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Capacity Bounds for
the Gaussian Interference Channel

Abolfazl S. Motaharistudent Member, IEEERNd Amir K. KhandaniMember, IEEE
Coding & Signal Transmission Laboratory (www.cst.uwaterta)
{abolfazl,khandani@cst.uwaterloo.ca

Abstract

The capacity region of the two-user Gaussian Interferertan@el (IC) is studied. Three classes of channels are mesid
weak, one-sided, and mixed Gaussian ICs. For the weak Gauk3j a new outer bound on the capacity region that outpagor
previously known outer bounds is obtained. The sum capadithe channel for some certain range of channel’'s parasiéer
derived. It is shown that the full Han-Kobayashi achievatalee region when Gaussian codebooks are used can be obtained
using the naive Han-Kobayashi achievable scheme over flegaency bands (Equivalently, three subspaces). Forrbesimed
Gaussian IC, a new proof for Sato’s outer bound is preseifted.full Han-Kobayashi achievable rate region is deriveat. the
mixed Gaussian IC, a new outer bound that again outperfommgqusly known outer bounds is obtained. The sum capadity o
the channel for all ranges of parameters is derived. It iwgridhat the full Han-Kobayashi achievable rate region isivedent
to that of the one-sided Gaussian IC for some range of chajaies.

Index Terms

Gaussian interference channels, capacity region, suntitgpeonvex regions.

|I. INTRODUCTION

NE of the fundamental problems in Information Theory, ar@ing from Shannon’s work in [1], is the full capacity

region characterization of the interference channel (IQje simplest form of IC’s is the two-user IC in which two
transmitters aim to convey independent data to their cpording receivers through a common channel. Despite soswadp
cases, such as very strong and strong ICs, where the exaetctdrization of the capacity region has been derived R],ih
general the characterization of the capacity region is atilopen problem. In this paper, we study the capacity regfahe
two-user Gaussian IC.

A limiting expression for the capacity region is obtained4i c.f. [5]. Unfortunately, due to computational complgxthis
kind of expressions does not give any tractable approachliypdharacterize the capacity region of the Gaussian ICsiaw
the weakness of the limiting expression, Cheng and Veraé Bhown that for the Gaussian Multiple Access Channel (MAC)
which can be considered as a special case of the Gaussianl@}, (@e limiting expression fails to fully characterizeeth
capacity region by only relying on Gaussian distributioBk However, it is worth noting that there is a point on the hdary
of the capacity region of the MAC that can be obtained diyefitm limiting expression. This point indeed is achievable
using simple scheme of FD/TD.

One reason is that, in the limiting expression, the encodind decoding strategies are the simplest one possible. The
encoding strategy is based on mapping data to a codebookructesl from a unique probability density and the decoding
strategy is to treat the interference from the other useo&®enin contrast, using the more sophisticated encodersl@coders
may result in collapsing the limiting expression into a $nlgtter formula for the capacity region of the IC. As an @ride,
it is known that the joint typical decoder for the MAC indeechives the capacity region [7]. Moreover, there are some
special cases, such as strong ICs, where the exact cha@atiter of the capacity region has been derived, c.f. [2] E8]d
and decoding the interference is the main part of the proof.

In their pioneering work [8], Han and Kobayashi proposedwa eacoding and decoding strategy in which the receivers are
allowed to decode some part of the interfering user’s dataedlsas its own data. Their achievable rate region is stillibst
inner bound for the capacity region. Specifically, in th@hame the message of each user is split into two independetst p
the common part and the private part. The common part of daémd¢oded in such a way that both users can successfully
decode it. The private part, on the other hand, can be deawmdgdy the corresponding receiver and the other user tieats
noise. Briefly, the resulting region of this scheme is theristction of the capacity region of two three-user MACsjquted
to a two-dimensional space.

The Han-Kobayashi scheme can be directly applied to the skudC. Nonetheless, there are two sources of difficulties
in characterizing the full Han-Kobayashi achievable ratgion. First, the optimal distributions are unknown. Sef;@ven if
we confine the distributions to be Gaussian, computatioh@full Han-Kobayashi region under Gaussian distributisnstill
difficult due to numerous degrees of freedom involved in trebfem. The parameter which is the main cause of the difficult
for characterizing the Han-Kobayashi region with Gaussiatributions is the time-sharing parameter.

Recently in [9], Chong et.al have obtained a simpler expwaswith less number of inequalities for the Han-Kobayashi
achievable rate region. Having less number of inequaldiesreases the cardinality of the time-sharing paramatere she



cardinality of the time-sharing parameter is directly tethto the number of inequalities appearing in the achievaale
region. However, finding the full Han-Kobayashi achievatalge region is still prohibitively difficult.

Regarding outer bounds on the capacity region, there aee ttasults that outperforms other outer bounds. The first one
obtained by Sato in [10] is originally derived for the degrddGaussian IC. Sato has shown that The capacity region of the
degraded Gaussian IC is outer bounded with a certain degjtadadcast channel that its capacity region is fully cheraed.

In [11], Costa has proved that the capacity region of the afdept broadcast channel is equivalent to that of the onetside
weak Gaussian IC. Hence, Sato’s outer bound can be usedefamtirsided Gaussian IC as well.

The second outer bound obtained for the weak Gaussian ICeigali(ramer [12]. Kramer's outer bound is based on the
fact that removing one of the interfering links in the chadninereases the capacity region. Therefore, the capacdgiome
of the two-user Gaussian IC is inside the intersection ofcdugacity regions of two underlying one-sided Gaussian Fos.
the case of weak Gaussian IC, the underlying one-sided @auk3 is weak and the capacity region is unknown. However,
Kramer has used the outer bound obtained by Sato to obtaimten lsound for the Gaussian IC.

The third outer bound due to Etkin, Tse, and Wang is based @&Gtnie aided technique. A genie that provides some extra
information to the receivers can only enlarge the capaegion. At first glance, it seems a clever genie must provideeso
information about the interference to the receiver so thatreceiver can decode its own signal more easily by remabhiag
interference. But, Etkin, Tse, and Wang’s genie providésrmation about the intended signal to the receiver. Reatsyk
they have shown that the new outer bound outperforms Kranoere for some range of parameters. Moreover, using similar
method, they have obtained an outer bound for the mixed Gau#s.

In this paper, by introducing the notion of admissible ICs prepose a new outer bounding scheme for the two-user
Gaussian IC. This scheme relies on an extremal inequaligntéy proved by Liu and Viswanath [13]. we show that by using
this method, one can obtain outer bounds tighter than puslsiqoroposed outer bounds for both weak and mixed Gaussian
ICs. More importantly, the sum capacity of the Gaussian wi€akor some certain range of channel's parameters is derived
by using this scheme.

The rest of this paper is organized as follows. In Sectionl, rewrite some basic definitions and review Han-Kobayashi
achievable rate region when Gaussian codebooks are usedtude the two methods, time-sharing and concavification,
that enlarge the basic Han-Kobayashi achievable rate me§fie investigate conditions for which the two regions aiedi
from time-sharing and concavification coincide. Finallg wonsider an optimization problem (extremal inequality) derive
optimum solutions of the problem. In fact, the extremal wagy is used thought the paper.

In Section lll, admissible channels are introduced. Sonassels of admissible channels for the two-user Gaussian IC is
considered. Moreover, outer bound on the capacity regiathede classes are obtained.

In Section IV, we study capacity region of the weak Gaussi@anWe first derive the sum capacity of this channel for
some range of parameters. It is shown that for this range m@npeters, it suffices that users treat the interference asszm
noise and transmit at their highest rate. We then obtain &er daound on the capacity region which is the best known upper
bound to date. We finally prove that the basic Han-Kobayashiezable rate region possesses the desired property ofghav
the same enlarged region by using time-sharing or concatidit. This reduces the complexity of characterizationhef full
Han-Kobayashi achievable rate region when Gaussian coftstare used.

In Section V, we study capacity region of the one-sided Gand€. We present a new proof on Sato’s outer bound using the
extremal inequality. Then, we simplify the Han-Kobayasttiavable rate region so that the full region can be charaetd

In Section VI, we study capacity region of the mixed Gaus$ane first obtain the sum capacity of this channel. Then, we
derive an outer bound which outperforms other existing mbteinds. Finally, by investigating the Han-Kobayashi echble
rate region for different cases, we prove that for some rasfgehannel parameters the full Han-Kobayashi achievahite ra
region is equivalent to that of the one-sided case. Finallgection VII, we conclude the paper.

Il. PRELIMINARIES
A. Notations

Throughout this paper, we use the following notations. dexare represented by bold faced letters. However, forovect
representing codewords we use the usual notatforRandom variables, matrices, and sets are denoted by Idaftitas where
the difference is clear from the contektl|, tr{ A}, and A? represent respectively the determinant, trace, and tosespf the
square matrixA. I denotes the identity matriXN and R are the sets of nonnegative integers and real numbers,ctashe
The union, intersection, and Minkowski sum of two sEtandV are represented by UV, U NV, andU + V, respectively.
We usey(x) as an abbreviation for the functidn5 log, (1 + ).

B. The Two-user Interference Channel

Definition 1 (two-user IC):A two-user discrete memoryless IC consists of two finite s&tsand .25 as input alphabets and
two finite sets?; and %4 as corresponding output alphabets. The channel is govéynednditional probability distributions
f(y1,y2lwr, x2), where(zy, z2) € 21 x 25 and (y1,y2) € 1 X %5.



Symmetric

P=P
b
=]
(]
i)
P
Q
5
\| Mixed

1

Degraded

ab=1
Mixed
a

1 > One-sided

Fig. 1. Classes of the two-user ICs.

Definition 2 (capacity of two-user IC)A code @1 2Rz n A\ A\}) for the IC consists of the following components for
Useri € {1,2}:

1) A uniform distributed message sét; € [1,2,...,2"%].

2) A codebookX; = {x;(1),%;(2), ...,x;(2"F1)}, wherex;(-) € Z;".

3) An encoding function; : [1,2, ..., 2" — X;.

4) A decoding functiorGy; @y, — [1,2,...,2"%i].

5) The average probability of error* = P(G;(y;) # M,).

A rate pair ;, Ro) is said to be achievable if there is a sequence of coRlegé (2772 n A7, A2) with vanishing average
probability of errors. The capacity region of the IC is defirte be the supremum of the set of achievable rates.

Let ¥1c denote the capacity region of the two-user IC. The limitizgression of the capacity region can be stated as [5]

L Ry < 11Xz, vy
Crc = Jlim_closure U {(Rl,R2)| Ry < 21 (X7 YD) (1)
P(XT)P(XZ) "
In this paper, we focus on the two-user Gaussian IC which earepresented in standard form as [14]
Y1 =1 +yare + 2 @)

Yo = Vbri + a9 + 22

wherez; andy; denote the input and output alphabets, respectively, af ise{1,2}. The z; ~ N (0,1) and z, ~ N(0, 1)
are standard Gaussian random variables. The consiant® andb > 0 represent the interference link gains. Furthermore,
Transmitteri is subject to the average power constraffitfor ¢ € {1,2}. Achievable rates and the capacity region of the
Gaussian IC can be defined in a similar fashion as that of tinergeIC except the codewords must satisfy the following
power constraints

[x;(m)||*> < nP; Vm € [l,2,...,2"%] andi € {1,2} (3)

where|| - | denotes the Euclidean norm. The capacity region of the tses-Gaussian IC is denoted k. Clearly, ¢ is a
function of the channel's parametefs, P, a, andb. To emphasize this relationship, we may wifeas € (P, Pz, a, b).

