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Abstract

In a multiple antenna system with two transmitters and two receivers, a scenario of

data communication, known as the X channel, is studied in which each receiver receives

data from both transmitters. In this scenario, it is assumed that each transmitter is

unaware of the other transmitter’s data (non-cooperative scenario). This system can be

considered as a combination of two broadcast channels (from the transmitters point of

view) and two multi-access channels (from receivers point of view). Taking advantage of

both perspectives, two signaling schemes for such a scenario is developed. In these scheme,

some linear filters are employed at the transmitters and the receivers which decompose the

system into either two non-interfering multi-antenna broadcast sub-channels or two non-

interfering multi-antenna multi-access sub-channels. By using the decomposition schemes,
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the multiplexing gain (MG) of this scenario is derived, which shows improvement as

compared with other known non-cooperative schemes. In particular, it is shown that for

the specific case that both receivers (transmitters) are equipped with n antennas, the total

MG of ρ = b 4n
3 c is achievable, where transmitters (receivers) one and two respectively

have dρ
2e and bρ

2c antennas. The achieved MG is the same as the MG of the system, if

the full cooperation is provided either between transmitters or between receivers.

I. Introduction

Wireless technology has been advancing at an exponential rate, due to increasing

expectations for multi-media services. This, in turn, necessitates the development of

novel techniques of signaling with high spectral efficiency. As a unique solution for

such a demand, researchers have proposed employment of multiple antennas at both

ends of wireless links [1], [2]. Multiple antenna systems incorporate additional dimen-

sion of space to the communication systems, resulting in a multiplicative increase in

the overall throughput [2], [3]. The multiplicative increase in the rate is measured by

a metric known as multiplexing gain (MG), ρ, defined as the ratio of sum-rate of the

system, R, over the the logarithm of the total power PT in high power regimes, i.e.

ρ = lim
PT→∞

R

log2(PT )
. (1)

It is widely known that in a point to point multiple antenna system, with m

transmit and n receive antennas, the MG is min(m,n) [2]. In multi-antenna multi-user

systems, when the full cooperation is provided at least at one side of the links (either

among transmitters or among receivers), the system still enjoys the multiplicative

increase in sum-capacity with the minimum number of the total transmit antennas

and the total receive antennas. For example, in a multiple access channel, with two

transmitters, equipped with m1 and m2 antennas, and one receiver with n antennas,

the MG is equal to min(m1 + m2, n) [4]. Similarly, in a multiple-antenna broadcast

channel, with one transmitter with m antennas, and two receivers with n1 and

n2 antennas, the MG is equal to min(m,n1 + n2) [4]. However, for the case that

cooperation is not available, the performance of the system can be deteriorated due
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to the interference of the links over each other. For example in a multiple-antenna

interference channel, with two transmitters and two receivers, each equipped with n

antennas, the MG of the system is n [4].

Extensive research efforts have been devoted to the multiple antenna interference

channels. In [5], the capacity region of the multiple-input single-output (MISO)

interference channel with strong interference (see [6]) and the capacity region of the

single-input multiple-output (SIMO) interference channel with very strong interfer-

ence(see [7]) are characterized. In [8], the superposition coding technique is utilized to

derive an inner-bound for the capacity of the multiple-input multiple-output (MIMO)

interference channels. In [9], several numerical schemes are proposed to compute sub-

optimal transmit covariance matrices for the MIMO interference channels. In [4], the

MG of the MIMO interference channel with general configuration for the number of

transmit and receive antennas is derived. To increase the MG of such systems, the full

cooperation among transmitters is proposed in [10], [11], which reduces the system to

a single MIMO broadcast channel. To provide such a strong cooperation, an infinite

capacity link, connecting the transmitters, is presumed. In [12], the performance of

single antenna interference channels is evaluated, where the transmitters or receivers

use the same media of transmission for cooperation. It is shown that the resulting

MG is still one and this sort of cooperation is not helpful in terms of MG. In [4], a

cooperation scheme in the shared communication medium for the MIMO interference

channels is proposed and shown that such scheme does not increase the MG.

