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Abstract

A network of n communication links, operating over a shared wireless channel, is considered.

Fading is assumed to be the dominant factor affecting the strength of the channels between transmitter

and receiver terminals. It is assumed that each link can be active and transmit with a constant power

P or remain silent. The objective is to maximize the throughput over the selection of active links.

By deriving an upper bound and a lower bound, it is shown that in the case of Rayleigh fading (i)

the maximum throughput scales like log n (ii) the maximum throughput is achievable in a distributed

fashion. The upper bound is obtained using probabilistic methods, where the key point is to upper bound

the throughput of any random set of active links by a chi-squared random variable. To obtain the lower

bound, a decentralized link activation strategy is proposed and analyzed.

Index Terms

Wireless network, fading channel, throughput, scaling law, decentralized link activation.

I. INTRODUCTION

In a wireless network, a number of source nodes transmit data to their designated destination

nodes through a shared wireless channel. Analysis and design of such configurations, even in

This work is financially supported by Nortel Networks and by matching funds from the federal government of Canada
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their simplest forms, have been among the most difficult problems facing the network information

theory community for many years.

Followed by the pioneering work of Gupta and Kumar [1], considerable attention has been

paid to investigate how the throughput of wireless networks scales with n, the number of nodes,

when n is large. This has been done assuming different network topologies, traffic patterns,

protocol schemes, and channel models [1]–[10]. Most of these works consider a channel model

in which the signal power decays according to a distance-based attenuation law [1]–[7]. However,

in a wireless environment the presence of obstacles and scatterers adds some randomness to the

received signal. This random behavior of the channel, known as fading, can drastically change

the scaling laws of a network in both multihop [8]–[10] and single-hop scenarios [11, Chapter

8], [12], [13].

In this paper, we follow the model of [10], [11], where fading is assumed to be the dominant

factor affecting the strength of the channels between nodes. Despite the randomness of the

channel, we are only interested in events that occur asymptotically almost surely, i.e., with

probability tending to one as n→ ∞. Such a deterministic approach to random wireless networks

has been also adopted in [5], [7], where the nodes’ locations are random.

We consider a single-hop scenario, i.e., a network structure in which the transmitters send

data to their corresponding receivers directly and without utilizing other nodes as routers. It is

assumed that each link can be active and transmit with a constant power P or remain silent. The

objective is to maximize the throughput over all sets of active links. We propose a threshold-based

link activation strategy in which each link is active if and only if its channel gain is above some

predetermined threshold. The decision on being active can be made at the receivers, where their

own channel gains are estimated and a single-bit command data is fed back to the transmitters.

Hence, there is no need for the exchange of information between links. Consequently, this method

can be implemented in a decentralized fashion. We analyze this method for a general fading

model and show how to obtain the value of the activation threshold to maximize the throughput.

As an example, we derive a closed form expression for the achievable throughput in the Rayleigh

fading environment.

Using probabilistic methods, we derive an upper bound on the achievable throughput when

the channel is Rayleigh fading. Interestingly, this upper bound scales the same as the lower

bound achieved by the proposed strategy. This proves the asymptotic optimality of the proposed
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technique among all link activation strategies.

In addition to the channel modeling, [10] is a relevant work in the sense that transmissions

occur with the same power and the objective is to maximize the throughput. However, they allow

multihop communication in their scheme. Their proposed scheme requires a central unit which

is aware of all channel conditions and decides on active source-destination pairs and the paths

between them. Despite this complexity, the achievable throughput of their method in the popular

model of Rayleigh fading is by a factor of 4 less than the value obtained in this work for a more

restricted configuration, i.e., single-hop networks with decentralized management1.

The rest of the paper is organized as follows: In Section II, the network model and problem

formulation are presented. By proposing a decentralized link activation strategy, a lower bound

on the network throughput is derived in Section III. In Section IV, we prove the optimality of

the proposed decentralized method in a Rayleigh fading environment. Finally, we conclude the

paper in Section V.

