Random variables, matrices, and sets are denoted by capital letters where
the difference is clear from the context.|A|, tr{A}, andAt represent respectively the determinant, trace, and transpose of the
square matrixA. I denotes the identity matrix.N andℜ are the sets of nonnegative integers and real numbers, respectively.
The union, intersection, and Minkowski sum of two setsU andV are represented byU ∪ V , U ∩ V , andU +V , respectively.
We useγ(x) as an abbreviation for the function0.5 log2(1 + x).

B. The Two-user Interference Channel

Definition 1 (two-user IC):A two-user discrete memoryless IC consists of two finite setsX1 andX2 as input alphabets and
two finite setsY1 andY2 as corresponding output alphabets. The channel is governedby conditional probability distributions
f(y1, y2|x1, x2), where(x1, x2) ∈ X1 × X2 and (y1, y2) ∈ Y1 × Y2.
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Fig. 1. Classes of the two-user ICs.

Definition 2 (capacity of two-user IC):A code (2nR1 , 2nR2 , n, λn
1 , λ

n
2 ) for the IC consists of the following components for

User i ∈ {1, 2}:
1) A uniform distributed message setMi ∈ [1, 2, ..., 2nRi].
2) A codebookXi = {xi(1), xi(2), ..., xi(2

nR1)}, wherexi(·) ∈ X n
i .

3) An encoding functionFi : [1, 2, ..., 2nRi] → Xi.
4) A decoding functionGi : yi → [1, 2, ..., 2nRi].
5) The average probability of errorλn

i = P(Gi(yi) 6= Mi).
A rate pair (R1, R2) is said to be achievable if there is a sequence of codes (2nR1 , 2nR2 , n, λn

1 , λ
n
2 ) with vanishing average

probability of errors. The capacity region of the IC is defined to be the supremum of the set of achievable rates.
Let CIC denote the capacity region of the two-user IC. The limiting expression of the capacity region can be stated as [5]

CIC = lim
n→∞

closure





⋃

P(Xn

1
)P(Xn

2
)

{

(R1, R2) | R1 ≤ 1
n I (Xn

1 ,Y
n
1 )

R2 ≤ 1
n I (Xn

2 ,Y
n
2 )

}



 . (1)

In this paper, we focus on the two-user Gaussian IC which can be represented in standard form as [14]

y1 = x1 +
√
ax2 + z1

y2 =
√
bx1 + x2 + z2

(2)

wherexi andyi denote the input and output alphabets, respectively, of user i ∈ {1, 2}. The z1 ∼ N (0, 1) and z2 ∼ N (0, 1)
are standard Gaussian random variables. The constantsa ≥ 0 and b ≥ 0 represent the interference link gains. Furthermore,
Transmitteri is subject to the average power constraintPi for i ∈ {1, 2}. Achievable rates and the capacity region of the
Gaussian IC can be defined in a similar fashion as that of the general IC except the codewords must satisfy the following
power constraints

‖xi(m)‖2 ≤ nPi; ∀m ∈ [1, 2, ..., 2nRi] and i ∈ {1, 2} (3)

where‖ · ‖ denotes the Euclidean norm. The capacity region of the two-user Gaussian IC is denoted byC . Clearly, C is a
function of the channel’s parametersP1, P2, a, andb. To emphasize this relationship, we may writeC asC (P1, P2, a, b).

Remark 1:Since the capacity region of the general IC only depends on the marginal distributions [14], the ICs can be
classified in equivalent classes in which channels within a class have the same capacity region. In particular, for the Gaussian
IC (2), assuming any joint distribution for the pair(z1, z2) does not change the capacity region as long as the marginal
distributions remain Gaussian with zero mean and unit variance.

Depending on values ofa and b, the two-user Gaussian IC is classified into weak, strong, mixed, one-sided, and degraded
Gaussian IC. In Figure 1, regions ina−b plane together with their associated channel’s names are shown. Briefly, if 0 < a < 1
and0 < b < 1, then the channel is called weak Gaussian IC. If1 ≤ a and1 ≤ b, then the channel is called strong Gaussian
IC. If either a = 0 or b = 0, the channel is called one-sided Gaussian IC. Ifab = 1, then the channel is called degraded
Gaussian IC. If either0 < a < 1 and1 ≤ b or 0 < b < 1 and1 ≤ a the channel is called mixed Gaussian IC. Finally, when
a = b andP1 = P2, then the channel is called symmetric IC.

Among all, the capacity region of the strong IC is fully characterized []. In this case, the capacity region can be stated as
collection of rate pairs(R1, R2) satisfying

R1 ≤ γ(P1)
R2 ≤ γ(P2)

R1 +R2 ≤ min {γ(P1 + aP2), γ(bP1 + P2), γ(P1) + γ(P2)}
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C. Han-Kobayashi Achievable Region

The best inner bound, to date, is the full Han-Kobayashi region denoted byCHK [8]. In their scheme the message of each
user is split into two independent parts, the common part andthe private part. The common part is encoded in such a way
that both users can successfully decode it. The private part, on the other hand, can be decoded only by the corresponding
receiver and the other user treats it as noise. The transmit signal is a deterministic function of common and private parts of
the message. In [9], a new description ofCHK with less number of inequalities is obtained. In this paper,we use this new
description for characterizing the Han-Kobayashi achievable rate region of the two-user Gaussian IC.

Let us denote the random variables involved in characterizingCHK asX1p, X1c, X2p, X2c, andQ. Xip andXic are random
variables that carry Useri’s private and common messages, respectively, fori ∈ {1, 2}. Q is the time sharing parameter. Even
though the Han-Kobayashi scheme has a single letter formula, characterizing the full Han-Kobayashi region is still difficult.
In fact, the optimality of the Gaussian distributions for the Han-Kobayashi scheme are not proved yet.

We defineG as the special case of the Han-Kobayashi scheme whereX1p, X1c, X2p, andX2c are all Gaussian and
transmitted signal from Transmitteri is Xip +Xic. Moreover, we assume that the cardinality of the time sharing parameter is
one. This scheme is call the naive Han-Kobayashi scheme. In the naive Han-Kobayashi schemeαP1 and (1 − α)P1 portion
of the first user’s power are used for transmitting the private and the common part of the first user’s data, respectively, for
all α ∈ [0, 1]. Similarly, βP2 and (1 − β)P1 portion of the second user’s power are used for transmittingthe private and the
common part of the second user’s data, respectively, for allβ ∈ [0, 1]. In this case,G is the union of all rate pairs(R1, R2)
satisfying

R1≤ ρ1 = γ

(

P1

1 + aβP2

)

, (4)

R2≤ ρ2 = γ

(

P2

1 + bαP1

)

, (5)

R1 +R2≤ ρ31 = γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ

(

βP2

1 + bαP1

)

, (6)

R1 +R2≤ ρ32 = γ

(

αP1

1 + aβP2

)

+ γ

(

P2 + b(1 − α)P1

1 + bαP1

)

, (7)

R1 +R2≤ ρ33 = γ

(

αP1 + a(1 − β)P2

1 + aβP2

)

+ γ

(

βP2 + b(1 − α)P1

1 + bαP1

)

, (8)

2R1 +R2≤ ρ4 = γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ

(

αP1

1 + aβP2

)

+ γ

(

βP2 + b(1 − α)P1

1 + bαP1

)

, (9)

R1 + 2R2≤ ρ5 = γ

(

βP2

1 + bαP1

)

+ γ

(

P2 + b(1 − α)P1

1 + bαP1

)

+ γ

(

αP1 + a(1 − β)P2

1 + aβP2

)

, (10)

for all α ∈ [0, 1] andβ ∈ [0, 1]. We defineρ3 as

ρ3 = min {ρ31, ρ32, ρ33} . (11)

One can use the time sharing parameter to enlargeG to G . Clearly, the relationG ⊆ G ⊆ CHK ⊆ C always holds.

D. Concavification Versus Time-Sharing

Consider an achievable schemeS for a multiple-user channel with the power constraintP = [P1, P2, . . . , PM ] is given.
We assume that the achievable region associated withS can be represented as

D0 = {R|AR ≤ Θ(P)} . (12)

D0 is a polyhedron in general, but for the purpose of this paper it suffices to assume that it is a polytope. SinceD0 is a
convex region, convex hull operation does not lead to a new enlarged region. However, if extreme points of the region’s are
not a concave function ofP, it is possible to enlargeD0 by using two different methods which we will explain it now. The
first method is to make use of the time sharing parameter. Let us denote this new region asD1 which can be written as

D1 =

{

R|AR ≤
q
∑

i=1

λiΘ(Pi),

q
∑

i=1

λiPi ≤ P,

q
∑

i=1

λi = 1, λi ≥ 0 ∀i
}

. (13)

In the second method, we split the total powerP as
∑q′

i=1 λiPi ≤ P for someq′, Pis, andλis such that
∑q′

i=1 λiPi ≤ P

and
∑q′

i=1 λi = 1. Then, for each power constraintPi we useDi
0 as the achievable region obtained from Equation (12) which

is
Di

0 = {Ri|ARi ≤ Θ(Pi)} . (14)
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Now, we define the new achievable regionD2 asD2 =
∑q′

i=1 λiD
i
0. This region can be stated as

D2 =







R =

q′

∑

i=1

λiRi|ARi ≤ Θ(Pi),

q′

∑

i=1

λiPi ≤ P,

q′

∑

i=1

λi = 1, λi ≥ 0 ∀i







. (15)

We call this new method as concavification. In fact, the concavification method is equivalent to dividing the available space
into subspaces, for example by using TD or FD, and using the given method in each subspace.

It can be readily shown thatD1 andD2 are closed and convex, andD2 ⊆ D1. We are interested in situations where the other
inclusion holds. To this end, we need the following facts from convex analysis. There is a one to one correspondence between
any closed convex set and its support function [15]. The support function of any setD ∈ ℜm is a functionσD : ℜm → ℜ
defined as

σD(c) = sup{ctR|R ∈ D}. (16)

Clearly, if the setD is compact then the sup is attained and can be replaced by max.In this case, the solutions of (16)
correspond to the boundary points ofD [15]. The following relation is the dual of (16) and holds when D is closed and
convex

D = {R|ctR ≤ σD(c), ∀ c}. (17)

For any two closed convex setsD andD′, D ⊆ D′ if and only if σD ≤ σD′ .
The support function ofD0 is a function ofP andc. Hence, we have

σD0
(c,P) = max{ctR|AR ≤ Θ(P)}. (18)

For a fixedP, (18) is a linear program. Using the strong duality of the linear programming, we obtain

σD0
(c,P) = min{ytΘ(P)|Aty = c, 0 ≤ y}. (19)

In general,̂y, the minimizer of (19), is a function ofP andc. We sayD0 satisfies the active extreme points condition ifŷ

is only a function ofc for all c. In this case, we have

σD0
(c,P) = ŷt(c)Θ(P), (20)

whereAtŷ = c. This condition essentially means that for anyc the extreme point ofD0 maximizing the objectivectR is a
certain extreme point which is not a function ofP . A necessary condition forD0 to satisfy the active extreme point condition
is that each inequality in describingD0 is either redundant or active for allP.

Theorem 1:If D0 satisfies the active extreme points condition, thenD1 = D2.
Proof: SinceD2 ⊆ D1 always hold, we need only to showD1 ⊆ D0. Equivalently, we can showσD1

≤ σD2
. The

support function ofD1 can be written as
σD1

(c,P) = max
R∈D1

ctR (21)

By fixing P, Pis, andλis, the above maximization becomes a linear program. Hence, by making use of the weak duality of
the linear programming we obtain

σD1
(c,P) ≤ min

Aty=c,0≤y
yt

q
∑

i=1

λiΘ(Pi). (22)

Clearly, ŷ(c), the solution of (19), is a feasible point for (22) and we have

σD1
(c,P) ≤ ŷt(c)

q
∑

i=1

λiΘ(Pi) (23)

Using (20), we obtain

σD1
(c,P) ≤

q
∑

i=1

λiσD0
(c,Pi) (24)

Let us assumêRi is the maximizer of (18). In this case, we have

σD1
(c,P) ≤

q
∑

i=1

λic
tR̂i. (25)

Hence, we have

σD1
(c,P) ≤ ct

q
∑

i=1

λiR̂i. (26)
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By definition,
∑q

i=1 λiR̂i is a point inD2. Therefor, we conclude

σD1
(c,P) ≤ σD2

(c,P). (27)

This completes the proof.
Corollary 1 (Han [16]): If D0 is a polymatroid thenD1=D2.