Remark 1:Since the capacity region of the general IC only depends ennmtarginal distributions [14], the ICs can be
classified in equivalent classes in which channels withiteaschave the same capacity region. In particular, for thes&an
IC (2), assuming any joint distribution for the pait;, 22) does not change the capacity region as long as the marginal
distributions remain Gaussian with zero mean and unit waga

Depending on values af andb, the two-user Gaussian IC is classified into weak, strongedjione-sided, and degraded
Gaussian IC. In Figure 1, regionsdn-b plane together with their associated channel’s names axersiBriefly, if 0 < a < 1
and0 < b < 1, then the channel is called weak Gaussian ICL ¥ o and1 < b, then the channel is called strong Gaussian
IC. If eithera = 0 or b = 0, the channel is called one-sided Gaussian ICablf= 1, then the channel is called degraded
Gaussian IC. If eithed < a <1 and1 <bor0 < b <1 andl < a the channel is called mixed Gaussian IC. Finally, when
a = b and P, = P,, then the channel is called symmetric IC.

Among all, the capacity region of the strong IC is fully charaized []. In this case, the capacity region can be stased a
collection of rate pair§ R, R2) satisfying

R, < ~y(P1)
Ry, < y(P)
Ri+Ry < min{y(P1+aPs),y(bP1 + P),y(P1) +v(P2)}



C. Han-Kobayashi Achievable Region

The best inner bound, to date, is the full Han-Kobayashioregienoted bysy i [8]. In their scheme the message of each
user is split into two independent parts, the common partthadorivate part. The common part is encoded in such a way
that both users can successfully decode it. The private parthe other hand, can be decoded only by the corresponding
receiver and the other user treats it as noise. The trangmidlsis a deterministic function of common and private part
the message. In [9], a new description@f; x with less number of inequalities is obtained. In this papes,use this new
description for characterizing the Han-Kobayashi acth&vaate region of the two-user Gaussian IC.

Let us denote the random variables involved in characte &y x as X1, Xic, Xop, Xac, and@. X;, and X;. are random
variables that carry Useis private and common messages, respectively; o1, 2}. @ is the time sharing parameter. Even
though the Han-Kobayashi scheme has a single letter fornahkracterizing the full Han-Kobayashi region is stillfdifilt.

In fact, the optimality of the Gaussian distributions foe tHan-Kobayashi scheme are not proved yet.

We define¥ as the special case of the Han-Kobayashi scheme whepe Xi., Xop, and X, are all Gaussian and
transmitted signal from Transmitteris X;, + X;.. Moreover, we assume that the cardinality of the time slgaparameter is
one. This scheme is call the naive Han-Kobayashi scheménemaive Han-Kobayashi schemé” and (1 — «)P; portion
of the first user's power are used for transmitting the pevand the common part of the first user's data, respectivety, f
all « € [0,1]. Similarly, 6P, and (1 — 3) P, portion of the second user’s power are used for transmittiegprivate and the
common part of the second user’s data, respectively, fop @ll[0, 1]. In this case¥ is the union of all rate pairéR;, Rz)

satisfying
Py
< p = S S—
Ri< py 7(1+aﬁp2), (4)
P
< py = =
Ro< po 7<1+baP1)’ (5)
P +a(l1—-pB)P> B8P
< = _———— S —
R1 + Ra< p31 7( 1+ aBP, +7 T+ bab, )’ (6)
aP; P, +b(1 - )P,
< = el N 2T )R
Ry + Ro< p3o 7(1+a6P2)+7( 17 bab, ; (7)
04P1+a(1—5)P2 ﬁPQ"Fb(l—Oé)Pl
< =
R1 + Ra< p33 7( 1+ apP, +7 15 baP, ; (8)
P+ a(l - ﬁ)Pg abPy OBP + b(l - a)P1
< = _—_———— —
2R1+R2_ pa ’Y( 1+aﬁP2 +7 1+aﬁP2 +’7 1+bOéP1 ’ (9)
GPs Py + b(l — a)P1 aP) + a(l — ﬂ)PQ
2Ry < p5 = —_— S 10
B +282% p5 7<1+boépl + 1+0ap ) T\ T 1rasn, ’ (10)
for all € [0,1] and g € [0, 1]. We defineps as
p3 = min {p31, p32, P33} - (11)
One can use the time sharing parameter to enlatde <. Clearly, the relatiory C ¥ C €xx C € always holds.
D. Concavification Versus Time-Sharing
Consider an achievable schen¥ for a multiple-user channel with the power constrdiht= [Py, P, ..., Py] is given.
We assume that the achievable region associated.#ittan be represented as
Do = {R|AR < ©(P)} . (12)

Dy is a polyhedron in general, but for the purpose of this papsuffices to assume that it is a polytope. Singg is a
convex region, convex hull operation does not lead to a ndarged region. However, if extreme points of the regions ar
not a concave function dP, it is possible to enlarg®, by using two different methods which we will explain it nowh&
first method is to make use of the time sharing parameter. $ etemote this new region d3; which can be written as

q q q

Dy = {R|AR < Z/\ie(Pi), Z)\iPi < P,Z)\i =1,\>0 w} . (13)
=1 =1 =1

In the second method, we split the total povieias Zf,zl X P; < P for someq’, P;s, and)\;s such thatzgz1 AP <P

andZ;?/:l A\ = 1. Then, for each power constraiB; we useD}, as the achievable region obtained from Equation (12) which
is
Dj = {Ri|AR; < O(P;)}. (14)



Now, we define the new achievable regibn as Dy = Zf/zl X\ Dj. This region can be stated as

’ / ’

q q q
Dy=qR =Y ARJAR; SO(P;),Y AP;<P,Y N=1X\>0Vi,. (15)

i=1 =1 =1

We call this new method as concavification. In fact, the cwuification method is equivalent to dividing the availableasp
into subspaces, for example by using TD or FD, and using thenginethod in each subspace.

It can be readily shown thdd, and D, are closed and convex, ad$, C D;. We are interested in situations where the other
inclusion holds. To this end, we need the following factsifroonvex analysis. There is a one to one correspondencedretwe
any closed convex set and its support function [15]. The stpioinction of any setD € ®™ is a functionop : R™ — R
defined as

op(c) = sup{c'R|R € D}. (16)

Clearly, if the setD is compact then the sup is attained and can be replaced by Imakis case, the solutions of (16)
correspond to the boundary points bf [15]. The following relation is the dual of (16) and holds whé® is closed and
convex

D= {R|c'R < op(c),V c}. 17)

For any two closed convex sef$ and D', D C D' if and only if op < op.
The support function oDy is a function of P andc. Hence, we have

op,(c, P) = max{c'R|AR < O(P)}. (18)
For a fixedP, (18) is a linear program. Using the strong duality of theséin programming, we obtain
ap,(c,P) = min{y'©(P)|A'y = c,0 < y}. (19)

In generaly, the minimizer of (19), is a function d® andc. We sayD, satisfies the active extreme points conditior if
is only a function ofc for all c. In this case, we have

0 Do (Cv P) = yt (C)G(P)v (20)

where Aty = c¢. This condition essentially means that for anyhe extreme point of), maximizing the objective’R is a
certain extreme point which is not a function Bf A necessary condition fab, to satisfy the active extreme point condition
is that each inequality in describing, is either redundant or active for di.
Theorem 1:If D, satisfies the active extreme points condition, tien= D-.
Proof: Since D, C D, always hold, we need only to sho®w; C D,. Equivalently, we can showp, < op,. The
support function ofD; can be written as
_ t
op,(c,P) = nax ¢ R (21)
By fixing P, P;s, and\;s, the above maximization becomes a linear program. Herycemdking use of the weak duality of
the linear programming we obtain
q
op,(¢,P) < min_ y' > NO(P;). (22)
=1

T Aty=c,0<y

Clearly, y(c), the solution of (19), is a feasible point for (22) and we have

q

op, (e, P) < ¥'(c) > NO(P)) (23)
i=1
Using (20), we obtain
0D, (C,P) S Z)\iO'DO (C,Pi) (24)
=1

Let us assum®&; is the maximizer of (18). In this case, we have
op,(c,P) <> Aic'R,. (25)

Hence, we have .
op, (¢, P) <c' Y AR, (26)



By definition,Z;?:1 MR, s a point in D,. Therefor, we conclude
0D, (Ca P) < 0D, (Ca P) (27)

This completes the proof. O
Corollary 1 (Han [16]): If Dy is a polymatroid therD,=Ds.
Proof: It is easy to show thabD, satisfies the active extreme points condition. In fact, fieegc, y can be obtained in
a greedy fashion which is independent®f O
In what follows, we upper boung and¢’.
Theorem 2:The cardinality of the time sharing parametein (13) is less thanM/ + K + 1, where M and K are the
dimensions ofP and ©(P), respectively. Moreover, i©(P) is a continuous function oP, theng < M + K.
Proof: Let us defineE' as

q q q
E:{Z)\iG(PiHZAiPiSP,Z)\Z-:L)\Z-ZOW}. (28)
=1

=1 =1
In fact, F is the collection of all possible bounds far;. To proveq < M + K + 1, we define another regioP as

Ey = {(P',8)0<P S =6FP)} (29)

From the direct consequence of the Caratheodory’s thedteangonvex hull of; denoted by conw; can be obtained by
convex combinations of no more thad + K + 1 points in D. Moreover, if ©(P’) is continuous, then/ + K points are
sufficient due to extension of the Caratheodory’s theoreow,Nve define the regiof’ as

D — ,S') € convE,, P <P}
FE S'|(P’, S’ E., P <P 30

Clearly, E C E. To show the other inclusion, we take a pointih say S = S°%_, \,0(P;). Since(P;, ©(P;)) is point in
E1, Y0, Xi(Pi, ©(P;)) belongs to convE,. Having Y7_ \;P; < P, we conclude}"?_, \;0(P;) € E. Hence,E C E.
This completes the proof. O
Corollary 2 (Etkin, Parakh, and Tse [17])For the M-user Gaussian IC where users use Gaussian codebooks for dat
transmission and treat the interference as Gaussian ribeseardinality of the time sharing parameter is less th&h
Proof: In this caseDy = {R|R < ©(P)}. Therefore, botiP and ©(P) have dimensionl/. On the other han®(P)
is a continuous function aP. Now, by applying Theorem 2 we obtain the desired result. O
To upper bound;’ in (15), we need some extra definitions and theorems. In fiadhis caseD, can be viewed as a set
valued map andD, as another set valued map which is obtained from concavditaif Dy. Appendix | summarizes all
results regarding concavification of a set valued map. Utliege results, we can state the following theorem.
Theorem 3:To characterize boundary points bk, it suffices to sety < N + 1 whereN is the dimension oR.
Proof: See . O
Surprising fact about Theorem 3 is that upper boundgfas independent of the number of inequalities in the desoript
of the achievable rate region.
Corollary 3: For theM-user Gaussian IC where users use Gaussian codebooksddrategmission and treat the interference
as Gaussian noise, to obtain any point on the boundaiy,ofthe cardinality of the time sharing parameter is less th&h

E. Extremal Inequality
In [13], the following optimization problem is studied:

W = C5Jt>1<za£xsh(X—i-Zl) — ph(X + Zs), (31)

whereZ; andZ, aren-dimensional Gaussian random vectors with the strictlyitpesdefinite covariance matricegz, and
Qz,, respectively. The optimization is over all random vect¥r;ndependent o, andZ,. X is also subject to the covariance
matrix constrainx < S, whereS is a positive definite matrix. It is shown that for all> 1, this optimization problem has a
Gaussian optimal solution for all positive definite matsicg¢z, and@Qz,. However, for0 < p < 1 this optimization problem
has a Gaussian optimal solution provid@g, < Qz,, i.e., @z, — Qz, iS a positive semi-definite matrix. It is worth noting
that for u = 1 this problem wherQz, < Qz, is studied under the name of the worse additive noise [18][19

In this paper, we consider a special case of (31) wifarandZ- have the covariance matricdg I and N,I, respectively,
and the constraint is the trace constraint, i.e.,

W = tr{gg};ﬂp h(X +Z1) — ph(X + Zy). (32)

In the following lemma, we provide the optimal solution foietabove optimization problem whevy < Ns.