Notation: Nn represents the set of natural numbers less than or equal to n; log(·) is the

natural logarithm function; P(A) denotes the probability of event A; E(x) represents the expected

value of the random variable x; ≈ means approximate equality; for any functions f(n) and

h(n), h(n) = O(f(n)) is equivalent to limn→∞ |h(n)/f(n)| <∞, h(n) = o(f(n)) is equivalent

to limn→∞ |h(n)/f(n)| = 0, h(n) = ω(f(n)) is equivalent to limn→∞ |h(n)/f(n)| = ∞, and

h(n) ∼ f(n) is equivalent to limn→∞ h(n)/f(n) = 1; an event An holds asymptotically almost

surely (a.a.s) if P(An) → 1 as n→ ∞.

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a wireless communication network with n pairs of transmitters and receivers.

These n communication links are indexed by the elements of Nn. Each transmitter aims to send

data to its corresponding receiver in a single-hop fashion. The transmit power of link i is denoted

by pi. It is assumed that the links follow an on-off paradigm, i.e., pi ∈ {0, P}, where P is a

constant. Hence, any power allocation scheme translates to a link activation strategy (LAS). Any

1Note that the method proposed in [10] is general and can be applied for any fading distribution. Here, we have made the

comparison just for the Rayleigh fading model. For the comparison in other fading environments, see [14].
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LAS yields a set of active links A, which describes the transmission powers as

pi =

⎧⎨
⎩ P if i ∈ A

0 if i /∈ A
. (1)

The channel between transmitter j and receiver i is characterized by the coefficient gji. This

means the received power from transmitter j at the receiver i equals gjipj . We assume that the

channel coefficients are independent identically distributed (i.i.d.) random variables drawn from

a pdf f(x) with mean μ and variance σ2. The channel between transmitter i and receiver i is

simply referred to as the direct channel of link i.

We consider an additive white Gaussian noise (AWGN) with limited variance η at the receivers.

The transmit signal-to-noise ratio (SNR) of the network is defined as

ρ =
P

η
. (2)

The receivers are conventional linear receivers, i.e., without multiuser detection. Since the

transmissions occur simultaneously within the same environment, the signal from each transmitter

acts as interference for other links. Assuming Gaussian signal transmission from all links, the

distribution of the interference will be Gaussian as well. Thus, according to the Shannon capacity

formula, the maximum supportable rate of link i ∈ A is obtained as

ri(A) = log (1 + γi(A)) nats/channel use, (3)

where

γi(A) =
gii

1/ρ+
∑

j∈A
j �=i

gji

(4)

is the signal-to-interference-plus-noise ratio (SINR) of link i.

As a measure of performance, in this paper we consider the throughput of the network, which

is defined as

T (A) =
∑
i∈A

ri(A). (5)

Also, the average rate per active link, or simply rate-per-link, is defined as

r̄(A) =
T (A)

|A| . (6)

In this paper, wherever there is no ambiguity, we drop the functionality of A from the network

parameters and simply refer to them as ri, γi, T , or r̄.
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The problem of throughput maximization is described as

max
A⊆Nn

T (A). (7)

We denote the maximum value of this problem by T ∗. Due to the nonconvex and integral nature

of the throughput maximization problem, its solution is computationally intensive. However, in

this paper we propose and analyze a decentralized LAS which leads to efficient solutions for the

above problem. Indeed, we show that the proposed strategy a.a.s. achieves the optimum solution

of the throughput maximization problem in Rayleigh fading environment.

III. ACHIEVABILITY RESULT

In this section, to derive a lower bound on the network throughput, we propose a simple

heuristic LAS, which we call a threshold-based LAS (TBLAS). Due to the randomness of the

channel, the achievable throughput of the proposed strategy is a random variable; however, our

analysis yields a deterministic lower bound which is a.a.s. achievable.

TBLAS: For a threshold Δ, choose the set of active links according to the following rule

i ∈ A iff gii > Δ. (8)

If each transmitter is aware of the threshold Δ and its direct channel coefficient, it can

individually determine its transmit power. Hence, TBLAS can be implemented in a decentralized

fashion. To obtain the optimum value of Δ, we should first know the achievable throughput of

TBLAS in terms of Δ.