Proof: It is easy to show thatD0 satisfies the active extreme points condition. In fact, for given c, ŷ can be obtained in
a greedy fashion which is independent ofP.

In what follows, we upper boundq andq′.
Theorem 2:The cardinality of the time sharing parameterq in (13) is less thanM + K + 1, whereM andK are the

dimensions ofP andΘ(P), respectively. Moreover, ifΘ(P) is a continuous function ofP, thenq ≤M +K.
Proof: Let us defineE as

E =

{

q
∑

i=1

λiΘ(Pi)|
q
∑

i=1

λiPi ≤ P,

q
∑

i=1

λi = 1, λi ≥ 0 ∀i
}

. (28)

In fact,E is the collection of all possible bounds forD1. To proveq ≤M +K + 1, we define another regionD as

E1 = {(P′,S′)|0 ≤ P′,S′ = Θ(P′)}. (29)

From the direct consequence of the Caratheodory’s theorem,the convex hull ofE1 denoted by convE1 can be obtained by
convex combinations of no more thanM +K + 1 points inD. Moreover, if Θ(P′) is continuous, thenM + K points are
sufficient due to extension of the Caratheodory’s theorem. Now, we define the region̂E as

Ê = {S′|(P′,S′) ∈ convE1,P
′ ≤ P}. (30)

Clearly, Ê ⊆ E. To show the other inclusion, we take a point inE, sayS =
∑q

i=1 λiΘ(Pi). Since(Pi,Θ(Pi)) is point in
E1,

∑q
i=1 λi(Pi,Θ(Pi)) belongs to convE1. Having

∑q
i=1 λiPi ≤ P, we conclude

∑q
i=1 λiΘ(Pi) ∈ Ê. Hence,E ⊆ Ê.

This completes the proof.
Corollary 2 (Etkin, Parakh, and Tse [17]):For theM -user Gaussian IC where users use Gaussian codebooks for data

transmission and treat the interference as Gaussian noise,the cardinality of the time sharing parameter is less than2M .
Proof: In this caseD0 = {R|R ≤ Θ(P)}. Therefore, bothP andΘ(P) have dimensionM . On the other handΘ(P)

is a continuous function ofP. Now, by applying Theorem 2 we obtain the desired result.
To upper boundq′ in (15), we need some extra definitions and theorems. In fact,in this caseD0 can be viewed as a set

valued map andD2 as another set valued map which is obtained from concavification of D0. Appendix I summarizes all
results regarding concavification of a set valued map. Usingthese results, we can state the following theorem.

Theorem 3:To characterize boundary points ofD2, it suffices to setq′ ≤ N + 1 whereN is the dimension ofR.
Proof: See .

Surprising fact about Theorem 3 is that upper bound forq′ is independent of the number of inequalities in the description
of the achievable rate region.

Corollary 3: For theM -user Gaussian IC where users use Gaussian codebooks for data transmission and treat the interference
as Gaussian noise, to obtain any point on the boundary ofD1, the cardinality of the time sharing parameter is less than2M .

E. Extremal Inequality

In [13], the following optimization problem is studied:

W = max
QX≤S

h(X + Z1) − µh(X + Z2), (31)

whereZ1 andZ2 aren-dimensional Gaussian random vectors with the strictly positive definite covariance matricesQZ1
and

QZ2
, respectively. The optimization is over all random vectorsX independent ofZ1 andZ2. X is also subject to the covariance

matrix constrainQX ≤ S, whereS is a positive definite matrix. It is shown that for allµ ≥ 1, this optimization problem has a
Gaussian optimal solution for all positive definite matrices QZ1

andQZ2
. However, for0 ≤ µ < 1 this optimization problem

has a Gaussian optimal solution providedQZ1
≤ QZ2

, i.e.,QZ2
−QZ1

is a positive semi-definite matrix. It is worth noting
that forµ = 1 this problem whenQZ1

≤ QZ2
is studied under the name of the worse additive noise [18][19].

In this paper, we consider a special case of (31) whereZ1 andZ2 have the covariance matricesN1I andN2I, respectively,
and the constraint is the trace constraint, i.e.,

W = max
tr{QX}≤nP

h(X + Z1) − µh(X + Z2). (32)

In the following lemma, we provide the optimal solution for the above optimization problem whenN1 ≤ N2.
Lemma 1: If N1 ≤ N2, the optimization problem (32) has an Gaussian optimal solution for all 0 ≤ µ with iid components.

More precisely, we have
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Fig. 2. Optimum variance versusµ.

1) For 0 ≤ µ ≤ N2+P
N1+P , the optimum covariance matrix isPI and the optimum solution is

W =
n

2
log [(2πe)(P +N1)] −

µn

2
log [(2πe)(P +N2)] . (33)

2) For N2+P
N1+P < µ ≤ N2

N1

, the optimum covariance matrix isN2−µN1

µ−1 I and the optimum solution is

W =
n

2
log

[

(2πe)
N2 −N1

µ− 1

]

− µn

2
log

[

µ(2πe)(N2 −N1)

µ− 1

]

(34)

3) For N2

N1

< µ, the optimum covariance matrix is0 and the optimum solution is

W =
n

2
log(2πeN1) −

µn

2
log(2πeN2). (35)

Proof: See Appendix II for the proof.
In Figure 2, the optimum variance as a function ofµ is sketched. This figure shows that for any value ofµ ≤ P+N2

P+N1

we
need to use the maximum power to obtain the maximum of the objective, whereas forµ > P+N2

P+N1

we use less power than the
given power constraint.

Lemma 2: If N1 > N2, the optimization problem (32) has an Gaussian optimal solution for all 1 ≤ µ with iid components.
In this case, the optimum variance is0 and the optimum solution is

W =
n

2
log(2πeN1) −

µn

2
log(2πeN2). (36)

Proof: The proof is similar to that of Lemma 1 and we omit it here.
Corollary 4: Forµ = 1, the optimization problem (32) has an Gaussian optimal solution with iid components. The optimum

solution in this case is

W =







n
2 log

(

P+N1

P+N2

)

, if N1 ≤ N2

n
2 log

(

N1

N2

)

, if N1 > N2

(37)

We repeatedly use the following optimization problem throughout the paper:

fh = max
tr{QX}≤nP

h(X + Z1) − µh(
√
aX + Z2), (38)

whereN1 ≤ N2/a. Using the identityh(AX) = log(|A|) + h(X), (38) can be written as

fh =
n

2
log a+ max

tr{QX}≤nP
h(X + Z1) − µh(X +

Z2√
a
), (39)

Now, by applying Lemma 1, we obtain

fh(P,N1, N2, a, µ) =











1
2 log [(2πe)(P +N1)] − µ

2 log [(2πe)(aP +N2)] if 0 ≤ µ ≤ P+N2/a
P+N1

1
2 log

[

(2πe)N2/a−N1

µ−1

]

− µ
2 log

[

aµ(2πe)(N2/a−N1)
µ−1

]

if P+N2/a
P+N1

< µ ≤ N2

aN1

1
2 log(2πeN1) − µ

2 log(2πeN2) if N2

aN1

< µ

(40)
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ŷ1

ŷ2

ỹ1

ỹ2

f1

f2

ω(ỹ1, ỹ2|x1, x2)

x1

x2

Fig. 3. An admissible channel.f1 andf2 are two deterministic functions of their inputs.

III. A DMISSIBLE CHANNELS

In this section, we aim at building ICs whose capacity regions contain the capacity region of the two-user Gaussian IC, i.e.,
C . Since ultimately we use them to outer boundC , these ICs need to possess some properties regarding characterization of
the capacity region. In other words, if characterizing the capacity regions or obtaining tight upper bounds of these channels
are as hard as the original one, then the new channels are useless.

Let us consider an IC with the same input letters as that ofC and output letters̃y1 and ỹ2 for Users 1 and 2, respectively.
The capacity region of this channel, sayC ′, containsC if

I(xn
1 ; yn

1 ) ≤I(xn
1 ; ỹn

1 ), (41)

I(xn
2 ; yn

2 ) ≤I(xn
2 ; ỹn

2 ), (42)

for all p(xn
1 )p(xn

2 ) and for alln ∈ N.
One way to satisfy (41) and (42) is to provide some extra information to the one or both receivers. This scheme is called

Genie aided outer bounding scheme. In [12], Kramer used a genie to provide some extra information to both receivers so that
they can decode both users’ messages. Since the capacity region of this new interference channel is equivalent to the capacity
of the Compound Multiple Access Channel whose capacity region is known, he managed to obtain an outer bound on the
capacity region. In order to obtain a tighter outer bound, healso used the fact that if a genie provides the exact information
about the interfering signal to one of the receivers, then the new channel becomes the one-sided Gaussian IC. Although, the
capacity region of the one-sided Gaussian IC is unknown for all ranges of parameters, there exist an outer bound due to Sato
and Costa, see [20] and [11], that can be used to outer bound the original channel. In all previous works, the genie’s task
was to reveal some information about the interfering signalto the receiver(s). In [21], Etkin, Tse, and Wang changed the
direction. Their genie provides some extra information about the intended signal. Even though, it seems that their channel is
far from having a tight capacity region with respect to that of the original channel, they showed that their channel is tighter
than Kramer’s outer bound for some ranges of parameters.

The way that we rely on to satisfy (41) and (42) is to find two deterministic functionŝyn
1 = f1(ỹ

n
1 ) and ŷn

2 = f2(ỹ
n
2 ) such

that (see Figure 3)

I(xn
1 ; yn

1 ) ≤I(xn
1 ; ŷn

1 ), (43)

I(xn
2 ; yn

2 ) ≤I(xn
2 ; ŷn

2 ). (44)

for all p(xn
1 )p(xn

2 ) and for alln ∈ N. By using the data processing inequality, it is easy to show that (43) and (44) imply (41)
and (42), respectively.

Definition 3 (Admissible Channel):An IC C ′ with input letterxi and output letter̃yi for User i ∈ {1, 2} is an admissible
channel for the two-user Gaussian IC if there exist two deterministic functionsŷn

1 = f1(ỹ
n
1 ) and ŷn

2 = f2(ỹ
n
2 ) such that (43)

and (44) hold for allp(xn
1 )p(xn

2 ) and for alln ∈ N. E denotes the collection of all admissible channels.
Clearly, Genie aided channels are among admissible channels. To see this, let us assume a genie providess1 ands2 as side

information for User 1 and 2, respectively. In this case,ỹi = (yi, si) for i ∈ {1, 2}. By choosingfi(yi, si) = yi, we observe
that ŷi = yi and hence (43) and (44) hold with equality sign.

To obtain the tightest outer bound, we need to take the intersection of the capacity regions of all admissible channels.
Nonetheless, it may happen that finding the capacity region of an admissible channel is as hard as that of the original one.In
fact, based on the definition the channel itself is one of the admissible channels. Hence, we need to find classes of admissible
channels that possess two important properties. First, their capacity regions are close toC . Second, either their exact capacity
regions are computable or there exist good outer bounds on their capacity regions. LetF denote the subset ofE containing
all appropriate admissible channels. Clearly, we have

C ⊆
⋂

F

C
′. (45)
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Admissible Channel

ŷ1

ŷ2

f1(ỹ1) = ỹ1

x2

z21

z22

x1

z1

√
g2ỹ21

ỹ22
1 −√

g2

√
a′

√
b

ỹ1

f2(ỹ22, ỹ21) = (1 −√
g2)ỹ22 +

√
g2ỹ21

Fig. 4. Class A1 admissible channels.