Lemma 1:If Ny < N,, the optimization problem (32) has an Gaussian optimaltswitfor all 0 < x with iid components.
More precisely, we have
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Fig. 2. Optimum variance versys

1) Foro<pu< %fig, the optimum covariance matrix B/ and the optimum solution is

W = log|(2me) (P + Ny)] — £ log [(2me) (P + No) (33)

2) For {2 < u < 2, the optimum covariance matrix ig"’l;—“lNlI and the optimum solution is

n Ny — Ny un w(2mwe)(Ny — Np)
=—1 2me) ———| — —1 34
W= Rlog |(2ne) 2 - B g [ H2TILR (34)
3) For %—j < u, the optimum covariance matrix (sand the optimum solution is
w="1 log(2meNy) — ,u_2n log(2meNs). (35)
Proof: See Appendix Il for the proof. O

In Figure 2, the optimum variance as a function ofs sketched. This figure shows that for any valueuo& gi—%f we
need to use the maximum power to obtain the maximum of thectisge whereas fop > ﬁi%f we use less power than the
given power constraint.

Lemma 2:If Ny > N,, the optimization problem (32) has an Gaussian optimaltswilfor all 1 < . with iid components.
In this case, the optimum variance(sand the optimum solution is

W = Zlog(2meNy) — 2 log(2meNy). (36)
Proof: The proof is similar to that of Lemma 1 and we omit it here. O
Corollary 4: Forp = 1, the optimization problem (32) has an Gaussian optimaltesiwvith iid components. The optimum
solution in this case is

W = (37)
Zlog (R if Ny > N,
We repeatedly use the following optimization problem tlgioout the paper:
= h(X+Zy) — ph(vVaX +Z 38
In tr{é?(a}énp (X +Z1) — ph(VaX + Z2), (38)
where Ny < Ny/a. Using the identityh(AX) = log(|A]) + h(X), (38) can be written as
n Zy
=—1 h(X+Zp) — ph(X4+ —= 39
fn=glogat max (X +Zy) — ph( +\/a), (39)
Now, by applying Lemma 1, we obtain
%log [(2me)(P 4 N1)] — & log[(2me)(aP + N3)] if0<pu< P;ivﬁ,{a
fr(P,N1,No,a,p) = %log [(271—@)%} _ %log [a;t(2we)ﬁff21/a—N1)} if P;_erv]f]{a <u< GNTZI (40)

1 log(2meNy) — & log(2meNy) if aNTi <pu
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Fig. 3. An admissible channef; and f, are two deterministic functions of their inputs.

Ill. ADMISSIBLE CHANNELS

In this section, we aim at building ICs whose capacity regioontain the capacity region of the two-user Gaussian &G, i.
%. Since ultimately we use them to outer boudd these ICs need to possess some properties regarding temesat@n of
the capacity region. In other words, if characterizing tapacity regions or obtaining tight upper bounds of thesenchis
are as hard as the original one, then the new channels amsssel

Let us consider an IC with the same input letters as th& @ind output letterg;, andg. for Users 1 and 2, respectively.
The capacity region of this channel, s&/, contains?’ if

Iy 97)
I(xy;y5)

I(z597), (41)

<
<I(x3;93), (42)

for all p(z})p(x%) and for alln € N.

One way to satisfy (41) and (42) is to provide some extra infition to the one or both receivers. This scheme is called
Genie aided outer bounding scheme. In [12], Kramer used & gerprovide some extra information to both receivers so tha
they can decode both users’ messages. Since the capadiy fghis new interference channel is equivalent to theaciyp
of the Compound Multiple Access Channel whose capacityoregs known, he managed to obtain an outer bound on the
capacity region. In order to obtain a tighter outer boundals® used the fact that if a genie provides the exact infaonat
about the interfering signal to one of the receivers, thenrtew channel becomes the one-sided Gaussian IC. Altholgh, t
capacity region of the one-sided Gaussian IC is unknown lfaaages of parameters, there exist an outer bound due to Sat
and Costa, see [20] and [11], that can be used to outer bowndripinal channel. In all previous works, the genie’s task
was to reveal some information about the interfering sigoathe receiver(s). In [21], Etkin, Tse, and Wang changed the
direction. Their genie provides some extra informationwtlibe intended signal. Even though, it seems that their roblais
far from having a tight capacity region with respect to thathe original channel, they showed that their channel ibtég
than Kramer’s outer bound for some ranges of parameters.

The way that we rely on to satisfy (41) and (42) is to find twoedetinistic functionsj? = f1(g7) andgy = f2(g%) such
that (see Figure 3)

I(xt5y1) <I(xT;97), (43)
I(x3;5yy) <I(x3;7y). (44)

for all p(z7)p(«4) and for alln € N. By using the data processing inequality, it is easy to shwt (43) and (44) imply (41)
and (42), respectively.

Definition 3 (Admissible Channel)An IC ¥ with input letterz; and output letterj; for Useri € {1,2} is an admissible
channel for the two-user Gaussian IC if there exist two deir@stic functionsg? = f1(g7) and g% = f2(¢%) such that (43)
and (44) hold for allp(z})p(z%) and for alln € N. & denotes the collection of all admissible channels.

Clearly, Genie aided channels are among admissible charfekee this, let us assume a genie provideand s, as side
information for User 1 and 2, respectively. In this cage= (y;, s;) for < € {1,2}. By choosingf;(yi, s;) = y:, we observe
that§; = y; and hence (43) and (44) hold with equality sign.

To obtain the tightest outer bound, we need to take the & of the capacity regions of all admissible channels.
Nonetheless, it may happen that finding the capacity regi@nadmissible channel is as hard as that of the original bne.
fact, based on the definition the channel itself is one of timissible channels. Hence, we need to find classes of adheissi
channels that possess two important properties. First, ¢thpacity regions are close #. Second, either their exact capacity
regions are computable or there exist good outer boundseindapacity regions. Let# denote the subset @ containing
all appropriate admissible channels. Clearly, we have

cc()¢. (45)

F



Admissible Channel J2(¥22,G21) = (1 = \/G2)Ja2 + /G201
Fig. 4. Class Al admissible channels.
Recall that there is a one to one correspondence betweersedobonvex set and its support function. Sifi¢es closed and

convex, there is a one to one correspondence bet#weand o . In fact, boundary points 0¥ correspond to the solutions
of the following optimization problem

og(ci,c2) = max ci1Ri+ R 46
‘i)”( 1 2) (R1,R2)e‘ro” 141 2112 ( )
Since we are interested in boundary points not includingRhend R axes, it suffices to considér< ¢; and0 < ¢, where
c1+c=1.
Since¥ C €', we have
og(c1,c2) < ogr(er,ca). (47)

Hence, taking the minimum of the right hand side we obtain
< mi / 48
og(c1,c2) < Jnin_ o (c1,c2), (48)
which can be written as
< mi R Rs. 49
elenna) < B S 1T+ 2P 4)

For the sake of convenience, we make use of the following tptindzation problems

1) = Ri+R 50
o (p, 1) (e i R, (50)
o(1, ) = Ri+ uRo, 51
oz (1, 1) R 1+ pRe (51)

wherel < p. It is easy to show that solutions of (50) and (51) corresponthe boundary points of the capacity region that
we are interested in.
In the rest of this section, we introduce classes of adméssibannels and obtain upper boundsoen (11, 1) andow (1, p).

A. Classes of Admissible Channels

1) Class Al:This class is specially designed to upper boundy, 1). Therefore, we need to find a tight upper bound for
o¢ (1, 1). A member of this class is a channel in which User 1 has oneimarand one receive antenna whereas User 2 has
one transmit antenna and two receive antennas (see Figuféd)hannel model can be written as

1= x1++ars+ 2,
Go1 = a9+ Va1 + 201, (52)
Y22 = @2 + 222,
whereg; is the received signal at the first user’s receiger,and., are received signals at the second user’s receiyés, an
additive Gaussian noise with unit varianeg; andz;, are additive Gaussian noises with varian®gs and No, respectively,
and transmitter 1 and 2 are subject to the average powerraorist?; and P, respectively.
To investigate admissibility conditions (43) and (44), weed to introduce two deterministic functions. Let us coesitvo
linear functionsf; and f> as follows (see Figure 4)

fu(@t)= o1, (53)
fz@gw %11): (1 - \/%)%12 + \/9—25317 (54)
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where( < go. Therefore, we have

97 =2} + Vazl + 27, (55)
Uy =/ V' gext + 25 + (1 — \/g2)255 + /92231 - (56)
Hence, this channel is admissible if the channel's paramettisfy
/ —
b g2 = b7 (57)

(1—4/92)*Nag + g2N21 = 1.
We further add the following constraints to the requiredditians of the class Al channels:

b < No,

CLNQQ S 1. (58)

Although, they reduce the number of admissible channelsinvthe class, these latter constraints help us to providesed
form formula for an upper bound am,- (i, 1). In the following lemma, we obtain the required upper bound.
Lemma 3:For the channels modeled by (52) and satisfying (58), we have

. M1 M2 1 Noz b/Pl Py
oe(p,1) < min —log [2me(P; 4+ aPs + 1)] — = log(2mwe) + = lo <—
(1, 1) fi, e >0 2 g[2me(Py 2 ) 2 g(2me) 2 & Naa = Naa = P+ Noo
M1t p2 =p
1
+M2fh P1117N217bla_ +fh(P21N22117aa/1'1)' (59)

2
Proof: Let us assume?; and R, are two rates achievable for User 1 and 2, respectivelyhEuriore, we splij into
1 >0andp; >0 suc aty = u1 + po. Using Fano'’s inequalities, we obtain
p1>0andu; >0 h th w1+ pe. Using F qualit bt
n(pkRy + Ro) <pl (21 97) + 1(235 93, U21) + nen
Spal (2t 97) + pel (215 47) + 1235 952, §31) + nen
Dy I 1) + T (o33 57 105) + 1(253 5, 751) + e
=pad (273 97) + pol (215 97 |23) + 1(053 95132, ) + 1(253 §50) + nen
=ph(g7) — pah(g7127) + ph(F7 |2y) — peh (g7 |27, 25)

+h(F211052) — h(G21173, U30) + h(F32) — h(Faa|zy) + ney, (60)
=[ah(Gy) — pah(Gy |2t 25)] + [p2h(G7]2h) — (G5 |2k, §55)]
+[h@31 Ua2) — h(§22|x§)] + [h(ﬂgz) - Mlh@ﬁx’f)] + nep, (61)

where (a) follows from the fact} andz} are independent. Now, we separately upper bound the terthswveiach bracket in
(61).