In this paper, we propose a new scheme of signaling in multiple antenna systems

with two transmitters and two receivers. In this scheme, each receiver receives data

from both transmitters. It is assumed neither the transmitters nor the receivers

cooperate in signaling. In other words, each transmitter is unaware of the data of

the other transmitter. Similarly, each receiver is unaware of the signal received by

the other receiver. This scenario of signaling has several applications. For example, in

a wireless system where two relay nodes are utilized to extend coverage area or in a

system where two base stations provide different services to the users. This system can
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be considered as a a combination of two broadcast channels (from the transmitters

point of view) and two multi-access channels (from receivers point of view). By taking

advantage of both perspectives, it is shown that by using some linear filters at the

transmitters and receivers, the system is decomposed to either two non-interfering

multi-antenna broadcast sub-channels or two non-interfering multi-antenna multi-

access sub-channels. It is proven that such a scheme outperforms other known non-

cooperative schemes in terms of MG. In particular, it is shown that for the specific

case that both receivers (transmitters) are equipped with n antennas, the total MG

of ρ = b4n
3
c is achievable, where transmitters (receivers) one and two respectively

have dρ
2
e and bρ

2
c antennas. Note that even if the full cooperation is provided either

between the transmitters or between the receivers the maximum MG is still ρ. In

continue, it is argued that such decomposition schemes result in some degradation in

the performance of the system. To overcome this problem, a scheme is proposed in

which the signaling scheme is jointly designed for both sub-channels (two broadcast

or two multi-access sub-channels).

The authors proposed this scenario of signaling and established the possibility

of achieving higher MG initially in [13]. Later in [14], we extended the scheme

proposed in [13] to more general configurations for the number of transmit and receive

antennas, and developed two signaling schemes based on (i) linear operations at the

receivers and the dirty paper coding at the transmitters, and (ii) linear operations

at the transmitters and the successive decoding at the receivers. In [15], the idea of

overlapping the interference terms proposed in [14] was adopted to show that zero-

forcing scheme can achieve the multiplexing gain of the X channels for some special

configurations for the number of transmit and receive antennas. Furthermore, in [15]

an upper-bound on the MG of the X channels, where each transmitter and receiver

is equipped with n antennas, is derived.

The rest of the paper is organized as follows. In Section II, the system model is

explained. In Section III, the signaling scheme which decomposes the system into two

broadcast or two multi-access sub-channels is elaborated. The performance analysis
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of the scheme, including computing the MG and the power offset(for some special

cases) is presented in Section IV. In Section V, the decomposition scheme is modified

and joint design for signaling scheme is proposed. Simulation results are represented

in Section VI.

Notation: All boldface letters indicate vectors (lower case) or matrices (upper

case). (.)† denotes transpose conjugate operation, and C represents the set of complex

numbers. OCm×n represents the set of all m × n complex matrices with mutually

orthogonal and normal columns. A⊥B means that every column of the matrix A is

orthogonal to all columns of the matrix B. The sub-space spanned by columns of A

is represented by Ω(A). The null space of the matrix A is denoted by N(A). Identity

matrix is represented by I. Adopted from MATLAB notation, x(i : j) denotes a

vector including the entries i to j of the vector x. The ith column of the matrix A is

shown by a(i).

II. Channel Model

We consider a MIMO system with two transmitters and two receivers. Trans-

mitter t, t = 1, 2, is equipped with mt antennas and receiver r, r = 1, 2, is equipped

with nr antennas. This configuration of antennas is shown by (m1,m2, n1, n2). For

simplicity and without loss of generality, it is assumed that m1 ≥ m2 and n1 ≥ n2.

Assuming flat fading environment, the channel between transmitter t and re-

ceiver r is represented by the channel matrix Hrt, where Hrt ∈ Cnr×mt . The received

vector yr ∈ Cnr×1 by receiver r, r = 1, 2, is given by,

y1 = H11s1 + H12s2 + w1, (2)

y2 = H21s1 + H22s2 + w2, (3)

where st ∈ Cmt×1 represents the transmitted vector by transmitter t. The vector

wr ∈ Cnr×1 is a white Gaussian noise with zero mean and identity covariance matrix.

The power of st is subject to the constraint Tr(E[sts
†
t ]) ≤ Pt, t = 1, 2. PT denotes

the total transmit power, i.e. PT = P1 + P2.
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In the proposed scenario, each transmitter sends two sets of data streams. The

transmitter t sends µ1t data streams to receiver 1 and µ2t data streams to receiver 2.

Throughout the paper, we have the following assumptions:

• The perfect information of the entire channel matrices, Hrt, r, t = 1, 2, is available

at both transmitters.

• Each transmitter is unaware of the data sent by the other transmitter, which

means that there is no cooperation between transmitters. Similarly, receivers do

not cooperate in detection.

III. Decomposition Schemes

In what follows, we propose two signaling schemes. In the first scheme, by using

linear transformations at the transmitters and the receivers, the system is decomposed

into two non-interfering broadcast sub-channels. Then, any efficient signaling scheme

can be employed for each of the resulting broadcast sub-channels.

As a dual of the first scheme, in the second scheme, linear transformations are

utilized to break down the system to two non-interfering multi-access sub-channels.

In all of the following schemes, it is assumed that m1 < n1+n2 and n1 < m1+m2.