Recall that there is a one to one correspondence between a closed convex set and its support function. SinceC is closed and
convex, there is a one to one correspondence betweenC andσC . In fact, boundary points ofC correspond to the solutions
of the following optimization problem

σC (c1, c2) = max
(R1,R2)∈C

c1R1 + c2R2 (46)

Since we are interested in boundary points not including theR1 andR2 axes, it suffices to consider0 ≤ c1 and0 ≤ c2 where
c1 + c2 = 1.

SinceC ⊆ C ′, we have
σC (c1, c2) ≤ σC ′(c1, c2). (47)

Hence, taking the minimum of the right hand side we obtain

σC (c1, c2) ≤ min
C ′∈F

σC ′(c1, c2), (48)

which can be written as
σC (c1, c2) ≤ min

C ′∈F

max
(R1,R2)∈C ′

c1R1 + c2R2. (49)

For the sake of convenience, we make use of the following two optimization problems

σC (µ, 1) = max
(R1,R2)∈C

µR1 +R2, (50)

σC (1, µ) = max
(R1,R2)∈C

R1 + µR2, (51)

where1 ≤ µ. It is easy to show that solutions of (50) and (51) correspondto the boundary points of the capacity region that
we are interested in.

In the rest of this section, we introduce classes of admissible channels and obtain upper bounds onσC ′(µ, 1) andσC ′(1, µ).

A. Classes of Admissible Channels

1) Class A1:This class is specially designed to upper boundσC (µ, 1). Therefore, we need to find a tight upper bound for
σC ′(µ, 1). A member of this class is a channel in which User 1 has one transmit and one receive antenna whereas User 2 has
one transmit antenna and two receive antennas (see Figure 4). The channel model can be written as







ỹ1 = x1 +
√
ax2 + z1,

ỹ21 = x2 +
√
b′x1 + z21,

ỹ22 = x2 + z22,
(52)

whereỹ1 is the received signal at the first user’s receiver,ỹ21 andỹ22 are received signals at the second user’s receiver,z1 is an
additive Gaussian noise with unit variance,z11 andz12 are additive Gaussian noises with variancesN11 andN12, respectively,
and transmitter 1 and 2 are subject to the average power constraintsP1 andP2, respectively.

To investigate admissibility conditions (43) and (44), we need to introduce two deterministic functions. Let us consider two
linear functionsf1 andf2 as follows (see Figure 4)

f1(ỹ
n
1 )= ỹn

1 , (53)

f2(ỹ
n
22, ỹ

n
21)= (1 −√

g2)ỹ
n
22 +

√
g2ỹ

n
21, (54)
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where0 ≤ g2. Therefore, we have

ŷn
1 =xn

1 +
√
axn

2 + zn
1 , (55)

ŷn
2 =

√

b′g2x
n
1 + xn

2 + (1 −√
g2)z

n
22 +

√
g2z

n
21. (56)

Hence, this channel is admissible if the channel’s parameters satisfy

b′g2 = b,
(1 −√

g2)
2N22 + g2N21 = 1.

(57)

We further add the following constraints to the required conditions of the class A1 channels:

b′ ≤ N21,
aN22 ≤ 1.

(58)

Although, they reduce the number of admissible channels within the class, these latter constraints help us to provide a closed
form formula for an upper bound onσC ′(µ, 1). In the following lemma, we obtain the required upper bound.

Lemma 3:For the channels modeled by (52) and satisfying (58), we have

σC ′(µ, 1) ≤ min
µ1, µ2 ≥ 0

µ1 + µ2 = µ

µ1

2
log [2πe(P1 + aP2 + 1)] − µ2

2
log(2πe) +

1

2
log

(

N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

+ µ2fh

(

P1, 1, N21, b
′,

1

µ2

)

+ fh(P2, N22, 1, a, µ1). (59)

Proof: Let us assumeR1 andR2 are two rates achievable for User 1 and 2, respectively. Furthermore, we splitµ into
µ1 ≥ 0 andµ1 ≥ 0 such thatµ = µ1 + µ2. Using Fano’s inequalities, we obtain

n(µR1 +R2) ≤µI(xn
1 ; ỹn

1 ) + I(xn
2 ; ỹn

22, ỹ
n
21) + nǫn

≤µ1I(x
n
1 ; ỹn

1 ) + µ2I(x
n
1 ; ỹn

1 ) + I(xn
2 ; ỹn

22, ỹ
n
21) + nǫn

(a)
=µ1I(x

n
1 ; ỹn

1 ) + µ2I(x
n
1 ; ỹn

1 |xn
2 ) + I(xn

2 ; ỹn
22, ỹ

n
21) + nǫn

=µ1I(x
n
1 ; ỹn

1 ) + µ2I(x
n
1 ; ỹn

1 |xn
2 ) + I(xn

2 ; ỹn
21|ỹn

22, ) + I(xn
2 ; ỹn

22) + nǫn

=µ1h(ỹ
n
1 ) − µ1h(ỹ

n
1 |xn

1 ) + µ2h(ỹ
n
1 |xn

2 ) − µ2h(ỹ
n
1 |xn

1 , x
n
2 )

+h(ỹn
21|ỹn

22) − h(ỹn
21|xn

2 , ỹ
n
22) + h(ỹn

22) − h(ỹn
22|xn

2 ) + nǫn (60)

=
[

µ1h(ỹ
n
1 ) − µ2h(ỹ

n
1 |xn

1 , x
n
2 )
]

+
[

µ2h(ỹ
n
1 |xn

2 ) − h(ỹn
21|xn

2 , ỹ
n
22)
]

+
[

h(ỹn
21|ỹn

22) − h(ỹn
22|xn

2 )
]

+
[

h(ỹn
22) − µ1h(ỹ

n
1 |xn

1 )
]

+ nǫn, (61)

where (a) follows from the factxn
1 andxn

1 are independent. Now, we separately upper bound the terms within each bracket in
(61).

To maximize the terms within the first bracket, we use the factthat Gaussian distribution maximizes the differential entropy
for given covariance matrix constraint. Hence, we have

µ1h(ỹ
n
1 ) − µ2h(ỹ

n
1 |xn

1 , x
n
2 )= µ1h(x

n
1 +

√
axn

2 + zn
1 ) − µ2h(z

n
1 )

≤ µ1n

2
log [2πe(P1 + aP2 + 1)] − µ2n

2
log(2πe). (62)

Sinceb′ ≤ N21, we can make use of Lemma 4 to upper bound the second bracket. In this case, we have

µ2h(ỹ
n
1 |xn

2 ) − h(ỹn
21|xn

2 , ỹ
n
22)= µ2

(

h(xn
1 + zn

1 ) − 1

µ2
h(
√
b′xn

1 + zn
21)

)

≤ µ2nfh

(

P1, 1, N21, b
′,

1

µ2

)

, (63)

wherefh is defined in (40).
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√
b′

x2

x1

ỹ2

ỹ12

ỹ11

f2(ỹ2) = ỹ2

ŷ1

ŷ2

√
g1

1 −√
g1

z11

z12

z2

√
a

f1(ỹ11, ỹ12) = (1 −√
g1)ỹ11 +

√
g1ỹ12

Fig. 5. Class A2 admissible channels.

We upper bound the terms within the third bracket as follows:

h(ỹn
21|ỹn

22) − h(ỹn
22|xn

2 )
(a)

≤
n
∑

i=1

h(ỹ21[i]|ỹ22[i]) − h(zn
22)

(b)

≤
n
∑

i=1

1

2
log

[

2πe

(

N21 + b′P1[i] +
P2[i]N22

P2[i] +N22

)]

− n

2
log (2πeN22)

(c)

≤ n

2
log

[

2πe

(

N21 +
1

n

n
∑

i=1

b′P1[i] +
1
n

∑n
i=1 P2[i]N22

1
n

∑n
i=1 P2[i] +N22

)]

− n

2
log (2πeN22)

≤n
2

log

[

2πe

(

N21 + b′P1 +
P2N22

P2 +N22

)]

− n

2
log (2πeN22)

≤n
2

log

(

N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

(64)

where (a) follows from the chain rule and the fact that removing independent conditions does not decrease differential entropy,
(b) follows from the fact that Gaussian distribution optimized conditional entropy for given covariance matrix, and (c) follows
form Jenson’s inequality.

For the last bracket, we again make use of the definition offh. In fact, sinceaN22 ≤ 1, we have

h(ỹn
22) − µ1h(ỹ

n
1 |xn

1 )= h(xn
2 + zn

22) − µ1h(
√
axn

2 + zn
1 )

≤ nfh(P2, N22, 1, a, µ1). (65)

Adding all inequalities, we obtain

µR1 +R2 ≤µ1

2
log [2πe(P1 + aP2 + 1)] − µ2

2
log(2πe) +

1

2
log

(

N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

+µ2fh

(

P1, 1, N21, b
′,

1

µ2

)

+ fh(P2, N22, 1, a, µ1), (66)

where the fact thatǫn → 0 asn → ∞ is used to eliminateǫn form the right hand side of the inequality. Now, by taking the
minimum of the right hand sid of (66) over allµ1 andµ2, we obtain the desired result. This completes the proof.

2) Class A2: This class is essentially the complement of Class A1 in a sense that we use it to upper boundσC (1, µ). A
member of this class is a channel in which User 1 is equipped with one transmit and two receive antenna whereas User 2 is
equipped with one antenna at both transmitter and receiver (see Figure 5). The channel model can be written as







ỹ11 = x1 + z11,

ỹ12 = x1 +
√
a′x2 + z12,

ỹ2 = x2 +
√
bx1 + z2,

(67)

whereỹ11 andỹ12 are received signals at the first user’s receiver,ỹ2 is the received signal at the second user’s receiver,z2 is an
additive Gaussian noise with unit variance,z22 andz21 are additive Gaussian noises with variancesN22 andN21, respectively,
and transmitter 1 and 2 are subject to the average power constraintsP1 andP2, respectively.
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ỹ12

x2

x1

z11

z12

z21

z22

ỹ22

ỹ21

ỹ11

√
g1

1 −√
g1

ŷ1

ŷ2

1 −√
g2

√
g2

√
b′

√
a′

f1(ỹ11, ỹ12) = (1 −√
g1)ỹ11 +

√
g1ỹ12

f2(ỹ22, ỹ21) = (1 −√
g2)ỹ22 +

√
g2ỹ21

Fig. 6. Class B admissible channels.

For this class, we consider two linear functionsf1 andf2, as follows (see Figure 5)

f1(ỹ
n
11, ỹ

n
12)= (1 −√

g1)ỹ
n
11 +

√
g1ỹ

n
12, (68)

f2(ỹ
n
2 )= ỹn

2 . (69)

Therefore, we have

ŷn
1 =xn

1 +
√

a′g1x
n
2 + (1 −√

g1)z
n
11 +

√
g1z

n
12, (70)

ŷn
2 =

√
bxn

1 + xn
2 + zn

2 . (71)

We deduce that the channel modeled by (67) is admissible if the channel’s parameters satisfy

a′g1 = a,
(1 −√

g1)
2N11 + g1N12 = 1.

(72)

Similar to Class A1, we further add the following constraints to the required conditions of the class A2 channels:

a′ ≤ N12,
bN11 ≤ 1.