To maximize the terms within the first bracket, we use the flaat Gaussian distribution maximizes the differentiarepy
for given covariance matrix constraint. Hence, we have

ph(97) = peh(G7 ot 25 )= pmh(a] + Vaxh + 21') — p2h(27)
< u;_n log [2me(Py + aP2 +1)] — u;_n log(2me). (62)

Sinced’ < N»1, we can make use of Lemma 4 to upper bound the second brackbisicase, we have
~n|..Nn ~n n ~n n n 1 /T n
p2h (97|25 ) — h(¥a1]25 , Yaa)= p2 | h(2] + 27') — Eh(\/b_iﬂl +231)
1
S/J'anh (PlalaNQIab/a_> ) (63)
H2

where f, is defined in (40).



11
filthn, the) = (1= /)T + Vb

1— /a1

i

" & Pty —— 4

Admissible Channel

Fig. 5. Class A2 admissible channels.

We upper bound the terms within the third bracket as follows:

B i) — h(TRalad) 3 o [llinli) — h(zgy)

i=1

(%)g % log [27re <N21 + V' Pyli] + %)} — glog (2meNgo)

(é)g log [271’6 <N21 + %éb’ﬂ [i] + %%Z:%?:}DZZZ][ZLN]@Q)} _ glOg (2meNa2)

Sg log |:27T8 <N21 +V P+ %)] - glog (2meNa2)

gg log <x—2; + l;;[];l + 2 _I:QN%) (64)

where (a) follows from the chain rule and the fact that remgyvndependent conditions does not decrease differemtiedy,

(b) follows from the fact that Gaussian distribution optzed conditional entropy for given covariance matrix, andf¢tlows
form Jenson’s inequality.

For the last bracket, we again make use of the definitioff,ofin fact, sinceaNo; < 1, we have
h(G2) — pnh(§7'[27)= h(ay + 235) — ph(Vaxy + 21')
Snfh(P27N22711a7M1)' (65)
Adding all inequalities, we obtain

1
wRy + R S% log [2me(Py + aP> 4+ 1)] — % log(2me) + - log (

Noy b Py P )
2

N22 N22 P2+N22
1
+,u2fh <P17 11N217b17 E) + fh(P21N22a 1,@,/141), (66)

where the fact that,, — 0 asn — oo is used to eliminate,, form the right hand side of the inequality. Now, by taking the
minimum of the right hand sid of (66) over all, and .2, we obtain the desired result. This completes the proof. [

2) Class A2:This class is essentially the complement of Class Al in aesémst we use it to upper bount, (1, 1). A
member of this class is a channel in which User 1 is equippéd @rie transmit and two receive antenna whereas User 2 is
equipped with one antenna at both transmitter and recedesr Figure 5). The channel model can be written as

y11 = w1 + 211,
Y12 = T1+ Va'zs + 212, (67)
Yo = $2+\/E$1 + 29,

whereg;; andg;» are received signals at the first user’s receiyelis the received signal at the second user’s receigds an

additive Gaussian noise with unit varianeg; andz,; are additive Gaussian noises with varian®gs and N»1, respectively,
and transmitter 1 and 2 are subject to the average powerraontstP; and P, respectively.
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Admissible Channel FolGo2, G21) = (1= /22 + /Gl

Fig. 6. Class B admissible channels.

For this class, we consider two linear functiofisand f», as follows (see Figure 5)

fl(g{lla g?z): (1 - \/E)g?l + \/E?lea (68)
f2(93)= 95 (69)
Therefore, we have
g1 =21 + vVad'gizy + (1 — V/g1)211 + V91215, (70)
gy =V + xy + 25 (71)

We deduce that the channel modeled by (67) is admissibleeitttannel's parameters satisfy

/
agr =a,

72
(1—\/9_1)2]\711 +glN12 :1 ( )
Similar to Class Al, we further add the following constrait the required conditions of the class A2 channels:
a’ < Ny,
bNy; < 1. (73)
In the following lemma, we obtain the required upper bound.
Lemma 4:For the channels modeled by (67) and satisfying (73), we have
. i 2 1 Noy VP P )
ogr(p,1) < min — log 2me(Py + aPs + 1) — = log(2mwe) + = log | —
w (1) [, s >0 2 g[2me(Pr 2 J 2 g(2me) 2 g<N22 Nos Py + Ny
H1tp2 =p
1

+M2fh P1117N217bla_2 +fh(P21N22117aa/1'1)' (74)
Proof: The proof is similar to the proof of Lemma 3 and we omit it here. O

3) Class B: A member of this class is a channel with one transmit antendaso receive antennas for each user modeled
by (see Figure 6)
y11 = w1+ 211,
Y12 = T1 +Va'ze + 212,
Jor = @2+ V0T1 + 201,
Y22 = T2 + 222,

(75)

whereg; andg;» are received signals at the first user’s receiyer,andg»» are received signals at the second user’s receiver,
z;; is an additive Gaussian noise with variangg for ¢, j € {1,2}, and transmitter 1 and 2 are subject to the average power
constraintsP; and P, respectively. In fact, this channel is designed to uppemilobotho« (11, 1) andow (1, u).
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Here, we investigate admissibility of this channel and, agsult, the required conditions that must be imposed on the
channel’s parameters. Let us consider two linear detestigniunctionsf; and f, with parameter$ < g; and0 < go, resp.,

as follows (see Figure 6)

F1(G1 919)= (1 = /g1)31h + V91972 (76)
J2(U3, U51)= (1 — \/—)y22 + V92931 - (77)
Therefore, we have
g1 =21 + Va'gizy + (1 — /g1)211 + V1215 (78)
Uy =/ b gox + x5 + (1 — \/92) 295 + /9223 - (79)
To satisfy (43) and (44), it suffices to have
agr =a,
/ —
b g2 = b7 (80)

(1- \/E)QNM +g1Ni2 =1,
(1—4/92)*Nag + g2Noy = 1.
Hence, a channel modeled in (75) is admissible if there acen@nnegative numbekg and g» such that the set of equalities
in (80) holds. We further add the following two constraingsthe equality conditions in (80:
b'Ni1 < Na,
a’Nyz < Nio. (81)
Although, having more constraints reduces the number ofattmissible channels, it helps us to provide an outer bound on

o (u,1) andog (1, 1) with a closed form formula.
Lemma 5:For the channels modeled by (75) and satisfying (81), we have

(1) < < P P > N ( P, N Py >
T y _— S - -
L) =H N1y d’Py+ Npp 7 Ny VP + Noy

1
+fh(P2, Noo, Nqo, a', /L) + %log((%re)(alpg + ng)) ) 10g((27T6)(P2 + Ngg)), (82)
P P2 Pl Pl
(1 < — |+ + =
o (L,1) M’Y<N22 b Py +N21> (Nll a’P2+N12>
1
+fh(P1,N11,N21,b/,/L) + 5 10g((27T€)(b/P1 + Ngl)) — 5 10g((27T€)(P1 + Nll))- (83)

Proof: We only upper bound- (1, 1) and an upper bound far¢ (1, 1) can similarly be obtained. Let us assurile
and R, are achievable rates for User 1 and 2, respectively. Usimp'Eanequalities, we obtain
n(pRy + Re) <pl (215911, §1a) + 1(x5; 50, U31) + nen
=pl (273 12911) + pd (275 911)
+1(235 9311932, ) + 1(233§30) + nen
=ph(G12|911) — ph(gialzy, 911) + ph(1y) — ph(F1i]27)
+h(G511955) — h(G31125, G55) + h(G32) — h(Gas|25) + nen
= [uh(Fio|gty) — ph(gi1[2t)] + [P(5511952) — h(F5e|23)]
+ [ph(g11) = M@ 125, §55)] + [h(G52) — ph(Gilat, 1)) + nen (84)
Now, we upper bound different the terms within each bracke84) separately.
For the first bracket, we have

~n | ~n ~n |, @ & ~ s T Hn
uh(F5|5y) — ph(@125) <p ) h(Gelillin i) — - log (2meNu)
=1
(b & Py [i]N11 un
< log |21e ( Nia + @’ Poli] + —1N | B0 (9N
MZ Og[ We( 12+ a'Pafi] + Prli] £ Nux 5 10g (2meNi1)

=1
(C)N 127.1 Pl[i]Nll un
log |2 Nis+ = Pyli n izl — 2 log (2meN
Og[ 778< - Za s L3 Pili]+ Ni 2 og (2melNu)

=1

PNy pn
——— || — = log (2weNV-
P1+N11)} B og (2meN11)

un Nip  d'Py Py )
=—Ilog [ — + + 85
2 g(1\711 Ni1 Pi+Nu (85)

S% log |:27T€ (ng +ad P+
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where (a) follows from the chain rule and the fact that remgvindependent conditions increases differential entr¢ipy
follows from the fact that Gaussian distribution optimizeshditional entropy for given covariance matrix, and (clidas
form Jenson’s inequality.

The terms within the second bracket can be upper boundethdiyrio that of the first one. Hence, we have

No1 bIP1 Py )
Nay = Naa P+ Na

By making use of Lemma 4 and using the fact that < N»; /b, the terms within the third bracket can be upper bounded
as

o lo) — hluala) < 5 1o (86)

ph(its) = Wl = (et + 21 = LHVTat 4 23))
< pnfp <P1,N117N217b/7£> . (87)
Sincel < pu, we obtain
uh(Fiy) = h(@5 |3 55) < 5= log(2mn) (Py + N1a)) = 5 log((2me) (W Py + Na)). (88)
For the last bracket, again we make use of Lemma 4 to obtain

h(F32) — ph(gislet, 911)= h(xy + 235) — uh(\/ax’; + 275)

< nfn(Pa, Nag, N1, d, ). (89)
Adding all inequalities, we obtain
/L N12 a/PQ Pl ) 1 <N21 b/P1 P2 )
Ri+R 10 < + =log | —
o 2= Nii N Pi+Nn Naz  Naz  Po+ Nao
1
+§ log((2me)(Pr + Ni1)) — B log((2me)(b" Py + Na1)) 4 fu(Pa, Nag, N12,a, ), (90)
where the fact that,, — 0 asn — oo is used to eliminate,, form the right hand side of the inequality. By rearranging, w
obtain
P P P P
Ri+ R, < |+t
A 2= (Nll ’P2+N12) 7<J\722 b/P1+N21)
1
+fh(P2, Noso, Nyo, a', /L) + g 1Og((27re)(a'P2 + ng)) 3 10g((27re)(P2 + Ngg)).
This completes the proof. O

The unique feature of the channels within Class B is thati fer y < %}@2@" andl < pu < %ﬁ;ﬁ, the upper bounds
in (82) and (83) become, respectively,

P Pl P2 P2
Ri+ Ry < RPN & S Y (f NH— £ - 91
e ? M7<N1 a’P2+N12) <N22 b’P1+N21) (1)

and
P Pl P P2
Ri+ pRs < +— |+ — . 92
1T HR2 ’Y<N11 a’Pg—i—ng) H’Y<Nz2 b Py +N21> (92)
On the other hand, if the receivers treat the interferenc8asssian noise, then it can be shown that
P P
Ry = —_t 93
! 7(1\711 G'P2+N12) (93)
and P P
Ry = 2 4 72) 94
2= <N22 b' Py + Nay 34

are achievable. Comparing upper bounds and achievable ra&econclude that the upper bounds are indeed tight. In fact
this property is first observed by Etkin, Tse, and Wang in [2¥ summarize this result in the following theorem:

Theorem 4:The sum capacity of Class B channels are attained when egseieat the interference as noise. In this case,
the sum capacity is

P P P Py
&! _— _ 95
sum 7<Nu +CL’P2+N12) +7(N22 +b’P1+N21) (%)

Proof: Simply by substituting, = 1 in (91), we obtain the desired result. O
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4) Class C:Class C is designed to upper bousgd (i, 1) for the mixed Gaussian ICs whete< b. Structurally, Class C
is essentially similar to Class Al (see Figure 4). However,impose different constraints on the parameters for thareia
within Class C. These constraints assist us in providing npper bounds by using new method.