Otherwise, if m1 ≥ n1 + n2, the maximum multiplexing gain of n1 + n2 is achievable

by a simple broadcast channel including the first transmitter and the two receivers.

Similarly, n1 ≥ m1+m2, then the maximum multiplexing gain of m1+m2 is achievable

by a simple multi-access channel including the two transmitters and the first receiver.

A. Decomposition of the System to Two Broadcast Sub-Channels(See Fig. 1 and Fig.

2)

In this scheme, the precoding matrix Qt ∈ OCmt×(µ1t+µ2t) is employed at trans-

mitter t, t = 1, 2. Therefore, the transmitted vectors st, t = 1, 2, are equal to

st = Qts̃t, (4)

where s̃t ∈ C(µ1t+µ2t)×1 contains µ1t data streams for receiver one and µ2t data streams

for receiver two. The matrix Qt have two functionalities as (i) confining the transmit
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signal from transmitter t to a µ1t + µ2t dimensional sub-space, which provides the

possibility of decomposing the system to two broadcast sub-channels by using zero-

forcing filters at the receivers. (ii) exploiting the null space of the channel matrices

to achieve the highest multiplexing gain.

At each receiver, two parallel linear filters are employed. The received vector y1

is passed through the filter Ψ†
11, which is used to null out the signal coming from

the second transmitter. The µ11 data streams, sent by transmitter one intended to

receiver one, is available for decoding at the output of Ψ†
11 . Similarly, to decode

µ12 data streams, sent by transmitter two to receiver one, the received vector y1

is passed through the filter Ψ†
12, which is used to null out the the signal coming

from transmitter one. Receiver two have the similar structure with parallel filters

Ψ†
21 and Ψ†

22. Later, it is shown that if the number of data streams µrt, r, t = 1, 2,

satisfy a set of inequalities, then it is possible to deign Qt and Ψrt to meet the

above requirements. In this case, it easy to see that the system is decomposed to two

non-interfering MIMO broadcast sub-channels.

In what follows, we step by step explain how to select design parameters in-

cluding the number of data streams µrt, r, t = 1, 2, the precoding and filter matrices.

The primary objective is to prevent saturating the data rate of each data stream in

high SNR regimes. In other words, the MG of the system is µ11 + µ12 + µ21 + µ22.

To choose µrt, r, t = 1, 2, we first select the integer numbers µ′rt, r, t = 1, 2, such that

the following set of inequalities holds.

µ′11 : µ′11 + µ′12 + µ′22 ≤ n′1 (5)

µ′12 : µ′12 + µ′11 + µ′21 ≤ n′1 (6)

µ′22 : µ′22 + µ′21 + µ′11 ≤ n′2 (7)

µ′21 : µ′21 + µ′22 + µ′12 ≤ n′2 (8)

µ′11 + µ′21 ≤ m′
1 (9)

µ′22 + µ′12 ≤ m′
2 (10)
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Later, it is explained how to set the integer parameters n′r, r = 1, 2, and m′
t, t = 1, 2,

depending on the number of transmit and receive antennas. Each of the first four

inequalities corresponds to one of the parameters µ′rt, r, t = 1, 2. If any of µ′rt, r, t =

1, 2, is zero, the corresponding inequality is removed from the set of constraints. To

attain the highest MG, we choose µ′rt, r, t = 1, 2, such that µ′11 + µ′12 + µ′21 + µ′22 is

maximum, where µ′rt, r, t = 1, 2, are subject to constraints (5) to (10).

In what follows, we detail how to select m′
t, t = 1, 2, and n′r, r = 1, 2, for different

configurations of (m1, m2, n1, n2), and how µrt, r, t = 1, 2 relate to the selected µ′rt,

r, t = 1, 2. In addition, we determine how to choose the filters Q1 and Q2. We define

ηrt ,r, t = 1, 2, as follows.

• η11 denotes the dimension of Ω(H12Q2).

• η21 denotes the dimension of Ω(H22Q2).

• η12 denotes the dimension of Ω(H11Q1).

• η22 denotes the dimension of Ω(H21Q1).

Case One: n1 ≥ n2 ≥ m1 ≥ m2

In this case, n′r, r = 1, 2, and m′
t, t = 1, 2, are given by,

n′1 = n1, n′2 = n2, m′
1 = m1, m′

2 = m2. (11)

Using the above parameters, we choose µ′rt, r, t = 1, 2, subject to (5)-(10) constraints.

In this case, µrt, the number data streams sent from transmitter t to receiver r, is

obtained by µrt = µ′rt, r, t = 1, 2. In addition, Q1 and Q2 are randomly chosen from

OCm1×(µ11+µ21) and OCm2×(µ12+µ22), respectively.