(73)

In the following lemma, we obtain the required upper bound.
Lemma 4:For the channels modeled by (67) and satisfying (73), we have

σC ′(µ, 1) ≤ min
µ1, µ2 ≥ 0

µ1 + µ2 = µ

µ1

2
log [2πe(P1 + aP2 + 1)] − µ2

2
log(2πe) +

1

2
log

(

N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

+ µ2fh

(

P1, 1, N21, b
′,

1

µ2

)

+ fh(P2, N22, 1, a, µ1). (74)

Proof: The proof is similar to the proof of Lemma 3 and we omit it here.
3) Class B: A member of this class is a channel with one transmit antenna and two receive antennas for each user modeled

by (see Figure 6)














ỹ11 = x1 + z11,

ỹ12 = x1 +
√
a′x2 + z12,

ỹ21 = x2 +
√
b′x1 + z21,

ỹ22 = x2 + z22,

(75)

whereỹ11 andỹ12 are received signals at the first user’s receiver,ỹ21 andỹ22 are received signals at the second user’s receiver,
zij is an additive Gaussian noise with varianceNij for i, j ∈ {1, 2}, and transmitter 1 and 2 are subject to the average power
constraintsP1 andP2, respectively. In fact, this channel is designed to upper bound bothσC (µ, 1) andσC (1, µ).
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Here, we investigate admissibility of this channel and, as aresult, the required conditions that must be imposed on the
channel’s parameters. Let us consider two linear deterministic functionsf1 andf2 with parameters0 ≤ g1 and0 ≤ g2, resp.,
as follows (see Figure 6)

f1(ỹ
n
11, ỹ

n
12)= (1 −√

g1)ỹ
n
11 +

√
g1ỹ

n
12 (76)

f2(ỹ
n
22, ỹ

n
21)= (1 −√

g2)ỹ
n
22 +

√
g2ỹ

n
21. (77)

Therefore, we have

ŷn
1 =xn

1 +
√

a′g1x
n
2 + (1 −√

g1)z
n
11 +

√
g1z

n
12 (78)

ŷn
2 =

√

b′g2x
n
1 + xn

2 + (1 −√
g2)z

n
22 +

√
g2z

n
21. (79)

To satisfy (43) and (44), it suffices to have

a′g1 = a,
b′g2 = b,

(1 −√
g1)

2N11 + g1N12 = 1,
(1 −√

g2)
2N22 + g2N21 = 1.

(80)

Hence, a channel modeled in (75) is admissible if there are two nonnegative numbersg1 andg2 such that the set of equalities
in (80) holds. We further add the following two constraints to the equality conditions in (80:

b′N11 ≤ N21,
a′N22 ≤ N12.

(81)

Although, having more constraints reduces the number of theadmissible channels, it helps us to provide an outer bound on
σC ′(µ, 1) andσC ′(1, µ) with a closed form formula.

Lemma 5:For the channels modeled by (75) and satisfying (81), we have

σC ′(µ, 1) ≤µγ
(

P1

N11
+

P1

a′P2 +N12

)

+ γ

(

P2

N22
+

P2

b′P1 +N21

)

+fh(P2, N22, N12, a
′, µ) +

µ

2
log((2πe)(a′P2 +N12)) −

1

2
log((2πe)(P2 +N22)), (82)

σC ′(1, µ) ≤µγ
(

P2

N22
+

P2

b′P1 +N21

)

+ γ

(

P1

N11
+

P1

a′P2 +N12

)

+fh(P1, N11, N21, b
′, µ) +

µ

2
log((2πe)(b′P1 +N21)) −

1

2
log((2πe)(P1 +N11)). (83)

Proof: We only upper boundσC ′(µ, 1) and an upper bound forσC ′(1, µ) can similarly be obtained. Let us assumeR1

andR2 are achievable rates for User 1 and 2, respectively. Using Fano’s inequalities, we obtain

n(µR1 +R2) ≤µI(xn
1 ; ỹn

11, ỹ
n
12) + I(xn

2 ; ỹn
22, ỹ

n
21) + nǫn

=µI(xn
1 ; ỹn

12|ỹn
11) + µI(xn

1 ; ỹn
11)

+I(xn
2 ; ỹn

21|ỹn
22, ) + I(xn

2 ; ỹn
22) + nǫn

=µh(ỹn
12|ỹn

11) − µh(ỹn
12|xn

1 , ỹ
n
11) + µh(ỹn

11) − µh(ỹn
11|xn

1 )

+h(ỹn
21|ỹn

22) − h(ỹn
21|xn

2 , ỹ
n
22) + h(ỹn

22) − h(ỹn
22|xn

2 ) + nǫn

=
[

µh(ỹn
12|ỹn

11) − µh(ỹn
11|xn

1 )
]

+
[

h(ỹn
21|ỹn

22) − h(ỹn
22|xn

2 )
]

+
[

µh(ỹn
11) − h(ỹn

21|xn
2 , ỹ

n
22)
]

+
[

h(ỹn
22) − µh(ỹn

12|xn
1 , ỹ

n
11)
]

+ nǫn (84)

Now, we upper bound different the terms within each bracket in (84) separately.
For the first bracket, we have

µh(ỹn
12|ỹn

11) − µh(ỹn
11|xn

1 )
(a)

≤µ
n
∑

i=1

h(ỹ12[i]|ỹ11[i]) −
µn

2
log (2πeN11)

(b)

≤µ
n
∑

i=1

1

2
log

[

2πe

(

N12 + a′P2[i] +
P1[i]N11

P1[i] +N11

)]

− µn

2
log (2πeN11)

(c)

≤ µn

2
log

[

2πe

(

N12 +
1

n

n
∑

i=1

a′P2[i] +
1
n

∑n
i=1 P1[i]N11

1
n

∑n
i=1 P1[i] +N11

)]

− µn

2
log (2πeN11)

≤µn
2

log

[

2πe

(

N12 + a′P2 +
P1N11

P1 +N11

)]

− µn

2
log (2πeN11)

=
µn

2
log

(

N12

N11
+
a′P2

N11
+

P1

P1 +N11

)

(85)
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where (a) follows from the chain rule and the fact that removing independent conditions increases differential entropy, (b)
follows from the fact that Gaussian distribution optimizedconditional entropy for given covariance matrix, and (c) follows
form Jenson’s inequality.

The terms within the second bracket can be upper bounded similarly to that of the first one. Hence, we have

h(yn
21|yn

22) − h(yn
22|xn

2 ) ≤ n

2
log

(

N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

. (86)

By making use of Lemma 4 and using the fact thatN11 ≤ N21/b
′, the terms within the third bracket can be upper bounded

as

µh(ỹn
11) − h(ỹn

21|xn
2 , ỹ

n
22)= µ

(

h(xn
1 + zn

11) −
1

µ
h(
√
b′xn

1 + zn
21)

)

≤ µnfh

(

P1, N11, N21, b
′,

1

µ

)

. (87)

Since1 ≤ µ, we obtain

µh(ỹn
11) − h(ỹn

21|xn
2 , ỹ

n
22) ≤

µn

2
log((2πn)(P1 +N11)) −

n

2
log((2πe)(b′P1 +N21)). (88)

For the last bracket, again we make use of Lemma 4 to obtain

h(ỹn
22) − µh(ỹn

12|xn
1 , ỹ

n
11)= h(xn

2 + zn
22) − µh(

√
a′xn

2 + zn
12)

≤ nfh(P2, N22, N12, a
′, µ). (89)

Adding all inequalities, we obtain

µR1 +R2 ≤µ
2

log

(

N12

N11
+
a′P2

N11
+

P1

P1 +N11

)

+
1

2
log

(

N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

+
µ

2
log((2πe)(P1 +N11)) −

1

2
log((2πe)(b′P1 +N21)) + fh(P2, N22, N12, a

′, µ), (90)

where the fact thatǫn → 0 asn → ∞ is used to eliminateǫn form the right hand side of the inequality. By rearranging, we
obtain

µR1 +R2 ≤µγ
(

P1

N11
+

P1

a′P2 +N12

)

+ γ

(

P2

N22
+

P2

b′P1 +N21

)

+fh(P2, N22, N12, a
′, µ) +

µ

2
log((2πe)(a′P2 +N12)) −

1

2
log((2πe)(P2 +N22)).

This completes the proof.
The unique feature of the channels within Class B is that for1 ≤ µ ≤ P2+N12/a′

P2+N22

and1 ≤ µ ≤ P1+N21/b′

P1+N11

, the upper bounds
in (82) and (83) become, respectively,

µR1 +R2 ≤µγ
(

P1

N11
+

P1

a′P2 +N12

)

+ γ

(

P2

N22
+

P2

b′P1 +N21

)

(91)

and

R1 + µR2 ≤γ
(

P1

N11
+

P1

a′P2 +N12

)

+ µγ

(

P2

N22
+

P2

b′P1 +N21

)

. (92)

On the other hand, if the receivers treat the interference asGaussian noise, then it can be shown that

R1 = γ

(

P1

N11
+

P1

a′P2 +N12

)

(93)

and

R2 = γ

(

P2

N22
+

P2

b′P1 +N21

)

(94)

are achievable. Comparing upper bounds and achievable rates, we conclude that the upper bounds are indeed tight. In fact,
this property is first observed by Etkin, Tse, and Wang in [21]. We summarize this result in the following theorem:

Theorem 4:The sum capacity of Class B channels are attained when receivers treat the interference as noise. In this case,
the sum capacity is

C
′
sum =γ

(

P1

N11
+

P1

a′P2 +N12

)

+ γ

(

P2

N22
+

P2

b′P1 +N21

)

. (95)

Proof: Simply by substitutingµ = 1 in (91), we obtain the desired result.
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4) Class C: Class C is designed to upper boundσC (µ, 1) for the mixed Gaussian ICs where1 ≤ b. Structurally, Class C
is essentially similar to Class A1 (see Figure 4). However, we impose different constraints on the parameters for the channels
within Class C. These constraints assist us in providing newupper bounds by using new method.

For channels in Class C, we use the same model that is given in (52). Therefore, similar to channels in Class A1, this
channel is admissible if the channel’s parameters satisfy

b′g2 = b,
(1 −√

g2)
2N22 + g2N21 = 1.

(96)

Here, we change the constraints in (58) to new constraints

b′ ≥ N21,
aN22 ≤ 1.

(97)

In fact, the second condition is unchanged and only the inequality sign for the first one is reversed. By this simple change
of constraints, we see that the second receiver after decoding its own signal has a cleaner version of the first user’s signal.
Therefore, it is able to decode the signal of the first user as well as its own signal. Applying this observation, we have the
following lemma.