Let kΔ = |A| denote the number of active links chosen by TBLAS with a threshold Δ.

Without loss of generality, we assume that A = {1, 2, · · · , kΔ}. By defining Ii =
∑kΔ

j=1
j �=i

gji and

using (3), (4), and (5), the throughput can be lower bounded as

T >

kΔ∑
i=1

log

(
1 +

Δ

1/ρ+ Ii

)
(9)

≥ kΔ log

(
1 +

Δ

1/ρ+ 1
kΔ

∑kΔ

i=1 Ii

)
, (10)

where the first equality is based on the fact that gii > Δ for the active links and the second one

is the result of applying the Jensen’s inequality.
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To simplify the RHS of (10), we apply the Chebyshev inequality to obtain the upper bound

1

kΔ

kΔ∑
i=1

Ii < (kΔ − 1)μ+ ψ, (11)

which holds a.a.s. for any ψ = ω(1). Consequently, the lower bound (10) becomes

T > kΔ log

(
1 +

Δ

μkΔ + ψ

)
, a.a.s. (12)

Note that the constant 1/ρ−μ is absorbed in the function ψ. Let qΔ denote the probability of a

link being active. We have qΔ = 1 − F (Δ), where F (x) is the cumulative distribution function

(cdf) of the channel gains. Due to the TBLAS, the number of active links, kΔ, is a binomial

random variable with parameters n and qΔ. Using the Chebyshev inequality, it can be shown

that kΔ a.a.s. satisfies the lower bound

kΔ > nqΔ − ξ
√
nqΔ, (13)

for any ξ = ω(1). Noting that for ψ = o(kΔ), the lower bound (12) becomes an increasing

function of kΔ, and by using (13), we obtain the main result of this section, which is an

achievability result on the throughput.

Theorem 1: Consider a wireless network with n links and i.i.d. random channel coefficients

with pdf f(x), cdf F (x), and mean μ. Choose any Δ > 0 and define qΔ = 1 − F (Δ). Then, a

throughput of

Ta(Δ) = (nqΔ − ξ
√
nqΔ) log

(
1 +

Δ

μ(nqΔ − ξ
√
nqΔ) + ψ

)
(14)

is a.a.s. achievable for any ξ = ω(1) that satisfies ξ = o(
√
nqΔ) and any ψ = ω(1) that satisfies

ψ = o(nqΔ).

Note that the achievable throughput Ta(Δ) is a deterministic value. It easily follows that under

the conditions described in Theorem 1, the number of active links and the achievable average

rate-per-link in TBLAS scale as [14]

kΔ ∼ nqΔ a.a.s. (15)

r̄Δ ∼ log

(
1 +

Δ

μ(nqΔ − ξ
√
nqΔ) + ψ

)
a.a.s. (16)

As specified in Theorem 1, the achievable throughput of TBLAS is a function of the parameter

Δ. Thus, Δ can be chosen such that the achievable throughput is maximized. Let us define

Δ∗ = arg max
Δ

Ta(Δ), (17)
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and

T ∗
a = max

Δ
Ta(Δ). (18)

In the following example,we clarify how to obtain these values for the popular Rayleigh fading

model.

Example: In a Rayleigh fading channel, f(x) = e−x, μ = 1, and qΔ = e−Δ. By substituting

qΔ in (14), we obtain

Ta(Δ)=
(
ne−Δ − ξ

√
ne−Δ

)
log

(
1 +

Δ

ne−Δ − ξ
√
ne−Δ + ψ

)
. (19)

The result of maximizing this function over Δ is given in the following corollary.

Corollary 2: Assuming Rayleigh fading, we have

Δ∗ = log n− 2 log logn + log 2 +O

(
log logn

logn

)
, (20)

Ta
∗ = log n− 2 log logn + log(2/e) +O

(
log log n

logn

)
, a.a.s. (21)

kΔ∗ =
1

2
log2 n(1 + o(1)), a.a.s., (22)

r̄Δ∗ =
2

log n
(1 + o(1)), a.a.s. (23)

Proof: see the Appendix.