Regarding the definition of ηrt, r, t = 1, 2, it is easy to see that,

η11 = µ12 + µ22, η12 = µ11 + µ21, η21 = µ12 + µ22, η22 = µ11 + µ21. (12)

Case Two: n1 ≥ m1 > n2 ≥ m2
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In this case, we have,

n′1 = n1 + n2 −m1, n′2 = n2, m′
1 = n2, m′

2 = m2,

µ11 = µ′11 + m1 − n2, µ12 = µ′12, µ21 = µ′21, µ22 = µ′22,

η11 = µ12 + µ22, η12 = µ11 + µ21, η21 = µ12 + µ22, η22 = µ′11 + µ21,

(13)

Q1 and Q2 are chosen as,

Σ1 ∈ OCm1×(n1−m2), Σ1 ∈ N(H21) (14)

Σ2 = OCm1×(µ′11+µ21), Σ2⊥Σ1 (15)

Q1 ∈ OCm1×(µ11+µ21), Q1 = [Σ1,Σ2] (16)

Q2 randomly chosen from OCm2×(µ12+µ22). (17)

In fact, in this case, we take advantage of m1−n2 dimensions of N(H21), to exclusively

send data from transmitter one to receiver one, without imposing any interference

over receiver two. Therefore, the transmitter one and receiver one effectively lose

m1 − n2 of the available space dimensions. Consequently, the resulting system is

equivalent to the system with effective number of antennas as (m′
1,m

′
2, n

′
1, n

′
2) =(

m1−{m1−n2},m2, n1−{m1−n2}, n2

)
. The equivalent system with (m′

1,m
′
2, n

′
1, n

′
2)

antennas satisfy the condition of the case one, i.e. m′
1 ≥ m′

2 ≥ n′1 ≥ n′2. Therefore,

this case is categorized in the same category of the case one.

Clearly, in this case, η22, the dimension of Ω(H21Q1), is equal to µ11 + µ21 −
(m1 − n2) which is µ′11 + µ21.

Case Three: n1 ≥ m1 > m2 ≥ n2 and n1 + n2 ≥ m1 + m2

In this case, we have,

n′1 = n1 + 2n2 −m1 −m2, n′2 = n2, m′
1 = n2, m′

2 = n2,

µ11 = µ′11 + m1 − n2, µ12 = µ′12 + m2 − n2, µ21 = µ′21, µ22 = µ′22,

η11 = µ12 + µ22, η12 = µ11 + µ21, η21 = µ′12 + µ22, η22 = µ′11 + µ21.

(18)
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In addition,

Σ1 ∈ OCm1×(m1−n2), Σ1 ∈ N(H21) (19)

Σ2 = OCm1×(µ′11+µ21), Σ2⊥Σ1 (20)

Q1 ∈ OCm1×(µ11+µ21), Q1 = [Σ1,Σ2] (21)

Σ3 ∈ OCm2×(m2−n2), Σ3 ∈ N(H22) (22)

Σ4 = OCm2×(µ′12+µ22), Σ4⊥Σ3 (23)

Q2 ∈ OCm2×(µ12+µ22), Q2 = [Σ1,Σ2] (24)

In this case, m1 − n2 and m2 − n2 dimensions of N(H21) and N(H22) are exploited

to exclusively transmit m1 − n2 and m2 − n2 data streams from transmitter one

and to two receiver one, respectively, without imposing any interference on receiver

two. Therefore, transmitter one, transmitter two, and receiver one respectively lose

m1 − n2, m2 − n2, and m1 − n2 + m2 − n2 dimensions. Then, the equivalent system

has (m′
1, m

′
2, n

′
1, n

′
2) antennas which satisfies the condition of the case one.

Case Four: m1 ≥ n1 > n2 ≥ m2 and n1 + n2 ≥ m1 + m2

In this case, we have

n′1 = n1 + n2 −m1, n′2 = n1 + n2 −m1, m′
1 = n1 + n2 −m1, m′

2 = m2,

µ11 = µ′11 + m1 − n2, µ12 = µ′12, µ21 = µ′21 + m1 − n1, µ22 = µ′22,

η11 = µ12 + µ22, η12 = µ11 + µ′21, η21 = µ12 + µ22, η22 = µ′11 + µ21,

(25)

In addition,

Σ1 ∈ OCm1×(m1−n2+m1−n2), Σ1 ∈ N(H21) ∪ N(H11) (26)

Σ2 = OCm1×(µ′11+µ′21), Σ2⊥Σ1 (27)

Q1 ∈ OCm1×(µ11+µ21), Q1 = [Σ1,Σ2] (28)

Q2 randomly chosen from OCm2×(µ12+µ22). (29)

The next steps of the algorithm are the same for all of the aforementioned cases.