Lemma 6:For a channel in Class C, we have

σC ′(µ, 1) ≤µ− 1

2
log (2πe(P1 + aP2 + 1)) +

1

2
log

(

2πe

(

P2N22

P2 +N22
+ b′P1 +N21

))

− 1

2
log(2πeN21) −

1

2
log(2πeN22) + fh(P2, N22, 1, a, µ− 1) (98)

Proof: Since the second user is able to decode both users’ messages,we have

R1≤
1

n
I(xn

1 ; ỹn
1 ) (99)

R1≤
1

n
I(xn

1 ; ỹn
21, ỹ

n
22|xn

2 ) (100)

R2≤
1

n
I(xn

2 ; ỹn
21, ỹ

n
22|xn

1 ) (101)

R1 +R2≤
1

n
I(xn

1 , x
n
2 ; ỹn

21, ỹ
n
22) (102)

µR1 +R2 ≤ µ− 1

n
I(xn

1 ; ỹn
1 ) +

1

n
I(xn

1 , x
n
2 ; ỹn

21, ỹ
n
22) (103)

µR1 +R2≤
µ− 1

n
h(ỹn

1 ) − µ− 1

n
h(ỹn

1 |xn
1 ) +

1

n
h(ỹn

21, ỹ
n
22) −

1

n
h(ỹn

21, ỹ
n
22|xn

1 , x
n
2 )

=
µ− 1

n
h(ỹn

1 ) +
1

n
h(ỹn

21|ỹn
22) −

1

n
h(ỹn

21, ỹ
n
22|xn

1 , x
n
2 )

+

[

1

n
h(ỹn

22) −
µ− 1

n
h(ỹn

1 |xn
1 )

]

µ− 1

n
h(ỹn

1 ) ≤ µ− 1

2
log (2πe(P1 + aP2 + 1)) (104)

1

n
h(ỹn

21|ỹn
22) ≤

1

2
log

(

2πe

(

P2N22

P2 +N22
+ b′P1 +N21

))

(105)

1

n
h(ỹn

21, ỹ
n
21|xn

1 , x
n
2 ) =

1

2
log(2πeN21) +

1

2
log(2πeN22). (106)

1

n
h(ỹn

22) −
µ− 1

n
h(ỹn

1 |xn
1 )=

1

n
h(xn

2 + zn
22) −

µ− 1

n
h(
√
axn

2 + z1) (107)

≤ fh(P2, N22, 1, a, µ− 1) (108)

IV. W EAK GAUSSIAN INTERFERENCECHANNELS

In this section, we focus on the weak Gaussian ICs. We first obtain the sum capacity of this channel for some certain range
of parameters. Then, we obtain an outer bound on the capacityregion which is tighter that previous outer bounds. Finally, we
show that using time-sharing parameter and concavificationresult in the same achievable rate region for this channel when
Gaussian distributions are used for generating codebooks.
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A. Sum Capacity

In this subsection, we make use of the channels in Class B to obtain the sum capacity of the weak IC in the certain ranges
of parameters. To this end, let us consider the following minimization problem:

W =min γ

(

P1

N11
+

P1

a′P2 +N12

)

+ γ

(

P2

N22
+

P2

b′P1 +N21

)

(109)

subject to:

a′g1 = a

b′g2 = b

b′N11 ≤ N21

a′N22 ≤ N12

(1 −√
g1)

2N11 + g1N12 = 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [a′, b′, g1, g2, N11, N12, N22, N21]

The objective function in (109) is the sum capacity of Class Bchannels obtained in Theorem 4. The constraints are the
combination of (80) and (81) where applied to confirm the admissibility of the channel and to validate the sum capacity
result. Since every channel in the Class is admissible, we have Csum ≤ W . By changing the variables asS1 = g1N12 and
S2 = g2N21, we obtain

W =min γ

(

(1 −√
g1)

2P1

1 − S1
+

g1P1

aP2 + S1

)

+ γ

(

(1 −√
g2)

2P2

1 − S2
+

g2P2

bP1 + S2

)

(110)

subject to:
b(1 − S1)

(1 −√
g1)2

≤ S2 < 1,

a(1 − S2)

(1 −√
g2)2

≤ S1 < 1,

0 < [g1, g2],

We first minimize the objective in (110) with respect tog1 andg2. In this case, the optimization problem can be decomposed
into two separate optimization problems with respect tog1 andg2. The optimization problem with respect tog1 reads as

W1 =min γ

(

(1 −√
g1)

2P1

1 − S1
+

g1P1

aP2 + S1

)

(111)

subject to:
b(1 − S1)

S2
≤ (1 −√

g1)
2,

0 < g1,

It is easy to solve the above optimization problem. In fact, we have

W1 =











γ
(

P1

1+aP2

)

if
√
b(1 + aP2) ≤

√

S2(1 − S1)

γ

(

bP1

S2

+
(1−

√
b(1−S1)/S2)

2P1

aP2+S1

)

Otherwise
(112)

Similarly, the optimization problem with respect tog2 can be written as

W2 =min γ

(

(1 −√
g2)

2P2

1 − S2
+

g2P2

bP1 + S2

)

(113)

subject to:
a(1 − S2)

S1
≤ (1 −√

g2)
2,

0 < g2,

The solution to the above optimization problem is

W2 =











γ
(

P2

1+bP1

)

if
√
a(1 + bP1) ≤

√

S1(1 − S2)

γ

(

aP2

S1

+
(1−

√
a(1−S2)/S1)

2P2

bP1+S2

)

Otherwise
(114)
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Combining (112) and (114), we obtain

W =minW1 +W2 (115)

subject to:

0 < S1 < 1,

0 < S2 < 1,

From (112) and (114), we observe that forS1 and S2 satisfying
√
b(1 + aP2) ≤

√

S2(1 − S1) and
√
a(1 + bP1) ≤

√

S1(1 − S2) the objective becomes independent ofS1 andS2. In this case, we obtain

W = γ

(

P1

aP2 + 1

)

+ γ

(

P2

bP1 + 1

)

, (116)

which is achievable by simple strategy of treating interference as noise. In the following theorem, we prove that its possible
to find appropriateS1 andS2 for some certain range of parameters.

Theorem 5:The sum capacity of the two-user Gaussian IC is

Csum = γ

(

P1

aP2 + 1

)

+ γ

(

P2

bP1 + 1

)

, (117)

for all channel’s parameters satisfying
√
aP2 +

√
bP1 ≤ 1 −√

a−
√
b√

ab
. (118)

Proof: Let us fix a and b. In order to find allP1 andP2 such that we can find0 < S1 < 1 and0 < S2 < 1 satisfying√
b(1 + aP2) ≤

√

S2(1 − S1) and
√
a(1 + bP1) ≤

√

S1(1 − S2), we defineD andD′ as follows

D =

{

(P1, P2)|P1 ≤
√

S1(1 − S2)

b
√
a

− 1

b
, P2 ≤

√

S2(1 − S1)

a
√
b

− 1

a
, 0 < S1 < 1, 0 < S2 < 1

}

, (119)

D′ =

{

(P1, P2)|
√
bP1 +

√
aP2 ≤ 1 −√

a−
√
b√

ab

}

. (120)

To showD′ ⊆ D, we setS1 = 1 − S2 in (119) to get
{

(P1, P2)|P1 ≤ S1

b
√
a
− 1

b
, P2 ≤ 1 − S1

a
√
b

− 1

a
, 0 < S1 < 1

}

⊆ D. (121)

It is easy to show that the left hand side of the above equationis another representation of the regionD′. Hence, we have
D′ ⊆ D.

To showD ⊆ D′, it suffices to prove that for any(P1, P2) ∈ D,
√
bP1 +

√
aP2 ≤ 1−√

a−
√

b√
ab

holds. To this end, we introduce
the following maximization problem

J = max
(P1,P2)∈D

√
bP1 +

√
aP2, (122)

which can be written as

J = max
(S1,S2)∈(0,1)2

√

S1(1 − S2) +
√

S2(1 − S1)√
ab

− 1√
a
− 1√

b
. (123)

It is easy to show that the solution to the above optimizationproblem is

J =
1√
ab

− 1√
a
− 1√

b
. (124)

Hence, we deduce thatD ⊆ D′. This completes the proof.
As an example, let us consider the symmetric Gaussian IC. In this case, the constraint in (118) becomes

P ≤ 1 − 2
√
a

2a
√
a
. (125)

In Figure 7, the admissible region forP versus
√
a, where treating interference as Gaussian noise is optimal,is plotted.

In Figure 8, the upper bound in (109) and the lower bound is sketched for a fixedP and all0 ≤ a ≤ 1. We observe that
up to some certaina, the upper bound coincides with the lower bound.
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a

Fig. 7. Admissible region for optimality of treating interference as Gaussian noise.

a

2
1

R
R

7
21

PP

Fig. 8. The upper bound obtained by solving (109). The lower bound is obtained by using the simple scheme of considering the interference as Gaussian
noise.
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B. New Outer Bound

For the weak Gaussian IC, there are two outer bounds that are tighter than other bounds. The firs one, due to Kramer
[12], is obtained by considering the fact that the capacity region of the Gaussian IC is inside the capacity regions of thetwo
underlying one-sided Gaussian ICs. Even though, the capacity region of the one-sided Gaussian IC is unknown, there exist an
outer bound for this channel that can be used instead to derive the outer bound for the original channel. Kramers’ outer bound
is the intersection of two regionsE1 andE2. E1 is the collection of all rate pairs(R1, R2) satisfying

R1≤ γ

(

(1 − β)P ′

βP ′ + 1/a

)

(126)

R2≤ γ(βP ′) (127)

for all β ∈ [0, βmax], whereP ′ = P1/a + P2 andβmax = P2

P ′(1+P1)
. Similarly, E2 is the collection of all rate pairs(R1, R2)

satisfying

R1≤ γ(αP ′′) (128)

R2≤ γ

(

(1 − α)P ′′

αP ′′ + 1/b

)

(129)

for all α ∈ [0, αmax], whereP ′′ = P1 + P2/b andβmax = P1

P ′′(1+P2) .
The second outer bound, due to Etkin, Tse, and Wang [21], is obtained by using the Genie aided technique to upper bound

different linear combinations of rates that appear in Han-Kobayashi achievable rate region. Their outer bound is the union of
all rate pairs(R1, R2) satisfying

R1≤ γ(P1) (130)

R2≤ γ(P2) (131)

R1 +R2≤ γ(P1) + γ

(

P2

1 + bP1

)

(132)

R1 +R2≤ γ(P2) + γ

(

P1

1 + aP2

)

(133)

R1 +R2≤ γ

(

aP2 +
P1

1 + bP1

)

+ γ

(

bP1 +
P2

1 + aP2

)

(134)

2R1 +R2≤ γ(P1 + aP2) + γ

(

bP1 +
P2

1 + aP2

)

+ 0.5 log

(

1 + P1

1 + bP1

)

(135)

R1 + 2R2≤ γ(bP1 + P2) + γ

(

aP2 +
P1

1 + bP1

)

+ 0.5 log

(

1 + P2

1 + aP2

)

. (136)

In the new outer bound that we propose here, an upper bound foreach linear combination of rates is derived. Recall that to
obtain the boundary points of the capacity regionC it suffices to calculateσC (µ, 1) andσC (1, µ) for all 1 ≤ µ. To this end,
we make use of channels in A1 and B Classes and channels in A2 and B to obtain upper bounds forσC (µ, 1) andσC (1, µ),
respectively.

In order to obtain an upper bound forσC (µ, 1), we introduce two optimization problems as follows. The first optimization
problem is written as

W1(µ) =min
µ1

2
log [2πe(P1 + aP2 + 1)] − µ2

2
log(2πe) +

1

2
log

(

N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

(137)

+ µ2fh

(

P1, 1, N21, b
′,

1

µ2

)

+ fh(P2, N22, 1, a, µ1)

subject to:

µ1 + µ2 = µ

b′g2 = b

b′ ≤ N21

aN22 ≤ 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [µ1, µ2, b
′, g2, N22, N21]

In fact, the objective of the above minimization problem is an upper bound on the support function of a channel within
Class A1 which is obtained in Lemma 3. The constraints are thecombination of (57) and (58) where applied to confirm the
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admissibility of the channel and to validate the upper boundobtained in Lemma 3. Hence,σC (µ, 1) ≤W1(µ). By using new
variableS = (1 −√

g2)
2N22, we obtain

W1(µ) =min
µ1

2
log [2πe(P1 + aP2 + 1)] +

1

2
log

[

(1 −√
g2)

2(
1 − S + bP1

g2S
+

P2

(1 −√
g2)2P2 + S

)

]

(138)

+ µ2fh

(

P1, 1,
1 − S

g2
,
b

g2
,

1

µ2

)

+ fh(P2,
S

(1 −√
g2)2

, 1, a, µ1) −
µ2

2
log(2πe)

subject to:

µ1 + µ2 = µ

S ≤ 1 − b

S ≤ (1 −√
g2)

2

a
0 ≤ [µ1, µ2, S, g2]

The second optimization problem is written as

W2(µ) =minµγ

(

P1

N11
+

P1

a′P2 +N12

)

+ γ

(

P2

N22
+

P2

b′P1 +N21

)

+ fh(P2, N22, N12, a
′, µ) (139)

+
µ

2
log((2πe)(a′P2 +N12)) −

1

2
log((2πe)(P2 +N22))

subject to:

a′g1 = a

b′g2 = b

b′N11 ≤ N21

a′N22 ≤ N12

(1 −√
g1)

2N11 + g1N12 = 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [a′, b′, g1, g2, N11, N12, N22, N21]

For this optimization problem, the channels in Class B are used. In fact, the objective is the upper bound on the support
function obtained in Lemma 5 and the constraints are defined to obtain the closed form formula for the upper bound and to
confirm that the channels are admissible. Hence, we deduceσC (µ, 1) ≤ W2(µ). By using new variablesS1 = g1N12 and
S2 = g2N21 , we obtain

W2(µ) =min γ

(

(1 −√
g1)

2P1

1 − S1
+

g1P1

aP2 + S1

)

+ γ

(

(1 −√
g2)

2P2

1 − S2
+

g2P2

bP1 + S2

)

(140)

+ fh

(

P2,
1 − S1

(1 −√
g1)2

,
S1

g1
,
a

g1
, µ

)

+
µ

2
log

(

(2πe)(
aP2 + S1

g1
)

)

− 1

2
log

(

(2πe)(P2 +
1 − S2

(1 −√
g2)2

)

)

subject to:
b(1 − S1)

(1 −√
g1)2

≤ S2 < 1,

a(1 − S2)

(1 −√
g2)2

≤ S1 < 1,

0 < [g1, g2],

In a similar fashion, one can introduce two optimization problems, sayW̃1(µ) and W̃2(µ), to obtain upper bounds for
σC (1, µ) by using the upper bounds on channels in Class A2 and Class B.