For channels in Class C, we use the same model that is giveb2n Therefore, similar to channels in Class Al, this
channel is admissible if the channel's parameters satisfy

b/92 = b7 (96)
(1 —4/92)*Naz + g2No1 = 1.

Here, we change the constraints in (58) to new constraints

b > Nai,
CLNQQ S 1.

In fact, the second condition is unchanged and only the ialgusign for the first one is reversed. By this simple change
of constraints, we see that the second receiver after degati own signal has a cleaner version of the first user'sasign
Therefore, it is able to decode the signal of the first user el &g its own signal. Applying this observation, we have the
following lemma.

Lemma 6:For a channel in Class C, we have

(97)

-1 1 PN
o (i, 1) SM 5 log (2me(Py + aPy + 1)) + 3 log (271"@ (ﬁ LVP + N21>)
1 1
~3 log(2meNa1) — = log(2meNa2) + fi (P2, Noo, 1,a, 1 — 1) (98)
Proof: Since the second user'is able to decodze both users’ messagbsyve
1 ~n
’” < EI(:C?; o) (99)
1 n, —-n ~M n
Ry < ﬁl(xﬁyzlvyzﬂxz) (100)
1 ~1 ~1 n
Ry< El(x;l;yzlayzzpﬁ) (101)
1 ~n_ ~n
R + Rx< EI(CC?JCS; U1, Uzo) (102)
u—= 1 n, ~n 1 n o .n. ~n ~n
puly + Re < TI(II sU1) + 51(171 T35 Us1, Uoa) (103)
M_l ~n ,u—l ~n|..n 1 ~n  ~n 1 ~n ~n | am
puR1 + Ro< Th(yl) - Th(% lz7) + gh(ymaym) - Eh(y21,y22|$1,$2)
w—1 1., 1 . .
— h(g™ Zh(T™ o)) — Zh(agn n|.,.n ..n
" (97) + n (U211729) " (U231, Uga|oT, 73 )
1. . p—1
+ n (U32) " (47 |7 )]
-1 —1
a —h(j}) < K 5 log (2me(Py +aPy + 1)) (104)
1 . 1 PyNas /
Zh(gh o) < =1 2 —— == _+bP+ N 105
n (y21|y22)_2 og< me <P2+N22+ 1+ 21)) (105)
1 ~n  ~n n ..n 1 1
ﬁh(yzpyzﬂxuxz) =3 log(2meNa1) + B log(2meNaz). (106)
1 ~n Hn— 1 ~n|..n 1 n n n— 1 n
Eh(ym) - Th(yl lz7)= Eh(fz + 235) — Th(\/axz + 21) (107)
< fu(P2, Nog, 1,0, 1 — 1) (108)

IV. WEAK GAUSSIAN INTERFERENCECHANNELS

In this section, we focus on the weak Gaussian ICs. We firgtiolthe sum capacity of this channel for some certain range
of parameters. Then, we obtain an outer bound on the capagiyn which is tighter that previous outer bounds. Finallg
show that using time-sharing parameter and concavificagsnlt in the same achievable rate region for this channe&nwh
Gaussian distributions are used for generating codebooks.
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In this subsection, we make use of the channels in Class Btairothe sum capacity of the weak IC in the certain ranges

of parameters. To this end, let us consider the followingimiration problem:

W—min7<£+L) +7<£+L)
Nip a'Py+ Nig Ny VP + Ny
subject to:

adgr=a

bgy =0

b'N1p < Noy

a’'Nap < Nip

(1-/g1)?Ni1 + 1Nz =1

(1 —/92)*Naz + g2Noy =1

0<[d,b, 91,92, N11, N12, Naz, Noj]

(109)

The objective function in (109) is the sum capacity of ClasgHhannels obtained in Theorem 4. The constraints are the
combination of (80) and (81) where applied to confirm the adihility of the channel and to validate the sum capacity
result. Since every channel in the Class is admissible, we #a,.,,, < W. By changing the variables &, = ¢;N1» and

Sy = ggNgl, we obtain

W:mim<(1_\/~"—1)2PlJr 9111 )+7<(1—\/9_2)2P2+ 92 Py )

1-5; aPs + S 1-—.55 bP; + So
subject to:

b(1 —51)

— <5 <,

(1—yg)? ="

a(l — Sg)

— <5<,

(1—yg)? =~

0< [91792]1

(110)

We first minimize the objective in (110) with respectdpandg.. In this case, the optimization problem can be decomposed
into two separate optimization problems with respecgt@nd g.. The optimization problem with respect t@ reads as

1- Zp P,
W1 :mm’y (( \/g_l) ! 911 >

1— Sl an + Sl
subject to:
b(1—-S
M) < - var
0<gi,
It is easy to solve the above optimization problem. In fact, vave
7 (25) if Vb(1+aP2) < /Sa(1—8)
Wl == _ _ 2
v+ 0oy bf;j;l“” Pl) Otherwise

Similarly, the optimization problem with respect §e can be written as

1-— 2P, P
Wgzminw(( V92) 2 _92h )

1-55 bP; + 5,
subject to:
a(l—S
% < (1 - @)27
1
0< g2,

The solution to the above optimization problem is

~ (H%) if a(l+bP) < /51— S2)
Wo =
’ gl <% + U0y a(l_SZ)/Sl)sz) Otherwise

bP;+S>

(111)

(112)

(113)

(114)
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Combining (112) and (114), we obtain

W =min W + Wy (115)
subject to:
0< S5 <1,
0< S <1,

From (112) and (114), we observe that f8r and S, satisfying vb(1 + aP>) < +/So(1 —S1) and /a(l + bP;) <
S1(1 — S2) the objective becomes independentSafand S,. In this case, we obtain

P P,
_ 116
W V(aP2+1>+7(bP1+1>’ (116)

which is achievable by simple strategy of treating intexfexe as noise. In the following theorem, we prove that itsipdes
to find appropriates; and S, for some certain range of parameters.
Theorem 5:The sum capacity of the two-user Gaussian IC is

B Py Py
o = (37 ) +7 (7). (117)
for all channel's parameters satisfying
1-— — Vb
VaP; +VbP, < 1-va-vb (118)

ab
Proof: Let us fixa andb. In order to find allP; and P, such that we can find < S; < 1 and0 < S; < 1 satisfying

\/5(1 +aPy) < /S2(1—51) and/a(1 +bP;) < +/S1(1 — S2), we defineD and D’ as follows
D:{(pl,pﬁ,plgim_z by VSRO-5) 1 } (119)

, ——,0< 851 <1,0< 85 <1
bv/a pr 2 S b a 1 2

D= {(Pl,PQMPl +VaP; < Lﬁ‘ﬂ} (120)

To showD’ C D, we setS; =1 — S5 in (119) to get

S 1 1-5 1

It is easy to show that the left hand side of the above equasi@nother representation of the regidh. Hence, we have
D' C D.
To showD C D', it suffices to prove that for anyP;, P,) € D, VbP; ++/aPy < 1=va—vb holds. To this end, we introduce

the following maximization problem
J= max VbP,+aPs, (122)
(Py,P2)eD
which can be written as
Si(1 -9 Sa(1—= 95 1 1
= max Vi ( 2) + v/ ) —_— = . (123)
(51,52)€(0,1)2 Vab va Vb
It is easy to show that the solution to the above optimizaiovblem is
1 1 1
J=—-—-— 124
Vab  va b (24
Hence, we deduce thd C D’. This completes the proof. O
As an example, let us consider the symmetric Gaussian IChisncese, the constraint in (118) becomes
P< 1-2va (125)
2a+/a

In Figure 7, the admissible region fd? versus,/a, where treating interference as Gaussian noise is optisalptted.
In Figure 8, the upper bound in (109) and the lower bound ischlesl for a fixedP and all0 < a < 1. We observe that
up to some certain, the upper bound coincides with the lower bound.
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10 T T

SNR

Admissible SNR

-4 1 1

Fig. 7. Admissible region for optimality of treating interence as Gaussian noise.

R +R

Upper Bound -

Treating interference as noise

Fig. 8. The upper bound obtained by solving (109). The lowauridl is obtained by using the simple scheme of consideriagnterference as Gaussian
noise.
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B. New Outer Bound

For the weak Gaussian IC, there are two outer bounds thatigireert than other bounds. The firs one, due to Kramer
[12], is obtained by considering the fact that the capaatyian of the Gaussian IC is inside the capacity regions ofloe
underlying one-sided Gaussian ICs. Even though, the dypagion of the one-sided Gaussian IC is unknown, there exis
outer bound for this channel that can be used instead toedthé/outer bound for the original channel. Kramers’ outarriab
is the intersection of two regions; and E». E; is the collection of all rate pair6R,, R2) satisfying

(1-H)P'
< -~ 126
Rl—V(ﬁP/H/a (126)
Ra< y(BP") (127)
for all 8 € [0, Bmax, whereP’ = Py /a + P> and Bmax = %. Similarly, E> is the collection of all rate pair§R;, Rs)
satisfying
Ri< y(aP") (128)
(1—a)P”
< J A
Ro< (aP” +1/b (129)

for all o € [0, amay], WhereP” = P, + P, /b and fBmax = P,,(%

The second outer bound, due to Etkin, Tse, and Wang [Zlf teiredd by using the Genie aided technique to upper bound
different linear combinations of rates that appear in Hatd§ashi achievable rate region. Their outer bound is thenuof
all rate pairs(R;, R2) satisfying

Ri<~(P)) (130)

Ro< 7(P2) (131)

Ri 4+ Ry< 7(P1)+7<1+ZP1) (132)
Ry + Re< y(P2) + (1 +P;P2) (133)
Ry + Ry< v <aP2 +1 f; Pl) + <bP1 +1 +PZ P2) (134)
2Ry + Ra< v(P1 + aP2) +7 <bP1 + HP—ZPQ) +0.5log <11i£1> (135)
Ry +2Ry< y(bP + P2) + <aP2 + __f—épl) +0.5log <11j£_§2) . (136)

In the new outer bound that we propose here, an upper bourehfitr linear combination of rates is derived. Recall that to
obtain the boundary points of the capacity regirit suffices to calculater, (1, 1) ando (1, 1) for all 1 < p. To this end,
we make use of channels in Al and B Classes and channels in d\B & obtain upper bounds far, (1, 1) andox (1, ),
respectively.