We define

H̃rt = HrtQt, r, t = 1, 2. (30)
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Ψrt ∈ OCnt×(nt−ηrt), r, t = 1, 2, are chosen such that

Ψ11⊥H̃12, (31)

Ψ12⊥H̃11, (32)

Ψ21⊥H̃22, (33)

Ψ22⊥H̃21. (34)

According to the definition of ηrt, one can always choose such matrices. Clearly,

any signal sent by transmitter one does not pass through the filters Ψ†
12 and Ψ†

22.

Similarly, any signal sent by transmitter two does not pass through the filters Ψ†
21

and Ψ†
11.

We define

Hrt = Ψ†
rtH̃rt, r, t = 1, 2, (35)

wrt = Ψ†
rtwr, r, t = 1, 2, (36)

and

yrt = Ψ†
rtyr, r, t = 1, 2. (37)

Therefore, the system is decomposed to two non-interfering broadcast channels. The

MIMO broadcast channel viewed from transmitter 1 is modeled by (see Fig. 2)




y11 = H11s̃1 + w11,

y21 = H21s̃1 + w21,
(38)

and the MIMO broadcast channel viewed from transmitter two is modeled by (see

Fig. 2)




y12 = H12s̃2 + w12,

y22 = H22s̃2 + w22.
(39)
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Fig. 1. Decomposition Scheme One
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Fig. 2. Scheme One: The Resulting Non-Interfering MIMO Broadcast Sub-Channels

B. Scheme 2 - Decomposition of the System to Two Multi-access Sub-Channels (See

Fig. 3 and 4):

This scheme is indeed the dual of the scheme one, detailed in subsection III-

A. In this scheme, the parallel precoding matrices Ψ11 and Ψ21 are employed at

transmitter one, and the parallel precoding matrices Ψ12 and Ψ22 are employed at

transmitter two. Therefore, the transmitted vectors are equal to,

s1 = Ψ11s11 + Ψ21s21, (40)

s2 = Ψ12s12 + Ψ22s22, (41)
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where srt ∈ Cµrt×1 contains µrt data streams from transmitter t intended to receiver

r. The precoder matrix Ψ11 nulls out the interference of the µ11 data streams, sent

from transmitter one to receiver one, at receiver two. Similarly, the precoder matrix

Ψ21 nulls out the interference of the µ21 data streams sent from transmitter one to

receiver two at receiver one. In a similar fashion, at transmitter two, the two parallel

precoding matrices Ψ22 and Ψ12 are employed.

At receiver r terminal, the received vector is passed through the filter Q†
r, where

Qr ∈ OCnr×(µr1+µr2),

ỹr = Q†
ryr, r = 1, 2. (42)

The functionalities of the matrices Qt, t = 1, 2, include (i) to map the receive signal

in a µr1 + µr2 sub-space, which allows us to null out the interference terms by using

Ψrt, r, t = 1, 2. (ii) to exploit the null space of the channel matrices to provide the

highest MG.

By using the aforemention filters at the transmitters and the receivers, the

system is decomposed to two non-interfering multi-access sub-channels.

In what follows, we elaborate how to select the number of the data streams µrt,

r, t = 1, 2, precoding, and filter matrices.

Similar to the previous sub-section, the objective objective is to prevent saturat-

ing the data rate of each data stream in high SNR regimes. In other words, the MG

of the system is µ11 + µ12 + µ21 + µ22. To choose µrt, r, t = 1, 2, the integer numbers

µ′rt, r, t = 1, 2, are chosen subject to the following set of constraints.

µ′11 : µ′11 + µ′21 + µ′22 ≤ m′
1 (43)

µ′21 : µ′11 + µ′21 + µ′12 ≤ m′
1 (44)

µ′22 : µ′22 + µ′12 + µ′11 ≤ m′
2 (45)

µ′12 : µ′22 + µ′12 + µ′21 ≤ m′
2 (46)

µ′11 + µ′12 ≤ n′1 (47)

µ′22 + µ′21 ≤ n′2 (48)
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In continue, we explain how to set the integer parameters n′r, r = 1, 2, and m′
t,

t = 1, 2, depending on the number of transmit and receive antennas. To attain the

highest MG, µ′rt, r, t = 1, 2 are chosen such that µ′11 + µ′12 + µ′21 + µ′22 is maximum,

provided the constraints (43)-(48) are satisfied. Each of the first four inequalities

corresponds to one of the parameters µ′rt, r, t = 1, 2. If any of µ′rt, r, t = 1, 2, is zero,

the corresponding inequality is removed from the set of constraints.