Theorem 6 (New Outer Bound):For any rate pair(R1, R2) achievable for the two-user weak Gaussian IC, the inequalities

µR1 +R2 ≤W (µ) = min{W1(µ),W2(µ)} (141)

R1 + µR2 ≤ W̃ (µ) = min{W̃1(µ), W̃2(µ)} (142)

hold for all 1 ≤ µ.

Csum≤ min
(µ2 − 1)W (µ1) + (µ1 − 1)W̃ (µ2)

µ1µ2 − 1
(143)
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R1

R2

r1 = (ρ1, ρ4 − 2ρ1)

r2 = (ρ4 − ρ1, 2ρ1 − ρ4)

r3 = (2ρ3 − ρ5, ρ5 − ρ3)

r4 = (ρ5 − 2ρ2, ρ2)

Fig. 9. M -user Interference Channel.

C. Han-Kobayashi Achievable region

LetD0(P1, P2, α, β) denote a subset ofG where parametersP1, P2, α, andβ are fixed. In fact,D0 is a polytope represented
by AR ≤ Θ whereR = (R1, R2)

t, Θ = (ρ1, ρ2, ρ3, ρ4, ρ5)
t, and

A =

(

1 0 1 2 1
0 1 1 1 2

)t

.

Let us defineD1 andD2 as two regions that enlargeD0 by time-sharing and concavification, respectively. In fact, D1

that we are interested in its characterization is equivalent to G . To this end, we aim to showD1 = D2 and make use of the
characterization ofD2 to characterizeD1. From Theorem 1, it suffices to show thatD0 possesses the active extreme points
condition. The support function ofD0 can be written as

σD0
(c1, c2, P1, P2, α, β) = max{c1R1 + c2R2|AR ≤ Θ(P1, P2, α, β)}. (144)

To proveD0 possesses the active extreme points condition, we need to show thatŷ, the minimizer of the optimization problem

σD0
(c1, c2, P1, P2, α, β) = min{ytΘ(P)|Aty = (c1, c2)

t, 0 ≤ y}, (145)

is independent of parametersP1, P2, α, andβ and only depends onc1 and c2. We can verify that this indeed valid for the
weak Gaussian IC. Since the Han-Kobayashi achievable rate region is symmetrical with respect toR1 andR2, we only need to
prove it for (c1, c2) = (µ, 1) for all 1 ≤ µ. However, it is easy to show thatD0(P1, P2, α, β), a polytope in the first quadrant,
has always four extreme points, namelyr1, r2, r3, andr4 (see figure 9). On the other hand, thanks to the results obtained for
linear programs, we know that the maximum of (144) is attained at one of its extreme points. It can be shown that for2 < µ,
the maximum of (144) is attained atr1 and we have

σD0
(µ, 1, P1, P2, α, β) = (µ− 2)ρ1 + ρ4. (146)

By comparing (146) with (145), the dual variable that minimizes (145) iŝy = (µ− 2, 0, 0, 1, 0)t which is clearly independent
of P1, P2, α, andβ. For 1 ≤ µ ≤ 2, the maximum of (144) is attained atr2 and we have

σD0
(µ, 1, P1, P2, α, β) = (2 − µ)ρ3 + (µ− 1)ρ4. (147)

Again by comparison, we deduce that the dual variable that minimizes (145) isŷ = (0, 0, 2 − µ, µ − 1, 0)t which is clearly
independent ofP1, P2, α, andβ. Hence,D0 has the active extreme points condition. Using this, we can state the following
theorem.

Theorem 7:For the two-user weak Gaussian IC, time-sharing and concavification result in the same region. In other words,
G can fully be characterized by splitting the available spaceinto three subspaces (For example by using FD or TD) and
allocating power over subspaces.

V. ONE-SIDED GAUSSIAN INTERFERENCECHANNELS

Throughout this section, we consider the one-sided Gaussian IC obtained by settingb = 0, i.e, the second receiver incurs
no interference from the first transmitter. One can further split the class of one-sided ICs into two subclasses. The strong
one-sided ICs and the weak one-sided ICs. For the former,a ≥ 1 and the capacity region is fully characterized []. In this case,
the capacity region is the union of all rate pairs(R1, R2) satisfying

R1 ≤ γ(P1)
R2 ≤ γ(P2)

R1 +R2 ≤ min {γ(P1 + aP2), γ(P1) + γ(P2)} .
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For the latter, however,a < 1 and the full characterization of the capacity region is still an open problem. Therefore, we
always assumea < 1.

Three important results are proved for this channel. The first one, proved by Costa in [11], states that the capacity region of
the weak one-sided ICs are equivalent to that of the degradedICs with some appropriate parameter changes. The second one,
proved by Sato in [10], states that the capacity region of thedegraded Gaussian IC is outer bounded by the capacity regionof
a certain degraded broadcast channel. Finally in [14], Sason used the result of Sato to characterize the sum capacity of this
channel.

In this section, we provide an alternative proof for the outer bound obtained by Sato. We then characterize the full Han-
Kobayashi achievable rate region where Gaussian codebooksare used for data transmission, i.e.,G .

A. Sum Capacity

For the sake of completeness, we state the sum capacity result obtained by Sason.
Theorem 8 (Sason):The rate pair

(

γ
(

P1

1+aP2

)

, γ(P2)
)

is an extreme point of the capacity region of the one-sided Gaussian
IC. Moreover, the sum capacity of the channel is attained at this point.

Since the sum capacity is attained at the point where User 2 transmits at its maximum rateR2 = γ(P2), other boundary
points of the capacity region can be obtained by characterizing the solutions ofσC (µ, 1) = max {µR1 +R2|(R1, R2) ∈ C }
for all 1 ≤ µ.

B. Outer Bound

In [10], Sato derived an outer bound for the capacity of the degraded IC. On the other hand, due to Costa’s result, the
capacity region of the degraded Gaussian ICs is equivalent to that of the weak one-sided ICs with appropriate changes of
parameters.

Theorem 9 (Sato):If the rate pair(R1, R2) belongs to the capacity region of the weak one-sided IC, thenit satisfies

R1 ≤ γ
(

(1−β)P
1/a+βP

)

R2 ≤ γ(βP )
(148)

for all β ∈ [0, 1], whereP = P1/a+ P2.
Proof: Using Fano’s inequality, we have

n(µR1 +R2) ≤µI(xn
1 ; yn

1 ) + I(xn
2 ; yn

2 ) + nǫn

=µh(yn
1 ) − µh(yn

1 |xn
1 ) + h(yn

2 ) − h(yn
2 |xn

2 ) + nǫn

=[µh(xn
1 +

√
axn

2 + zn
1 ) − h(zn

2 )] + [h(xn
2 + zn

2 ) − µh(
√
axn

2 + zn
1 )] + nǫn

(a)

≤ µn

2
log [2πe(P1 + aP2 + 1)] − n

2
log(2πe) + [h(xn

2 + zn
2 ) − µh(

√
axn

2 + zn
1 )] + nǫn

(b)

≤ µn

2
log [2πe(P1 + aP2 + 1)] − n

2
log(2πe) + nfh(P2, 1, 1, a, µ) + nǫn

where (a) follows from the fact that Gaussian distribution maximizes the differential entropy for given covariance matrix
constraint and (b) follows from definition offh in (38).

Recall that it suffices to consider1 ≤ µ. Depending onµ, we consider two cases.
1- For 1 ≤ µ ≤ P2+1/a

P2+1 , we have

µR1 +R2 ≤ µγ

(

P1

1 + aP2

)

+ γ(P2). (149)

In fact, the point
(

γ
(

P1

1+aP2

)

, γ(P2)
)

which is achievable by simply treating interference as noise at Receiver 1, satisfies (149)
with equality. Therefore, it belongs to the capacity region. Moreover, by settingµ = 1 we deduce that this point corresponds
to the sum capacity of the one-sided Gaussian IC.

2- For P2+1/a
P2+1 < µ ≤ 1

a , we have

µR1 +R2 ≤ µ

2
log (P1 + aP2 + 1) +

1

2
log

(

1/a− 1

µ− 1

)

− µ

2
log

(

µa(1/a− 1)

µ− 1

)

. (150)

Equivalently, we have

µR1 +R2 ≤ µ

2
log

(

(aP + 1)(µ− 1)

µ(1 − a)

)

+
1

2
log

(

1/a− 1

µ− 1

)

, (151)

whereP = P1/a+ P2. Let us define two setsE1 andE2 as

E1 =

{

(R1, R2)|R1 ≤ γ

(

(1 − β)P

1/a+ βP

)

, R2 ≤ γ(βP ), ∀β ∈ [0, 1]

}

(152)
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and

E2 =

{

(R1, R2)|µR1 +R2 ≤ µ

2
log

(

(aP + 1)(µ− 1)

µ(1 − a)

)

+
1

2
log

(

1/a− 1

µ− 1

)

, ∀P2 + 1/a

P2 + 1
< µ ≤ 1

a

}

. (153)

In fact,E2 is the dual representation ofE1, see (17). To show this, we evaluate the support function ofE1 as

σE1
(µ, 1) = max {µR1 +R2|(R1, R2) ∈ E1} . (154)

It is easy to show that

σE1
(µ, 1) =

µ

2
log

(

(aP + 1)(µ− 1)

µ(1 − a)

)

+
1

2
log

(

1/a− 1

µ− 1

)

. (155)

SinceE1 is a closed convex set, we can make use of (17) to obtain the dual representation of it which is indeed equivalent
to (153). This completes the proof.

C. Han-Kobayashi Achievable Region

Since there is no link between Transmitter 1 and Receiver 2, User 1’s message in Han-Kobayashi achievable rate region is
private message. In this case, we have

ρ1= γ

(

P1

1 + aβP2

)

, (156)

ρ2= γ(P2), (157)

ρ31= γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (158)

ρ32= γ

(

P1

1 + aβP2

)

+ γ(P2), (159)

ρ33= γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (160)

ρ4= γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ

(

P1

1 + aβP2

)

+ γ(βP2), (161)

ρ5= γ(βP2) + γ(P2) + γ

(

P1 + a(1 − β)P2

1 + aβP2

)

, (162)

It is easy to see thatρ3 = ρ31, ρ31 +ρ1 = ρ4, ρ31 +ρ1 = ρ4. Hence,G can be represented as all rate pairs(R1, R2) satisfying

R1≤ γ

(

P1

1 + aβP2

)

, (163)

R2≤ γ(P2), (164)

R1 +R2≤ γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (165)

for all β ∈ [0, 1]. For a fixedβ, the region is a pentagon with two extreme points in the interior of the first quadrant, namely

r1 and r2. The first extreme point which isr1 =
(

γ
(

P1+a(1−β)P2

1+aβP2

)

+ γ(βP2) − γ(P2), γ(P2)
)

lies on the boundary of the

capacity region. The second extreme point can potentially be a point on the boundary ofG . This is indeed the case and we
prove it in the following lemma.