In order to obtain an upper bound fe (u, 1), we introduce two optimization problems as follows. Thetfoptimization
problem is written as

1 N b' P, P
Wi (i) =min % log [2me(Py 4+ aPy 4+ 1)] — % log(2me) + 3 log (i 1 2 >

+ + 137
N22 N22 P2 +N22 ( )

+ pa2 fn (Ph 1, Nay, b/, i) + fu(P2, Naz, 1, a, pi1)

subject to:

M1+ p2 =

bgo=b

b < No

aNap <1

(1 — /92)?Naz + gaNoy =1

0 < [p1, p2,b', g2, Nog, Ny

In fact, the objective of the above minimization problem is @pper bound on the support function of a channel within
Class Al which is obtained in Lemma 3. The constraints arecttmbination of (57) and (58) where applied to confirm the
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admissibility of the channel and to validate the upper boobtiined in Lemma 3. Hencew (1, 1) < Wi (u). By using new
variableS = (1 — ,/g2)? N2z, we obtain

L 1 21—S+bP1 P2
Wi (1) =min — log [2me(Py 4+ aPy +1)] + = log | (1 — 138
1(p) =min 5 og [2me(P1 + aP> + )]+2 og[( V92)"( 925 (1_\/9—2)21:)24_5*) (138)
1-5 b 1 S H2
+ Pyl ——, = — | + fu(Py, 7=, 1@, ) — =~ log(2me
uth( 1 P M2) Jn( P TENE ) — = log(2me)
subject to:
H1tp2 = p
S<1-b
_ 2
Sﬁi(l V2)

a
0 S [M17M2757 92]

The second optimization problem is written as

Wo(p) =min pry <Nilll + ﬁ) + <Ni§2 + b,HP+N21> + fu(P2, Nag, N2, d’, 1) (139)
+ Blog((2me) (@’ Py + Niz)) — 3 Tos((2me) (Ps + Non))
subject to:
dgr=a
bgs=10
b'Ni1 < Ny
a’'Nay < Nip

(1= /g1)°Ni1 + g1 N2 = 1
(1= /g2)°Naz + g2Noy = 1
0<ld,b,g1,92, N11, N12, Naz, Noj]
For this optimization problem, the channels in Class B aredus$n fact, the objective is the upper bound on the support

function obtained in Lemma 5 and the constraints are definaubtain the closed form formula for the upper bound and to

confirm that the channels are admissible. Hence, we dedyc¢g,1) < W»(u). By using new variables; = g; N2 and
Sy = ggNgl , we obtain

—mi (1_\/9_1)2P1 glpl (1_\/9_2)2P2 g2P2
Wz(M)—mlnv( -5 +aP2—|—Sl + s, +bP1+S2 (140)
1-5 81 a ) 1 ( aPz—l—Sl) 1 ( 1- S, )
+ Pyy——,—,—,p )+ =log | 2me)(———) | — zlog | 2me)(P2 + —————
fh(Q(l_\/ﬁ)nglu 2g(7r)( o ) Qg(w)(z (1_@)2)
subject to:
b(1—51)
" <5y < 1,
(I—vg)? =7
a(1—52)2§51<1’
(1-a2)
0<[gla.92]7

In a similar fashion, one can introduce two optimization kpems, say!V; (1) and W5(y), to obtain upper bounds for
o (1, 1) by using the upper bounds on channels in Class A2 and Class B.

Theorem 6 (New Outer BoundJor any rate paifR;, R2) achievable for the two-user weak Gaussian IC, the inegeslit
pRy + Ry < W(p) = min{Wi(p), Wa(p)} (141)
Ry + pRy < W(p) = min{Wi (p), Wa(u)} (142)
hold for all 1 < p.

(p2 = DW (1) + (u1 — DW (p2)

Gsum < min
pape — 1

(143)
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Ry

Ty = (ﬂs - 2/)27,02)

r3 = (2/)3 — P5,P5 — P:z)

9 = (pa — p1,201 — pa)

™= (017/)4 - 2/)1)

Ry

Fig. 9. M-user Interference Channel.

C. Han-Kobayashi Achievable region

Let Do(Py, P, a, 3) denote a subset 6f where parameterB,;, P», o, andj3 are fixed. In fact,D, is a polytope represented
by AR < © whereR = (Rl, Rg)t, 0= (pl,pg, P3, P4, p5)t, and

q_(1 0121 !
“\0 1 11 2 ’
Let us defineD; and Dy as two regions that enlargB, by time-sharing and concavification, respectively. In fdo{
that we are interested in its characterization is equitai@s/. To this end, we aim to show; = Dy and make use of the

characterization ofD, to characterizeD,. From Theorem 1, it suffices to show thBt possesses the active extreme points
condition. The support function db, can be written as

ap,(c1,c2, P1, Pa,a, ) = max{ci Ry + caRa| AR < O(P1, P, o, B) }. (144)
To prove D, possesses the active extreme points condition, we neeatothlaty, the minimizer of the optimization problem
op,(c1, 2, P1, Po, , f) = min{y'O(P)[A'y = (c1,¢2)",0 <y}, (145)

is independent of parametefy, P,, o, and3 and only depends om; andc,. We can verify that this indeed valid for the
weak Gaussian IC. Since the Han-Kobayashi achievable egterr is symmetrical with respect #; and R, we only need to
prove it for (¢, c2) = (i, 1) for all 1 < u. However, it is easy to show thdy(Py, P», «, 3), a polytope in the first quadrant,
has always four extreme points, namely 2, r3, andr, (see figure 9). On the other hand, thanks to the results autdor
linear programs, we know that the maximum of (144) is atthiatone of its extreme points. It can be shown thatXfer ,
the maximum of (144) is attained at and we have

GDO(H717P17P27Q76):(/'L_z)pl +P4 (146)

By comparing (146) with (145), the dual variable that mirdes (145) isy = (1 — 2,0, 0, 1,0)* which is clearly independent
of Pi, P, o, and 3. For1 < i < 2, the maximum of (144) is attained a and we have

UDo(/L711P17P2104’5):(2_:u)p3+(:u_1)p4' (147)

Again by comparison, we deduce that the dual variable thatmizes (145) isy = (0,0,2 — u, u — 1,0)* which is clearly
independent of?;, P, «, and 3. Hence,D, has the active extreme points condition. Using this, we ¢ate ghe following
theorem.

Theorem 7:For the two-user weak Gaussian IC, time-sharing and cofication result in the same region. In other words,
¢ can fully be characterized by splitting the available spate three subspaces (For example by using FD or TD) and
allocating power over subspaces.

V. ONE-SIDED GAUSSIAN INTERFERENCECHANNELS

Throughout this section, we consider the one-sided GaudSiaobtained by setting = 0, i.e, the second receiver incurs
no interference from the first transmitter. One can furth@it she class of one-sided ICs into two subclasses. Thengtro
one-sided ICs and the weak one-sided ICs. For the formgr,l and the capacity region is fully characterized []. In thisea
the capacity region is the union of all rate pa(f?;, R2) satisfying

Ry v(Pr)
Ry < ()
Ri+ Ry < min{y(P+aP),v(P1)+~v(P)}.

IN
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For the latter, howevery < 1 and the full characterization of the capacity region isl stil open problem. Therefore, we
always assume < 1.

Three important results are proved for this channel. Thedimge, proved by Costa in [11], states that the capacity regfo
the weak one-sided ICs are equivalent to that of the degriZedvith some appropriate parameter changes. The second one
proved by Sato in [10], states that the capacity region ofdisgraded Gaussian IC is outer bounded by the capacity region
a certain degraded broadcast channel. Finally in [14], iSased the result of Sato to characterize the sum capacitiyi®f t

channel.
In this section, we provide an alternative proof for the outeund obtained by Sato. We then characterize the full Han-

Kobayashi achievable rate region where Gaussian codelavekssed for data transmission, i.%.,

A. Sum Capacity
For the sake of completeness, we state the sum capacity odtained by Sason.
Theorem 8 (Sason)The rate pair 1lep2 ,7(P2) ) is an extreme point of the capacity region of the one-sideds&an

IC. Moreover, the sum capacity of the channel is attainedhiatgoint.

Since the sum capacity is attained at the point where UsearBsnits at its maximum rat®; = ~(P,), other boundary
points of the capacity region can be obtained by charaaterithe solutions ob« (u,1) = max {uR; + R2|(R1, R2) € €}
forall 1 < pu.

B. Outer Bound

In [10], Sato derived an outer bound for the capacity of thgraéed IC. On the other hand, due to Costa’s result, the
capacity region of the degraded Gaussian ICs is equivatettiat of the weak one-sided ICs with appropriate changes of

parameters.
Theorem 9 (Sato)if the rate pair(R;, R2) belongs to the capacity region of the weak one-sided IC, theatisfies
(1-p)P
Byo= 7(1/a+ﬁP) (148)
Ry <~(BP)

for all 5 € [0,1], whereP = Py /a + P.
Proof: Using Fano’s inequality, we have

n(pRy + Ry) <pl(xV:yy) + 1(z3;y5) + nen
=ph(yy) — ph(yy' =) + h(yy) — h(yz|2y) + ne,
=[ph(a} + Vazxy + 27') — h(23)] + [h(zy + 25) — ph(Vazy + 27)] + ne,

(@)
< % log [2me(Py + aP> 4+ 1)] — glog(%e) + [h(@y + 23) — ph(Vazy + 21)] + nen

—~

Jun
-2

log [2me(Py + aPy +1)] — glog(27re) +nfn(P2,1,1,a, 1) + ne,
where (a) follows from the fact that Gaussian distributioaximizes the differential entropy for given covariance rixat
constraint and (b) follows from definition of;, in (38).

Recall that it suffices to considér< p. Depending oru, we consider two cases.

P2+1/a
1-Forl < p < 74, we have

Py
Ry + Ry < P). 149
phy + 2_N7(1+GP2>+’Y( 2) (149)
In fact, the point( ~ HPTl% ,7(P2) ) which is achievable by simply treating interference as@aisReceiver 1, satisfies (149)
with equality. Therefore, it belongs to the capacity regibtoreover, by setting: = 1 we deduce that this point corresponds
to the sum ca}Jacity of the one-sided Gaussian IC.