In what follows, we explain how to select m′
t, t = 1, 2, and n′r, r = 1, 2, for each

case, and how µrt, r, t = 1, 2 relate to the selected µ′rt, r, t = 1, 2. In addition, we

determine how to choose the filters Q1 and Q2. Similar to the previous subsection,

we define the parameters ηrt ,r, t = 1, 2, as follows.

• η11 denotes the dimension of Ω(H†
21Q2).

• η21 denotes the dimension of Ω(H†
11Q1).

• η12 denotes the dimension of Ω(H†
22Q2).

• η22 denotes the dimension of Ω(H†
12Q1).

Case Five: m1 ≥ m2 ≥ n1 ≥ n2

In this case, n′r, r = 1, 2, and m′
t, t = 1, 2, are given by,

n′1 = n1, n′2 = n2, m′
1 = m1, m′

2 = m2, (49)

Using the above parameters, we choose µ′rt, r, t = 1, 2, subject to (43)-(48). In this

case, µrt, the number of data streams sent from transmitter t to receiver r, is obtained

by µrt = µ′rt, r, t = 1, 2. Q1 and Q2 are randomly chosen from OCn1×(µ11+µ12) and

Q2 ∈ OCn2×(µ21+µ22), respectively.

According to the definition of ηrt, r, t = 1, 2, it is easy to see that,

η11 = µ21 + µ22, η12 = µ21 + µ22, η21 = µ12 + µ11, η22 = µ11 + µ12. (50)

Case Six: m1 ≥ n1 > m2 ≥ n2
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In this case, we have,

m′
1 = m1 + m2 − n1, m′

2 = m2, n′1 = m2, n′2 = n2,

µ11 = µ′11 + n1 −m2, µ12 = µ′12, µ21 = µ′21, µ22 = µ′22,

η11 = µ21 + µ22, η12 = µ21 + µ22, η21 = µ12 + µ11, η22 = µ′11 + µ12

(51)

Q1 and Q2 are chosen as,

Σ1 ∈ OCn1×(n1−m2), Σ1 ∈ N(H†
12) (52)

Σ2 = OCn1×(µ′11+µ12), Σ2⊥Σ1 (53)

Q1 ∈ OCn1×(µ11+µ21), Q1 = [Σ1,Σ2] (54)

Q2 randomly selected from OCn2×(µ21+µ22) (55)

At the receiver one, the signal coming from transmitter two does not have any

component in the n1 − m2 subspace N(H†
12). With the above choice of Q1, this

sub-space is exploited to exclusively send data streams from transmitter one to

receiver one. Therefore, each of transmitter one and receiver one lose n1−m2 spacial

dimensions. Consequently, the system is reduced to a system with (m′
1,m

′
2, n

′
1, n

′
2) =

(
m1−{n1−m2},m2, n1−{n1−m2}, n2

)
, which satisfy the condition of the case five.

Case Seven: m1 ≥ n1 > n2 ≥ m2 and m1 + m2 ≥ n1 + n2

In this case, we have,

m′
1 = m1 + 2m2 − n1 − n2 m′

2 = m2 n′1 = m2 n′2 = m2

µ11 = µ′11 + n1 −m2 µ12 = µ′12 µ21 = µ′21 + n2 −m2 µ22 = µ′22

η11 = µ21 + µ22 η12 = µ′21 + µ22 η21 = µ12 + µ11 η22 = µ′11 + µ12

(56)

where,

Σ1 ∈ OCn1×(n1−m2) Σ1 ∈ N(H†
21) (57)

Σ2 = OCn1×(µ′11+µ12) Σ2⊥Σ1 (58)

Q1 ∈ OCn1×(µ11+µ12), Q1 = [Σ1,Σ2] (59)

Σ3 ∈ OCn2×(n2−m2) Σ3 ∈ N(H†
22) (60)

Σ4 = OCn2×(µ′21+µ22) Σ4⊥Σ3 (61)

Q2 ∈ OCn2×(µ21+µ22), Q2 = [Σ3,Σ4] (62)
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Case Eight: n1 ≥ m1 > m2 ≥ n2 and m1 + m2 ≥ n1 + n2

In this case, we have

m′
1 = m1 + m2 − n1 m′

2 = m1 + m2 − n1 n′1 = m1 + m2 − n1 n′2 = n2

µ11 = µ′11 + n1 −m2 µ12 = µ′12 + n1 −m1 µ21 = µ′21 µ22 = µ′22

η11 = µ21 + µ22 η12 = µ21 + µ22 η21 = µ′12 + µ11 η22 = µ′11 + µ12

(63)

Σ1 ∈ OCn1×(n1−m2+n1−m2), Σ1 ∈ N(H†
12) ∪ N(H†

11) (64)