Lemma 7:The regionG can be equivalently represented as the collection of all rate pairs(R1, R2) satisfying

R1≤ γ

(

P1

1 + βaP2

)

(166)

R2≤ γ(βP2) + γ

(

(1 − β)aP2

1 + P1 + βaP2

)

(167)

Moreover,G is convex and any point that lies on the boundary of the regioncan be achieved by using superposition coding
and successive decoding.

Proof: Let E denote the set defined in the lemma. It is easy to prove thatE ⊆ G. Indeed, the extreme point ofE for a
fixed β corresponds tor2. Hence, we need to show the other inclusion. To this end, let us select an arbitrary point insideG,
say (R′

1, R
′
2). Hence, there exist aβ′ such thatR′

1 andR′
2 satisfy (163), (164), and (165). Sinceγ (βP2) + γ

(

(1−β)aP2

1+P1+βaP2

)

in (167) is a continuous function over a compact set, there isa β′ ≤ β ≤ 1 such that

R′
2 = γ (βP2) + γ

(

(1 − β)aP2

1 + P1 + βaP2

)

. (168)
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For thisβ, every point(R1, R
′
2) with R1 ≤ γ

(

P1

1+βaP2

)

is in E. Hence, we need to showR′
1 ≤ γ

(

P1

1+βaP2

)

. From (163),
(164), and (165), we have

R′
1 ≤ min

{

γ

(

P1

1 + β′aP2

)

, 0.5 log

(

1 + β′P2

1 + βP2

)

+ 0.5 log

(

1 + P1 + βaP2

1 + β′aP2

)}

. (169)

It is easy to show that the right hand side of the above inequality is less thanγ
(

P1

1+βaP2

)

whenβ′ ≤ β. Hence,E = G .

By having a new description, It is straightforward to show that G is convex and the boundary points are achievable by using
superposition coding and successive decoding.

Let us denoteD0 as the collection of all(R1, R2) satisfying

R1≤ γ

(

P1

1 + βaP2

)

(170)

R2≤ γ(βP2) + γ

(

(1 − β)aP2

1 + P1 + βaP2

)

(171)

for fixed β, P1, andP2. Clearly,D0 possesses the active extreme points condition and hence, time-sharing and concavification
over D0 result in the same region. On the other hand, from Lemma 7 we can deduce thatG = D1 = D2. As a result,
boundary points of the full Han-Kobayashi achievable rate region when Gaussian codebooks are used for data transmission
can be obtained from the following optimization problem:

W =max
3
∑

i=1

λi

[

µγ

(

λiP1i

1 + βiaλiP2i

)

+ γ(βiλiP2i) + γ

(

(1 − βi)aλiP2i

1 + λiP1i + βaλiP2i

)]

(172)

subject to:
3
∑

i=1

λi = 1

3
∑

i=1

λiP1i = P1

3
∑

i=1

λiP2i = P2

0 ≤ βi ≤ 1 ∀i ∈ {1, 2, 3}
0 ≤ [P1i, P2i, λi, βi] ∀i ∈ {1, 2, 3}

VI. M IXED GAUSSIAN INTERFERENCECHANNELS

In this section, we focus on the mixed Gaussian Interferencechannel. We firs characterize the sum capacity of this channel.
Then, we provide an outer bound to the capacity region. Finally, we investigate the Han-Kobayashi achievable rate region.

A. Sum Capacity

Theorem 10:The sum capacity of the mixed Gaussian IC, witha < 1 andb ≥ 1 can be stated as

Csum = γ (P2) + min

{

γ

(

P1

1 + aP2

)

, γ

(

bP1

1 + P2

)}

. (173)

Proof: We need to prove the achievaility and converse for the theorem.
Achievability part: Transmitter 1 sends a common message to both receivers while the first user’s signal is considered as

Gaussian noise at both receivers. In this case, the rate

R1 = min

{

γ

(

P1

1 + aP2

)

, γ

(

bP1

1 + P2

)}

(174)

is achievable. Now, at Receiver 2 the signal from Transmitter 1 can be decoded and its effect can be removed. Therefore, User
2 is left with a channel without interference and it can communicate at its maximum rate which is

R2 = γ(P2). (175)

By adding (174) and (175), we obtain the desired result.
Converse part: The sum capacity of the Gaussian IC is upper bounded by that of the underlying two one-sided Gaussian

ICs. Hence, we can obtain two upper bounds for the sum rate. Wefirst remove the interfering link between Transmitter 1 and
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Receiver 2. In this case, we have a one-sided Gaussian IC withweak interference. The sum capacity of this channel is known
[14]. Hence, we have

Csum ≤ γ(P2) + γ

(

P1

1 + aP2

)

. (176)

By removing the interfering link between Transmitter 2 and Receiver 1, we obtain a one-sided Gaussian IC with strong
interference. The sum capacity of this channel is also known. Hence, we have

Csum ≤ γ (bP1 + P2) (177)

which equivalently can be written as

Csum ≤ γ(P2) + γ

(

bP1

1 + P2

)

. (178)

By taking the minimum of the right hand sides of Inequalities(176) and (178), we obtain

Csum ≤ γ (P2) + min

{

γ

(

P1

1 + aP2

)

, γ

(

bP1

1 + P2

)}

. (179)

This completes the proof.
By comparingγ

(

P1

1+aP2

)

with γ
(

bP1

1+P2

)

, we observe that if1 + P2 ≤ b+ abP2 then the sum capacity corresponds to the
sum capacity of the one-sided weak Gaussian IC, whereas if1 + P2 > b + abP2, then the sum capacity corresponds to the
sum capacity of the one-sided strong IC.

B. Outer Bound

The second outer bound, due to Etkin, Tse, and Wang [21], is obtained by using the Genie aided technique to upper bound
different linear combinations of rates that appear in Han-Kobayashi achievable rate region. Their outer bound is the union of
all rate pairs(R1, R2) satisfying

R1≤ γ(P1) (180)

R2≤ γ(P2) (181)

R1 +R2≤ γ(P2) + γ

(

P1

1 + aP2

)

(182)

R1 +R2≤ γ(P2 + bP2) (183)

2R1 +R2≤ γ(P1 + aP2) + γ

(

bP1 +
P2

1 + aP2

)

+ γ

(

P1

1 + bP1

)

(184)

Even though, the capacity region of the one-sided Gaussian IC is unknown, there exist an outer bound for this channel that
can be used instead to derive the outer bound for the originalchannel. Kramers’ outer bound is the intersection of two regions
E1 andE2. E1 is the collection of all rate pairs(R1, R2) satisfying

R1≤ γ

(

(1 − β)P ′

βP ′ + 1/a

)

(185)

R2≤ γ(βP ′) (186)

for all β ∈ [0, βmax], whereP ′ = P1/a + P2 andβmax = P2

P ′(1+P1)
. Similarly, E2 is the collection of all rate pairs(R1, R2)

satisfying

R1≤ γ(bP1) (187)

R2≤ γ (P2) (188)

R1 +R2≤ γ(bP1 + P2) (189)

for all α ∈ [0, αmax], whereP ′′ = P1 + P2/b andβmax = P1

P ′′(1+P2) .
In the new outer bound that we propose here, an upper bound foreach linear combination of rates is derived. Recall that to

obtain the boundary points of the capacity regionC it suffices to calculateσC (µ, 1) andσC (1, µ) for all 1 ≤ µ. To this end,
we make use of channels in A1 and B Classes and channels in A2 and B to obtain upper bounds forσC (µ, 1) andσC (1, µ),
respectively.
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In order to obtain an upper bound forσC (µ, 1), we introduce two optimization problems as follows. The first optimization
problem is written as

W (µ) =min
µ− 1

2
log (2πe(P1 + aP2 + 1)) +

1

2
log

(

2πe

(

P2N22

P2 +N22
+ b′P1 +N21

))

(190)

− 1

2
log(2πeN21) −

1

2
log(2πeN22) + fh(P2, N22, 1, a, µ− 1)

subject to:

b′g2 = b

b′ ≥ N21

aN22 ≤ 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [b′, g2, N22, N21]

W (µ) =min
µ− 1

2
log (2πe(P1 + aP2 + 1)) +

1

2
log

(

2πe

(

P2(1 − S)

(1 −√
g2)2P2 + 1 − S

+
bP1 + S

g2

))

(191)

− 1

2
log

(

2πeS

g2

)

− 1

2
log

(

2πe(1 − S)

(1 −√
g2)2

)

+ fh

(

P2,
1 − S

(1 −√
g2)2

, 1, a, µ− 1

)

subject to:

S < 1

a(1 − S) ≤ (1 −√
g2)

2

0 ≤ [S, g2]

Theorem 11:For any rate pair(R1, R2) achievable for the two-user mixed Gaussian IC,(R1, R2) ∈ E1

⋂

E2. Moreover,
the inequality

µR1 +R2 ≤W (µ) (192)

holds for all1 ≤ µ.

C. Han-Kobayashi Achievable Region

In this subsection, we study the Han-Kobayashi achievable rate region for the mixed Gaussian IC wherea < 1 and b ≥ 1.
Since Receiver 2 can always decode the message of the first user, User 1 associates all its power to the common message.
However, User 2 allocatesβP2 and(1−β)P2 to the private and common messages, respectively, whereβ ∈ [0, 1]. LetR2c and
R2p denote the common and private rates of User2. Hence, the rateof the second user can be represented asR2 = R2c +R2p.
In this case,GHK is the union of all(R1, R2) satisfying

ρ1= γ

(

P1

1 + aβP2

)

, (193)

ρ2= γ(P2), (194)

ρ31= γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (195)

ρ32= γ(P2 + bP1), (196)

ρ33= γ

(

a(1 − β)P2

1 + aβP2

)

+ γ(βP2 + bP1), (197)

ρ4= γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2 + bP1), (198)

ρ5= γ(βP2) + γ(P2 + bP1) + γ

(

a(1 − β)P2

1 + aβP2

)

, (199)

for all β ∈ [0, 1]. It is easy to verify that the inequalityρ31 + ρ1 ≤ ρ4 holds. This means that Inequalities (9) and (10) are
redundant for all range of parameters and can be removed. To obtain ρ3, we need to take the minimum ofρ31, ρ32, andρ33.
By comparison, we can show that the following conditions aresufficient to obtainρ3.

C1 0 ≤ (b − 1)P1 + (1 − a)(1 − β)P2 + βP1P2(ab− 1) to haveρ31 ≤ ρ32.
C2 0 ≤ (b − 1) + (ab− β)P2 to haveρ31 ≤ ρ33.
C3 1 − a ≤ abP1 to haveρ32 ≤ ρ33.
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Indeed, if C1 and C2 hold thenρ3 = ρ31. Surprisingly, the condition1 +P2 ≤ b+ abP2 suffices to satisfy both C1 and C2.
To proceed, we consider two cases, namely the case where1 + P2 ≤ b+ abP2 and the case where1 + P2 > b+ abP2.

Case I:1 + P2 ≤ b + abP2.
Case II:1 + P2 > b+ abP2 and1 − a ≤ abP1.
Case III:1 + P2 > b+ abP2 and1 − a > abP1.
In what follows, we investigate the Han-Kobayashi achievable rate region for each cases.
Case I (1+P2 ≤ b+abP2): In this case,ρ3 = ρ31. Moreover, It is easy to verify thatρ31 +ρ1 ≤ ρ4 andρ31 +ρ2 ≤ ρ5 hold.