2- For 22t1/e 4, < 1 we have

Po+1
1 1/a—1 1/a—1
By + Ry < P log (Pt aPy +1) + S10g [ 12 g (Ralla= 1) (150)
2 2 n—1 2 n—1
Equivalently, we have
P+1 -1 1 1/a—1
uRy + Ry < Elog (@P+1)(p—1) + Zlog /a , (151)
2 w(l—a) 2 pw—1
whereP = P;/a + P». Let us define two set&; and E» as
(1-p)P
= <yl 22— <
B = { ol < (2200 ) ke <967, v € 0,1 (152)
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and

i (aP+1)(p—1) 1 1/a—1 P,+1/a 1
Ey =< (Ry,Ro)|uR1 + Ry < =1 —_— =1 N < -7 153
2 {( 1, Ro)|pRy + 2_20g< w(1—a) + 508 =1 ) Pt k= (153)
In fact, F is the dual representation @f;, see (17). To show this, we evaluate the support functiofh’;08s
op, (1, 1) = max {uRy + Ra|(Ry, R2) € Ev}. (154)
It is easy to show that ) /
_u (aP+1)(p—1) 1 1/a—1
op, (u,1) = 5 log <—H(1 o) + 5 log 1) (155)
Since F; is a closed convex set, we can make use of (17) to obtain thereipi@esentation of it which is indeed equivalent
to (153). This completes the proof. O

C. Han-Kobayashi Achievable Region

Since there is no link between Transmitter 1 and Receivers2yr U's message in Han-Kobayashi achievable rate region is
private message. In this case, we have

— Pl
pP1=" <m) 5 (156)
pa=(Pz), (157)
- Pr+a(l—-B)P
p31="y <W> +7(8P2), (158)
p32="y <m) +(P2), (159)
- P1 + CL(l — /B)PQ
p33= (—1 - aiP, ) +7(8P), (160)
o P1+a(1—ﬁ)P2 Pl
e (BB o () oo (161)
_ Pi+a(l - pB)R
ps=Y(BP2) + () +~ <—1+aﬁP2 ) ; (162)
It is easy to see thats = p31, p31 +p1 = pa, p31 +p1 = pa. Henced can be represented as all rate pdiRs, R») satisfying
Py
< -
s (s ) (163)
Ro< (), (164)
Pi+a(l - pB)R
<
R+ Ros oy (PO oy, (165)

for all g € [0, 1]. For a fixeds, the region is a pentagon with two extreme points in the iotesf the first quadrant, namely

r1 andry. The first extreme point which ig; = (7 (%ﬁfg&) +v(BP) — 7(P2),7(P2)) lies on the boundary of the

capacity region. The second extreme point can potentially point on the boundary &f. This is indeed the case and we
prove it in the following lemma.
Lemma 7:The region¥ can be equivalently represented as the collection of &l pairs(R;, R;) satisfying

Py
ms( o) (166)
- P
Ry< 7(5P2)+7(12_1Pl—%) (167)

Moreover,¥ is convex and any point that lies on the boundary of the regamm be achieved by using superposition coding
and successive decoding.

Proof: Let E denote the set defined in the lemma. It is easy to proveBhatG. Indeed, the extreme point @ for a
fixed 3 corresponds te,. Hence, we need to show the other inclusion. To this end,detelect an arbitrary point insidg,
say (R}, R}). Hence, there exist & such thatR] and R}, satisfy (163), (164), and (165). SinegSP;) + (%)
in (167) is a continuous function over a compact set, the@/45< 5 < 1 such that

Ry, =~ (BP) +~ (%). (168)
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For this 3, every point(Ry, R,) with Ry <~ (Hg—}lpz) is in E. Hence, we need to show) < v (Hg—zpz). From (163),
(164), and (165), we have

. Py 1+5P; 1+ P+ fab,
R < ——1],0.51 _— 0.51 _ = . 169
1_mm{7<1+ﬁ’aPz>’ 0g<1+ﬁPz>+ Og( 1+ BaP; (169)

It is easy to show that the right hand side of the above inéyualless thany (H’;—;Pz) when’ < 5. Hence,E = 4.
By having a new description, It is straightforward to showttlf is convex and the boundary points are achievable by using

superposition coding and successive decoding. O
Let us denoteD, as the collection of al(R;, R.) satisfying
Py
<yl —— 170
Rl_’y<1+ﬁapg> ( )
(1 — 6)CLP2 >
Ro< P+ ——————— 171
2< (BP2) 7(1+P1+ﬁaP2 (171)

for fixed 3, P;, and . Clearly, Dy possesses the active extreme points condition and hemezstiaring and concavification
over Dg result in the same region. On the other hand, from Lemma 7 wedealuce thatf = D; = D,. As a result,
boundary points of the full Han-Kobayashi achievable ra&gion when Gaussian codebooks are used for data transmissio
can be obtained from the following optimization problem:

3
Ai P (1 — Bi)aXi Py
= i — 5 i Ai Pai 172
W max;/\ {M7(1+5ia/\ipzi)+7(ﬁ)\ 2)+7(1+/\ipli+ﬁa)\ip2i (172)
subject to:

3

=1

i=1

3
Z AP =P
i1

3
Z)\iPQi =P

i=1
0 < [Pui, Poi, Ai, B3] Vi € {1,2,3}

VI. MIXED GAUSSIAN INTERFERENCECHANNELS

In this section, we focus on the mixed Gaussian Interferehemnel. We firs characterize the sum capacity of this cHanne
Then, we provide an outer bound to the capacity region. Kinak investigate the Han-Kobayashi achievable rate regio

A. Sum Capacity
Theorem 10:The sum capacity of the mixed Gaussian IC, withc 1 andb > 1 can be stated as

. P, bP
%sum—v(P2)+m1n{7<1+;P2>,7<1+1P2>}. (173)

Proof: We need to prove the achievaility and converse for the thmeore
Achievability part: Transmitter 1 sends a common message to both receivers thigilfirst user’'s signal is considered as

Gaussian noise at both receivers. In this case, the rate

. P bP,
Rl_mm{7<1+ap2)’7(1+P2)} (174)

is achievable. Now, at Receiver 2 the signal from Transmittean be decoded and its effect can be removed. Therefoee, Us
2 is left with a channel without interference and it can cominate at its maximum rate which is

Ry = (Py). (175)

By adding (174) and (175), we obtain the desired result.
Converse part: The sum capacity of the Gaussian IC is upper bounded by fhtteounderlying two one-sided Gaussian
ICs. Hence, we can obtain two upper bounds for the sum ratdirgfegemove the interfering link between Transmitter 1 and
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Receiver 2. In this case, we have a one-sided Gaussian |Oneidtk interference. The sum capacity of this channel is known
[14]. Hence, we have

P,

By removing the interfering link between Transmitter 2 andcBver 1, we obtain a one-sided Gaussian IC with strong
interference. The sum capacity of this channel is also kndtence, we have

which equivalently can be written as
bP;

sum < V(P . 178
G <2(P2) 47 (10 ) (179)

By taking the minimum of the right hand sides of Inequalit{#g6) and (178), we obtain

. P bP,
sum < (P — |, . 179
om0 i () 2 (2} o
This completes the proof. O
By comparingy 1+121P2 with ~ (1?332 , we observe that it + P, < b+ abP; then the sum capacity corresponds to the

sum capacity of the one-sided weak Gaussian IC, wherebhs-if’, > b + abPs, then the sum capacity corresponds to the
sum capacity of the one-sided strong IC.

B. Outer Bound

The second outer bound, due to Etkin, Tse, and Wang [21], tairdd by using the Genie aided technique to upper bound
different linear combinations of rates that appear in Haé§yashi achievable rate region. Their outer bound is thenuof
all rate pairs(R;, R2) satisfying

Ri<~(P1) (150)
Ro< y(P2) (18
P
(P 182
R+ R» _’7( 2) (1—|—an> ( )
Ri + Ro< (P2 + bP2) (183)
Py 1
) < (P P bP 184
Ri+ Ro<v(P1+a 2)+7( 1+1_|_ P2>+7(1+bP1> (189

Even though, the capacity region of the one-sided Gaus§iaa unknown, there exist an outer bound for this channel that
can be used instead to derive the outer bound for the orighmatnel. Kramers’ outer bound is the intersection of twaaeg
E, and E,. E; is the collection of all rate pairgR;, R2) satisfying

(1-B)P'
< -~ 7 185
Rl—V(ﬁP/H/a (185)
Ra< y(BP") (186)
for all 8 € [0, Bmax, whereP’ = Py /a + P> and Bmax = %. Similarly, E> is the collection of all rate pair§R;, Rs)
satisfying
Ri< y(bPy) (187)
Ro< v (P2) (188)
R+ Ry< 7(bP1 + Pz) (189)
for all o € [0, amax, WhereP” = P, + P, /b and fBmax = m

In the new outer bound that we propose here, an upper bourehfidr linear combination of rates is derived. Recall that to
obtain the boundary points of the capacity regirnit suffices to calculate« (u, 1) ando« (1, 1) for all 1 < . To this end,
we make use of channels in Al and B Classes and channels in d\B & obtain upper bounds far, (1, 1) ando (1, ),
respectively.
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In order to obtain an upper bound fe (u, 1), we introduce two optimization problems as follows. Thetfoptimization
problem is written as

W (1) =min pol log (2me(Py + aP2 + 1)) + llog (271'8 (ﬂ +6 P+ N21)> (190)
2 P+ Noyy
— %log(27reN21) — %log(27reN22) + frn(P2y Nog, 1,a, 0 — 1)
subject to:
bgs=10
b > Ny
alNgy <1
(1= /92)>Na2 + gaNo1 = 1
0 < [b', g2, Nag, Noi]
W (p) =min ,u 1og (2me(Py +aPy + 1)) % og | 2me ( 2P2 _: 1S + bplg:_ S)) (191)
1 2meS 1 2me(1 — 8
- (52) - e (55 + h( Ty hen)
subject to:
S<1
a1 - ) < (1 - V)?
0<[S, g2]

Theorem 11:For any rate pai R, R2) achievable for the two-user mixed Gaussian (B;, R2) € F1 () E2. Moreover,
the inequality
uRy + Ry < W (p) (192)

holds for all1 < p.

C. Han-Kobayashi Achievable Region

In this subsection, we study the Han-Kobayashi achievadike negion for the mixed Gaussian IC where< 1 andb > 1.
Since Receiver 2 can always decode the message of the firstUssr 1 associates all its power to the common message.
However, User 2 allocate$P, and(1— )P, to the private and common messages, respectively, wherd, 1]. Let Ry, and
R, denote the common and private rates of User2. Hence, thefréfte second user can be represente®as= Ry + Rap.

In this case G5 is the union of all(R;, R) satisfying

Py
1= <m) ) (193)
pa= (%), (194)
p31= <%6_P5)PQ> +v(8P), (195)
pa2= (P2 + bPy), (196)
=y (SL=D ) aoms 4 om) (197)
Pa= (%) + ’Y(ﬁpz + bP1), (198)
- B)P:
=R (Pt op) o (D (199

for all 5 € [0,1]. It is easy to verify that the inequalitys; + p1 < p4 holds. This means that Inequalities (9) and (10) are
redundant for all range of parameters and can be removedbf&ings, we need to take the minimum @f1, ps2, andpss.
By comparison, we can show that the following conditions sufficient to obtainps.

Cio< (b — 1)P1 + (1 - a)(l — ﬂ)Pz + ﬁPng(ab - 1) to havepgl < p32.