Σ2 = OCn1×(µ′11+µ′12), Σ2⊥Σ1 (65)

Q1 ∈ OCn1×(µ11+µ12), Q1 = [Σ1,Σ2] (66)

Q2 randomly chosen from OCn2×(µ21+µ22). (67)

The next steps of the algorithm are the same for the cases five to eight. We

define

H̃rt = Q†
rHrt, r, t = 1, 2. (68)

Ψrt ∈ OCmr×(mr−ηrt), r, t = 1, 2, are chosen such that,

Ψ11⊥H̃†
21, (69)

Ψ21⊥H̃†
11, (70)

Ψ12⊥H̃†
22, (71)

Ψ22⊥H̃†
12. (72)

According to the definition of ηrt, we can always choose such matrices. Clearly, any

signal passed through the filters Ψ†
11 and Ψ†

12 has no interference at the output of

the filter Q2. Similarly, any signal passed through the filters Ψ†
21 and Ψ†

22 has no

interference at the output of the filter Q2. We define

Hrt = H̃rtΨrt, r, t = 1, 2, (73)

and

w̃r = Q†
rwr, r, t = 1, 2. (74)
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This system is decomposed into two non-interfering multiple-access channels: (i) the

multi-access channel viewed by receiver one with channels H11 and H12, modeled by

(see Fig. 4),

ỹ1 = H11s11 + H12s12 + w̃1, (75)

and, (ii) the multi-access channel viewed by receiver two with channels H21 and H22,

modeled by (see Fig. 4),

ỹ2 = H21s21 + H22s12 + w̃2. (76)

H11

H12

H21

Ψ12

Ψ11

Ψ22

Ψ21

H22

Q
†
1

ỹ1

Q
†
2

y2

y1

w1

w2

ỹ2

s̃11

s̃21

s̃12

s̃22

Fig. 3. Decomposition Scheme Two
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Ψ12 H12

Q
†
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H11

s̃21
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ỹ2

w̃2

Ψ21

Ψ12

Q
†
2

H22

H21

Fig. 4. Scheme Two: The Resulting Non-Interfering MIMO Multi-Access Sub-Channels
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IV. Performance Evaluation

The decomposition schemes, presented in Section III, simplify the performance

evaluation of the X channels, specially for high SNR regime. In what follows, the MG

of the X channel is studied. In addition, for some special cases, a metric known as

power offset, is evaluated.

A. Multiplexing Gain

Theorem 1 The MIMO X channel with (m1,m2, n1, n2) antennas achieves the mul-

tiplexing gain of µ11 + µ21 + µ12 + µ22, if µrt, r, t = 1, 2, are selected according to the

schemes presented in Section III.

Proof: As explained in Sub-Section III-A, the X channel is decomposed into two

non-interfering broadcast sub-channels (38) and (39). The first broadcast sub-channel

forms with the channel matrices H11 ∈ C(µ11+µ21)×(n1−η11), and H21 ∈ C(µ11+µ21)×(n2−η21).

The inequalities (5) and (8) guarantee that n1 − η11 ≥ µ11 and n2 − η21 ≥ µ21.

Therefore, as long as the matrix [H
†
11,H

†
21]

† is full rank, the broadcast sub-channel

achieves the MG of µ11 + µ21 by sending µ11 data streams to receiver one and µ21

data streams to receiver two. It is easy to see that the [H
†
11,H

†
21]

† is full rank almost

everywhere. Similarly, the second broadcast sub-channel forms with the channel ma-

trices H12 ∈ C(µ12+µ22)×(n1−η12), and H22 ∈ C(µ12+µ22)×(n2−η22). Constraints 8 and 7

respectively guarantee that n1 − η21 ≥ µ21 and n2 − η22 ≥ µ22. Therefore, as long

as the matrix [H
†
12,H

†
22]

† is full rank, the second broadcast sub-channel achieves the

MG of µ12 + µ22, by sending µ12 data streams to receiver one and µ22 data streams

to receiver two.

Similar argument for the scheme presented in Sub-Section III-B is valid.

To have a better insight about the MG of the X channels, in the following

corollaries, the MG of some special cases is computed in a closed-form.

Corollary 1 For the special case of n1 = n2 = n, in the scheme of Sub-Section III-

A, the MG of ρ = b4n
3
c is achievable, where the total number of transmit antennas is
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equal to ρ, which are almost equally divided between transmitters, i.e. m1 = dρ
2
e and

m2 = bρ
2
c.