The throughput scaling law of logn is, by a factor of 4, larger than the value obtained in [10]

in a centralized and multihop scenario.

IV. OPTIMALITY RESULT

In this section, we provide an upper bound on the maximum throughput of the wireless network

in a Rayleigh fading environment. First, we need the following lemma that provides a lower

bound on the number of active links.

Lemma 3: In the optimum LAS, the number of active links, k∗, a.a.s. satisfies

k∗ ≥ logn

log log n

(
1 +O

(
1

log logn

))
. (24)

Proof: It can be shown that

gii ≤ log n+ ϕ, ∀i ∈ Nn, a.a.s., (25)
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for any ϕ = ω(1). In the following, we assume ϕ = o(logn). By ignoring the interference term

and using the above upper bound, the maximum throughput is upper bounded as

T ∗ ≤ k∗ log

(
1 +

log n+ ϕ

1/ρ

)
, a.a.s. (26)

Combining this upper bound with the lower bound in (21), we obtain

k∗ ≥ logn +O(log log n)

log

(
1 +

logn + ϕ

1/ρ

) (27)

=
log n

log logn

(
1 +O

(
1

log log n

))
, (28)

where the equality is obtained by using ϕ = o(log n).

Theorem 4: Consider a wireless network with n links and i.i.d. random channel coefficients

drawn from an exponential distribution with mean μ = 1. The maximum throughput over all

sets of active links is a.a.s. upper bounded as

T ∗ ≤ logn + log log n(1 + o(1)). (29)

Proof: For a randomly selected set of active links A with |A| = k∗, the interference term

Ii =
∑

j∈A
j �=i

gji in the denominator of (4) has χ2(2k∗ − 2) distribution. Hence, we have

P(γi > x) =

∫ ∞

0

P (γi > x|Ii = z) fIi
(z)dz

=

∫ ∞

0

e−x(1/ρ+z) z
k∗−2e−z

(k∗ − 2)!
dz

=
e−x/ρ

(1 + x)k∗−1
. (30)

Consequently, by using (3), we obtain

P(ri > x) = P(γi > ex − 1)

=
e−(ex−1)/ρ

e(k∗−1)x
. (31)

By defining Xi = ri +
eri − 1

ρ(k∗ − 1)
and using (31), it can be shown that Xi is exponentially

distributed with mean 1
k∗−1

. On the other hand, from the definition of Xi it is clear that Xi ≥ ri.

Thus, the throughput T (A) =
∑

i∈A ri is upper bounded as

T (A) ≤
∑
i∈A

Xi. (32)
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Consequently, we have

P (T (A) > x) ≤ P

(∑
i∈A

Xi > x

)
(33)

(a)
= e−(k∗−1)x

k∗−1∑
m=0

((k∗ − 1)x)m

m!
(34)

(b)
< k∗e−(k∗−1)x ((k∗ − 1)x)k∗−1

(k∗ − 1)!
(35)

(c)≈
√
k∗e−(k∗−1)(x−1)xk∗−1, (36)

where (a) is because
∑

i∈AXi has χ2(2k∗) distribution, (b) is because the maximum of the

summand terms occurs at m = k − 1 for large enough x 2, and (c) is obtained by applying the

Stirling’s approximation for the factorial, i.e., m! ≈ √
2πmmme−m.

Assume L is the event that there exists at least one set A ⊆ Nn with |A| = k∗ such that

T (A) > x. We have

p(L) ≤
(
n

k∗

)
P (T (A) > x) (37)

<
(ne
k∗

)k∗ √
k∗e−(k∗−1)(x−1)xk∗−1 (38)

< exp(E(x, k∗)), (39)

where the first inequality is due to the union bound, the second inequality is due to (36) and

the Stirling’s approximation, and E(x, k∗) is defined as

E(x, k∗) = k∗(log n− x− log k∗ + log x+ 2) +
1

2
log k∗ + x. (40)

For x = log n+ log log n+ 2 log log logn, we have

E(x, k∗) ≈ −k∗(2 log log log n+ log k∗ − 2) +
1

2
log k∗

+ logn+ log logn(1 + o(1)). (41)