C20< (b — 1) + (ab — ﬂ)Pz to havep31 < pss3.

C31l—-a<abP to havepgg < p33.
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Indeed, if C1 and C2 hold thepy = p31. Surprisingly, the condition + P, < b+ abP» suffices to satisfy both C1 and C2.
To proceed, we consider two cases, namely the case viherg, < b+ abP, and the case where+ P, > b+ abPs.

Case l:1+ P, < b+ abPs.

Case ll:1+ P, > b+abP andl —a < abP;.

Case ll:1+ Py, > b+ abP, and1l — a > abP.

In what follows, we investigate the Han-Kobayashi achiévabte region for each cases.

Case | (14 P> < b+abPy): In this caseps = p31. Moreover, It is easy to verify thats; + p1 < ps @andpsi + p2 < ps hold.
This means that Inequalities (9) and (10) are redundantlfeamge of parameters and can be removed. He#cepnsists of
all rate pairs(R;, R2) satisfying

Py
Ri<xy (m) ) (200)
Ro< vy (Po), (201)
Ry + Ro< v (%) +v(8P), (202)

for all 5 € [0, 1]. Using similar reason as that we used to express boundamyspaii for the one-sided Gaussian IC, boundary

points of¢ can be expressed as

Py
Ri<~ <m) ; (203)
CL(l — /B)PQ
ez 108+ (Fm) 20
(205)

for all 3 € [0,1]. Now, we can state the following theorem.
Theorem 12:¢ of the mixed Gaussian IC satisfying+ P, < b + abP» is equivalent to that of the one sided Gaussian IC
obtained from removing the interfering link between Traitgen 1 and Receiver 2.

Proof: By comparing (203), (204) with () and (), we see tlatof this channel is exactly the same as that of the one
sided Gaussian IC obtained from removing the interfering hetween Transmitter 1 to Receiver 2. Hence, we can deduce
that¥ is equivalent for both channels. O

Casell (1+ P, >b+ abP, and1 — a < abPy): In this caseps = min{ps1, p32}. Hence, we need to investigate different
situations arising from choosing differefit

G =FE, JFEU Es.

E; is the union of all rate pairéR;, R2) satisfying

Py
< - 206
mso (). (206)
a(l—B)P:
Ro<~(BP2) + 7 (ﬁ) . (207)
for all 3 € [0, 2057
Es is the union of all rate pairéR;, R2) satisfying
bP,
<

ms (g ) (208)

P+ a(l — ﬂ)Pz bP,
Ry< L S A Py) — ) 209
2—7< 1+ ap, +7(BP2) —~ Tt o5, (209)

b— b—1)P1+(1—a)Ps
for all 5 € [(l—qbl)Pg’ (1(—ab))P1 P2(+_(1—)a)P2]- o
Es5 is the union of all rate pairéR,, R2) satisfying
Ri< bR+ S5 (210)
=9\ TR, 1+ B

Ro< v (P2) (211)
Ry 4+ Ro< ~y(bPy + P) (212)

Caselll (1+ P> > b+ abP, and1 — a > abPy): In this caseps = min{ps1, p32}. Hence, we need to investigate different
situations arising from choosing differefit
¢ =FE JE2JEs.
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Fig. 10. M-user Interference Channel.
E; is the union of all rate pairéR;, R2) satisfying
Py
< - -
s (1 ) (213)
a(l —pB)P,
Ry< P: —_— = . 214
2< (8 2)+7(1+P1+aﬁp2) (214)
for all 3 € [0, 2557
Es is the union of all rate pairéR,, R2) satisfying
Py
< S S 215
R (). (215)
a(l—=B)P, > < Py )
Ry< —_— | + P, +bP) — — . 216
2= (1+P1+aﬁP2 VBP +0P) = T 05h, (216)
for all 3 € [ufaﬁ, 1].
Es is the union of all rate pairéR;, R2) satisfying
Py
<
R1—7(1+aP2> (217)
Ry< v (P) (218)
Ri 4+ Rx< ’7(bP1 + Pg) (219)

VII. CONCLUSION

We have investigated data transmission over Miauser interference channel when transmitters use singlebmmwks for
data transmission, and receivers are allowed to decode wskes’ data. The basic problem of finding the maximum deloleda
subset of users is addressed. By establishing the main piepef the maximum decodable subset, we have proposed a
polynomial time algorithm that separate the interferingrasnto two disjoint parts, namely the users that the recdssable
to jointly decode them and the rest. We have introduced amggattion problem that gives us an achievable rate for a gblan
with finite number of interfering users. A polynomial timegatithm for solving this optimization problem has been pregd.
The capacity of the additive Gaussian channel with Gaussianfering users is established and it is shown that thes§an
distribution is optimal and the proposed achievable rathéscapacity of this channel. Using this result, we havebdistaed
some points on the capacity region of the generalized Z Gau$Ss.

For the M-user Gaussian IC, we have characterized some extremesmafithe achievable rate region corresponding to
successively maximization of users’ rates for any pernutadf users. We have also established the capacity regiothéo
strong generalized Z Gaussian ICs.

We have studied data transmission owéruser ICs. When there is a rate game between users, we havenpiwat there
exist a fixed point for this game. We have investigated thelitimms that the fixed point of the game corresponds to thesuse
conservative rates.



29

APPENDIX |
CONCAVIFICATION OF SET VALUED MAPS

Suppose there exists a stratefjysuch that for every power constraipte ™, one can obtain an achievable rate region
fs(p) € R™. It is possible, however, to consider the achievable raggorefs : R = R™ as a set-valued map that maps
points inR™ to subsets oft™, c.f. [22]. A strategysS is called concave if its associated set-valued nfigfp) is concave,
where a concave set-valued map is defined as follows.

Definition 4 (concave set-valued map): set-valued magf (p) is concave if it satisfies

A1)+ (1 =N f(p2) € f(Ap1+ (1 = A)p2), (220)

for everyps,p2 € R and X € [0, 1].
By substitutingp = p; = p2 into (220), we observe that the image of every point underrec@ee set-valued map is a convex
subset of the range.
For a set-valued map, we define its concave hull congh) as the least set-valued map minorizedhy.e., conclif) < ¢
for every concave set-valued mgp> f, where we sayf; < f» if f1(p) C f2(p) for everyp € R™.
Lemma 8: Pointwise intersection of any collection of concave sétwd maps is concave, i.€f(p) = [,c; fi(p) is concave
if each mapyf; is concave.
Proof: It is easy to show thakf(p1) + (1 —\) f(p2) C Afi(p1) + (1 = A) fi(p2), for everyps, p2 € R™, A € [0,1], and
i € 1. By applying (220) for eactf;, we obtain\ f(p1)+(1—A) f(p2) C fi(Ap1+(1—A)p2). HenceAf(p1)+(1—A) f(p2) €
Nicr fi(Ap1 + (1 = A\)p2) which completes the proof. O
Lemma 9:conch(f) is the pointwise intersection of all concave set-valued snajnorized byf.
Proof: Assumeg = (,.; fi» Where f;'s are all concave maps greater thanClearly, g < f; for everyi. The mapg is
concave by Lemma 8. Henge= conch(f). O
Theorem 13 (concavification of a set-valued mapyr f : " = R™

n+m n+m n+m
} . (221)

(conchf)(p) = { Z Aif (i) | Z A =1, Z AiPi = P, Ai > 0Vi
i=0 i—0 i—0

Moreover, if
Proof: We defineg(p) = {> 7, Xif(pi) | oA =1, 271 o Aipi =P, A > 0 Vi,q > 0}. It is easy to show thay

satisfies (220) and hence is a concave set-valued map. To thlabw = concly, it suffices to prove that for every concave
set-valued magp minorized by f we haveg < h. To this end, we fix a point ig(p), sayx, and prove that this point belongs
to 2(p). From the definition ofj, x can be written as = >~7 | \;x; for someg > 0, wherex; € f(p;) and}_{_; \ip; = p.
By hypothesisf(p;) C h(p;) for all 4, hence we havé"7 (A f(p;) € Y7, Ah(pi). Sinceh is concave, we can apply
property (220) to obtaiy -7, \if(pi) C h(3>_{_, Xipi) = h(p). Thereforex € h(p).

By applying Caratheodory theorem, we can prove that thedfizecan be proved and its extension []. O
We can define the concave hull of a non-concave stratégys a new strategy con@$) such thatfconcr(s) = conchi fs)

Corollary 5: For a given non-concave stratedy the concave hull offs is a new strategy which its associated set-valued
map is achievable.

We are interested in characterizing boundary point&cohchy)(p) for a fixedp. In the following theorem, we characterize
the boundary points of the region.

Theorem 14:The boundary points ofconchf)(p) in (16) can be written as

n+1 n+m n+m
bd((conchy)(p)) = {Z Aiwilzi € f(P)Vi, Y Ai=1, Y Aipi =p,Ai > ow} : (222)
Proof: we start with = = = O

Due to convexity offeoncrs)(p) for a fixed p, we can define the following optimization problem to achigaints on the
boundary of the region.

Oconchf (Y7 p) = sup{yTx|x € fCOan(S) (p)} (223)

o¢(y,p) =sup{y’ x|x € f(p)} (224)

n+m n+m n+m
} (225)

Uconchf(yap) = max{ Z /\sz(yapz)| Z /\z = 11Az 2 0V ia Z /\sz =Pp
=0 =0 =0
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APPENDIXII
PROOF OFLEMMA 4

From the general result for (31), we know that the optimunutrgistribution is a Gaussian vector. Hence, we need to solve
the following maximization problem:

1
W =max ; log ((27€)"|Qx + Ni1|) - % log ((2me)"|Qx + NaI|) (226)
subject to:
0<@x
tr{@x} < nP
Since Qx is a positive semi-definite matrix, it can be decomposed)as= UAU?, where A is a diagonal matrix with

nonnegative entries and is a unitary matrix, i.e.JU? = I. SubstitutingQx = UAU? in (226) and using the identities
tr{AB} =tr{BA} and|AB + I| = |BA + I|, we obtain

W =max % log ((2me)"|A + Ny I|) — % log ((27e)™ A + NaI|) (227)
subject to:
0<A
tr{A} <nP

This optimization problem can be simplified as

n

W =max g 3" llog(2me) (A; + N1) — plog(2me) (A; + No) (228)
1=1
subject to:

0<\ Vi
Zx\ignP
1=1

By introducing Lagrange multipliers and® = {¢1, ¢o, ..., ¢, }, we obtain

L(A, %, ®) = max g 3" llog(2me) (Ai + N1) — log(2me) (A; + No)] + <nP -y )\1-) + ; diNi.  (229)

=1 =1
The first order KKT necessary conditions for the optimum 8ohs of (229) can be written as

1 %
AMi+Ni o AN+ N

" <nP - Xn: /\Z-) =0, (231)
=1

— b+ ¢ =0, Vi€ {1,2,...,n} (230)

oiN; =0, Vi e {1,2,...,71} (232)
It is easy to show that wheiv; < N, A = A; = ... = )\, and the only solution fon is
; No+P
]Pi/’ —uN ?f N 19 =H= %f—ip
A= Rl ?f ijgvp <p< R (233)
0, if ¥ <p

Now, by substituting into the objective function, we obt#ie desired result.
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