This means that Inequalities (9) and (10) are redundant for all range of parameters and can be removed. Hence,G consists of
all rate pairs(R1, R2) satisfying

R1≤ γ

(

P1

1 + aβP2

)

, (200)

R2≤ γ (P2) , (201)

R1 +R2≤ γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (202)

for all β ∈ [0, 1]. Using similar reason as that we used to express boundary points ofG for the one-sided Gaussian IC, boundary
points ofG can be expressed as

R1≤ γ

(

P1

1 + aβP2

)

, (203)

R2≤ γ(βP2) + γ

(

a(1 − β)P2

1 + P1 + aβP2

)

(204)

(205)

for all β ∈ [0, 1]. Now, we can state the following theorem.
Theorem 12:G of the mixed Gaussian IC satisfying1 + P2 ≤ b+ abP2 is equivalent to that of the one sided Gaussian IC

obtained from removing the interfering link between Transmitter 1 and Receiver 2.
Proof: By comparing (203), (204) with () and (), we see thatG of this channel is exactly the same as that of the one

sided Gaussian IC obtained from removing the interfering link between Transmitter 1 to Receiver 2. Hence, we can deduce
that G is equivalent for both channels.

Case II (1 + P2 > b+ abP2 and1 − a ≤ abP1): In this case,ρ3 = min{ρ31, ρ32}. Hence, we need to investigate different
situations arising from choosing differentβ.

G = E1

⋃

E2

⋃

E3.
E1 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(

P1

1 + aβP2

)

, (206)

R2≤ γ(βP2) + γ

(

a(1 − β)P2

1 + P1 + aβP2

)

. (207)

for all β ∈ [0, b−1
(1−ab)P2

].
E2 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(

bP1

1 + βP2

)

, (208)

R2≤ γ

(

P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2) − γ

(

bP1

1 + βP2

)

. (209)

for all β ∈ [ b−1
(1−ab)P2

, (b−1)P1+(1−a)P2

(1−ab)P1P2+(1−a)P2

].
E3 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(

bP1(1 + (1−ab)P1

1−a )

1 + bP1 + P2

)

(210)

R2≤ γ (P2) (211)

R1 +R2≤ γ(bP1 + P2) (212)

Case III (1 + P2 > b+ abP2 and1 − a > abP1): In this case,ρ3 = min{ρ31, ρ32}. Hence, we need to investigate different
situations arising from choosing differentβ.

G = E1

⋃

E2

⋃

E3.
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Sum capacity

Sum capacity facet

r2 = (2ρ3 − ρ5, ρ5 − ρ3)

r1 = (ρ1, ρ3 − ρ1)

R1

r3 = (ρ5 − 2ρ2, ρ2)
R2

γ(P2)

γ( bP1

1+P2

)

Fig. 10. M -user Interference Channel.

E1 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(

P1

1 + aβP2

)

, (213)

R2≤ γ(βP2) + γ

(

a(1 − β)P2

1 + P1 + aβP2

)

. (214)

for all β ∈ [0, b−1
(1−ab)P2

].
E2 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(

P1

1 + aβP2

)

, (215)

R2≤ γ

(

a(1 − β)P2

1 + P1 + aβP2

)

+ γ(βP2 + bP1) − γ

(

P1

1 + aβP2

)

. (216)

for all β ∈ [ b−1
(1−ab)P2

, 1].
E3 is the union of all rate pairs(R1, R2) satisfying

R1≤ γ

(

P1

1 + aP2

)

(217)

R2≤ γ (P2) (218)

R1 +R2≤ γ(bP1 + P2) (219)

VII. C ONCLUSION

We have investigated data transmission over theM -user interference channel when transmitters use single codebooks for
data transmission, and receivers are allowed to decode other users’ data. The basic problem of finding the maximum decodable
subset of users is addressed. By establishing the main properties of the maximum decodable subset, we have proposed a
polynomial time algorithm that separate the interfering users into two disjoint parts, namely the users that the receiver is able
to jointly decode them and the rest. We have introduced an optimization problem that gives us an achievable rate for a channel
with finite number of interfering users. A polynomial time algorithm for solving this optimization problem has been proposed.
The capacity of the additive Gaussian channel with Gaussianinterfering users is established and it is shown that the Gaussian
distribution is optimal and the proposed achievable rate isthe capacity of this channel. Using this result, we have established
some points on the capacity region of the generalized Z Gaussian ICs.

For theM -user Gaussian IC, we have characterized some extreme points of the achievable rate region corresponding to
successively maximization of users’ rates for any permutation of users. We have also established the capacity region for the
strong generalized Z Gaussian ICs.

We have studied data transmission overM -user ICs. When there is a rate game between users, we have proven that there
exist a fixed point for this game. We have investigated the conditions that the fixed point of the game corresponds to the users’
conservative rates.
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APPENDIX I
CONCAVIFICATION OF SET VALUED MAPS

Suppose there exists a strategyS such that for every power constraintp ∈ ℜn, one can obtain an achievable rate region
fS(p) ⊆ ℜm. It is possible, however, to consider the achievable rate region fS : ℜn

⇉ ℜm as a set-valued map that maps
points inℜn to subsets ofℜm, c.f. [22]. A strategyS is called concave if its associated set-valued mapfS(p) is concave,
where a concave set-valued map is defined as follows.

Definition 4 (concave set-valued map):A set-valued mapf(p) is concave if it satisfies

λf(p1) + (1 − λ)f(p2) ⊆ f(λp1 + (1 − λ)p2), (220)

for everyp1,p2 ∈ ℜn andλ ∈ [0, 1].
By substitutingp = p1 = p2 into (220), we observe that the image of every point under a concave set-valued map is a convex
subset of the range.

For a set-valued mapf , we define its concave hull conch(f) as the least set-valued map minorized byf , i.e., conch(f) ≤ g
for every concave set-valued mapg ≥ f , where we sayf1 ≤ f2 if f1(p) ⊆ f2(p) for everyp ∈ ℜn.

Lemma 8:Pointwise intersection of any collection of concave set-valued maps is concave, i.e.,f(p) =
⋂

i∈I fi(p) is concave
if each mapfi is concave.

Proof: It is easy to show thatλf(p1)+ (1−λ)f(p2) ⊆ λfi(p1) + (1−λ)fi(p2), for everyp1,p2 ∈ ℜn, λ ∈ [0, 1], and
i ∈ I. By applying (220) for eachfi, we obtainλf(p1)+(1−λ)f(p2) ⊆ fi(λp1+(1−λ)p2). Henceλf(p1)+(1−λ)f(p2) ⊆
⋂

i∈I fi(λp1 + (1 − λ)p2) which completes the proof.
Lemma 9:conch(f) is the pointwise intersection of all concave set-valued maps minorized byf .

Proof: Assumeg =
⋂

i∈I fi, wherefi’s are all concave maps greater thanf . Clearly,g ≤ fi for every i. The mapg is
concave by Lemma 8. Henceg = conch(f).

Theorem 13 (concavification of a set-valued map):For f : ℜn
⇉ ℜm

(conchf)(p) =

{

n+m
∑

i=0

λif(pi) |
n+m
∑

i=0

λi = 1,

n+m
∑

i=0

λipi = p, λi ≥ 0∀i
}

. (221)

Moreover, if
Proof: We defineg(p) = {∑q

i=0 λif(pi) |
∑q

i=0 λi = 1,
∑q

i=0 λipi = p, λi ≥ 0 ∀i, q ≥ 0} . It is easy to show thatg
satisfies (220) and hence is a concave set-valued map. To showthat g = conchf , it suffices to prove that for every concave
set-valued maph minorized byf we haveg ≤ h. To this end, we fix a point ing(p), sayx, and prove that this point belongs
to h(p). From the definition ofg, x can be written asx =

∑q
i=0 λixi for someq ≥ 0, wherexi ∈ f(pi) and

∑q
i=0 λipi = p.

By hypothesisf(pi) ⊆ h(pi) for all i, hence we have
∑q

i=0 λif(pi) ⊆ ∑q
i=0 λih(pi). Sinceh is concave, we can apply

property (220) to obtain
∑q

i=0 λif(pi) ⊆ h(
∑q

i=0 λipi) = h(p). Therefore,x ∈ h(p).
By applying Caratheodory theorem, we can prove that the sizeof q can be proved and its extension [].

We can define the concave hull of a non-concave strategyS, as a new strategy conch(S) such thatfconch(S) = conch(fS)
Corollary 5: For a given non-concave strategyS, the concave hull offS is a new strategy which its associated set-valued

map is achievable.
We are interested in characterizing boundary points of(conchf)(p) for a fixedp. In the following theorem, we characterize

the boundary points of the region.
Theorem 14:The boundary points of(conchf)(p) in (16) can be written as

bd((conchf)(p)) =

{

n+1
∑

i=0

λixi|xi ∈ f(p)∀i,
n+m
∑

i=0

λi = 1,
n+m
∑

i=0

λipi = p, λi ≥ 0∀i
}

. (222)

Proof: we start with
Due to convexity offconch(S)(p) for a fixed p, we can define the following optimization problem to achievepoints on the
boundary of the region.

σconchf (y,p) = sup{yT x|x ∈ fconch(S)(p)} (223)

σf (y,p) = sup{yT x|x ∈ f(p)} (224)

σconchf(y,p) = max

{

n+m
∑

i=0

λiσf (y,pi)|
n+m
∑

i=0

λi = 1, λi ≥ 0 ∀ i,
n+m
∑

i=0

λipi = p

}

(225)
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APPENDIX II
PROOF OFLEMMA 4

From the general result for (31), we know that the optimum input distribution is a Gaussian vector. Hence, we need to solve
the following maximization problem:

W =max
1

2
log ((2πe)n|QX +N1I|) −

µ

2
log ((2πe)n|QX +N2I|) (226)

subject to:

0 ≤ QX

tr{QX} ≤ nP

SinceQX is a positive semi-definite matrix, it can be decomposed asQX = UΛU t, whereΛ is a diagonal matrix with
nonnegative entries andU is a unitary matrix, i.e.,UU t = I. SubstitutingQX = UΛU t in (226) and using the identities
tr{AB} = tr{BA} and |AB + I| = |BA+ I|, we obtain

W =max
1

2
log ((2πe)n|Λ +N1I|) −

µ

2
log ((2πe)n|Λ +N2I|) (227)

subject to:

0 ≤ Λ

tr{Λ} ≤ nP

This optimization problem can be simplified as

W =max
n

2

n
∑

i=1

[log(2πe)(λi +N1) − µ log(2πe)(λi +N2)] (228)

subject to:

0 ≤ λi ∀i
n
∑

i=1

λi ≤ nP

By introducing Lagrange multipliersψ andΦ = {φ1, φ2, . . . , φn}, we obtain

L(Λ, ψ,Φ) = max
n

2

n
∑

i=1

[log(2πe)(λi +N1) − µ log(2πe)(λi +N2)] + ψ

(

nP −
n
∑

i=1

λi

)

+

n
∑

i=1

φiλi. (229)

The first order KKT necessary conditions for the optimum solutions of (229) can be written as

1

λi +N1
− µ

λi +N2
− ψ + φi =0, ∀i ∈ {1, 2, . . . , n} (230)

ψ

(

nP −
n
∑

i=1

λi

)

=0, (231)

φiλi =0, ∀i ∈ {1, 2, . . . , n} (232)

It is easy to show that whenN1 ≤ N2, λ = λ1 = . . . = λn and the only solution forλ is

λ =











P, if 0 ≤ µ ≤ N2+P
N1+P

N2−µN1

µ−1 , if N2+P
N1+P < µ ≤ N2

N1

0, if N2

N1

< µ

(233)

Now, by substituting into the objective function, we obtainthe desired result.
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