Noting that the RHS of (41) is a decreasing function in k∗, we can replace k∗ by its lower bound

from Lemma 3 to obtain the upper bound

E(x, k∗) ≤ − log log log n

log log n
logn(1 + o(1)). (42)

2Since we are seeking an upper bound on the throughput, x is at least of order log n. This value is large enough to satisfy

the mentioned condition.
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Since the RHS of (42) goes to −∞ when n→ ∞, from (39) we conclude that p(L) → 0. This

means, with probability approaching 1, there does not exist any set A that achieves a throughput

larger than x = log n+ log log n(1 + o(1)). This completes the proof.

It should be noted that an upper bound of 2 logn has been derived in [10]. However, this

larger upper bound is obtained in a different scenario than ours; they consider a rate constraint

for the active links as well as the possibility of transmitter-receiver assignment.

Comparison between the achievability result in Corollary 2 and the upper bound in Theorem 4

reveals the following result.

Theorem 5: Consider a wireless network with n links and i.i.d. random channel coefficients

drawn from an exponential distribution with mean μ = 1. Then, the maximum throughput a.a.s.

scales like logn. Moreover, this maximum throughput scaling law is a.a.s. achieved by the

distributed TBLAS presented in Section III.

V. CONCLUSION

In this paper, the throughput of single-hop wireless networks with on-off strategy is investigated

in a fading environment. To obtain a lower bound on the throughput, a decentralized link

activation strategy is proposed and analyzed for a general fading model. It is shown that in

the popular model of Rayleigh fading a throughput of order log n is achievable, which is by a

factor of four larger than what was obtained in previous works with centralized methods [10].

Moreover, for the Rayleigh fading model, an upper bound of order logn is obtained that shows

the optimality of the proposed link activation strategy.

APPENDIX

PROOF OF COROLLARY 2

The optimum value of the threshold, Δ∗, is the value that maximizes the achievable throughput

in (19). As it is seen, Ta(Δ) is a complicated function of Δ. However, since ξ can grow as slow

as desired, we can set ξ = 0 to obtain a more tractable form for Ta(Δ) from which a zero order

approximation of the solution is obtained. In the next stage, we will improve the solution using

this zero order approximation.
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a) Zero order approximation: By setting ξ = 0, the objective function in (19) is transformed

to

T̂a(Δ) = ne−Δ log

(
1 +

Δ

ne−Δ

)
. (43)

Using the approximation log(1 + x) ≈ x− x2

2
, the above function can be approximated as

T̂a(Δ) ≈ Δ − Δ2

2ne−Δ
. (44)

By taking the derivative of this function, it can be shown that the value of Δ that maximizes

T̂a(Δ), satisfies the equation

2ne−Δ = 2Δ + Δ2. (45)

Denoting the solution of this equation by Δ∗
(0), it can be verified that

Δ∗
(0) = log n− 2 log logn + log 2 +O

(
log log n

logn

)
. (46)

b) First order approximation: Using Δ∗
(0) in (46), the term containing ξ in (19) is approx-

imated as3

ξ
√
ne−t = ξ logn. (47)

Since ψ can be chosen of order o(log n), it is negligible in comparison with ξ log n. Thus, the

function to be maximized takes the form

Ta(Δ) =
(
ne−Δ − ξ logn

)
log

(
1 +

Δ

ne−Δ − ξ logn

)
. (48)

Assuming ξ = o(log log n), and taking the same approach as for obtaining Δ∗
(0), we obtain

Δ∗
(1) = log n− 2 log logn+ log 2 +

4 log log n

log n
+O

(
ξ

log n

)
. (49)

This confirms the value of Δ∗ stated in Corollary 2. By substituting the value of Δ∗ in (19), the

achievable throughput is obtained as mentioned in the lemma. The number of active links and

the rate-per-link are obtained by using the value of Δ∗ in (17) and (18), respectively.

3With a little abuse of notation, we have replaced
ξ√
2

by ξ. This is acceptable, because we are only interested in the order

of the term that ξ introduces to the solution.
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