Proof: This configuration of antennas falls in the case one. By adding the four

inequalities (5), (6), (7), and (8), and dividing both sides of the resulting inequality

to four, and considering the fact that µrt, r, t = 1, 2, are integer values, we have,

µ11 + µ21 + µ12 + µ22 ≤ b4n
3
c, (77)

which provides us with an upper bound on the total multiplexing gain. Let n = 3k+l,

where 0 ≤ l ≤ 2. It is easy to prove that by choosing mt, and µrt, r, t = 1, 2, as listed

in Table I, all the constraints (5) to (10) are satisfied and the upper bound is attained.

TABLE I

Table of Choices for Corollary 1 (n = 3k + l, 0 ≤ l ≤ 2 k ≥ 0)

l m1 m2 µ11 µ12 µ21 µ22 Multiplexing Gain

0 2k 2k k k k k 4k

1 2k + 1 2k k + 1 k k k 4k + 1

2 2k + 1 2k + 1 k + 1 k k k + 1 4k + 2

Corollary 2 In the special case of m1 = m2 = m in the scheme presented in Sub-

Section III-B, the MG of ρ = b4m
3
c is achievable, where the total number of receive

antennas is equal to ρ, which are almost equally divided between transmitters, i.e.

n1 = dρ
2
e and n2 = bρ

2
c.

Proof: The proof is similar to that of Corollary 1 with the choices listed in Table

II.

Regarding Theorem 1, the MG of X channels outperforms the MG of the interference

channel with the same number of antennas. For example, the multiplexing gains of a X

channels with (3, 3, 3, 3), (4, 3, 4, 3), (9, 5, 8, 7) antennas are 4, 5, and 11 respectively,

while the MG of the interference channels with the same number of antennas are
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TABLE II

Table of Choices for Corollary 2 (m = 3k + l, 0 ≤ l ≤ 2 k ≥ 0)

l n1 n2 µ11 µ12 µ21 µ22 Multiplexing Gain

0 2k 2k k k k k 4k

1 2k + 1 2k k + 1 k k k 4k + 1

2 2k + 1 2k + 1 k + 1 k k k + 1 4k + 2

respectively 3, 4, and 9. For all the cases listed in Colorations 1 and 2, the MG

of the X channel is even the same as the MG of the system where there is full

cooperation between transmitters or between receivers. For example, the multiplexing

gains of X channels with (2, 2, 3, 3), (3, 3, 2, 2), (3, 2, 4, 4), and (3, 3, 5, 5) antennas are

respectively 4, 4, 5, and 6.

The improvement in MG of X channels as compared with that of interference

channels can be explained from two perspectives.

1) Managing the Interference Terms to Occupy an Overlapped Space: For sim-

plicity, we consider an X channel with (2, 2, 3, 3) antennas, and assume that the

transmitter t sends one data stream drt to transmitter r, r = 1, 2. Therefore, there

are four data streams in a shared wireless medium. At receiver one, we are interested

to decode d11 and d12, while d22 and d21 are treated as interference. The signaling

scheme is designed such that at the receiver one terminal, d21 and d22 are received

in directions for which the distractive components be along each other. Therefore, at

receiver one with three antennas, one direction is occupied with interference, while

we have two interference free dimensions to receive d11 and d12. The design scheme

provides similar condition at the receiver two terminal, while d22 and d21 are desired

data streams and d22 and d21 are interference terms. Such an overlap of interference

terms saves the available spacial dimensions to exploit higher MG.

2) Exploiting the Possibility of Cooperation: It is well-known that the MG for a

point-to-pint MIMO channel, a MIMO broadcast channel, and a MIMO multi-access

channel is the same, as long as the total number of transmit antennas and the total
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number of receive antennas are the same in all three systems. The immediate conclu-

sion is that to attain the maximum MG, cooperation in one side of communication

link is enough.

Now, consider an interference channel with m1 = m2 = 2 and n1 = n2 = 3,

and assume that two data streams d1 and d2 sent from transmitter one to receiver

one and two data streams d3 and d4 are sent from transmitter two to receiver two.

In this scenario, the cooperation between d1 and d2 is provided at both transmitter

one and receiver one. Similarly, the cooperation between d3 and d4 is provided at

both transmitter two and receiver two. While the system do not gain MG because

of cooperation at both sides, it loses MG since there is no possibility of cooperation

between (d1, d2) and (d3, d4). On the the other hand, in X channel, the cooperation

between d11 and d21 is provided at transmitter one, and the cooperation between d12

and d22 is provided at transmitter two. Similarly, the cooperation between d11 and d12

is provided at receiver one, and the cooperation between d21 and d22 is provided at

receiver two. In fact, the maximum possibility of cooperation among the data streams

are exploited, which results in more MG, if the space dimension allows.

B. Power Offset

In Corollaries 1 and 2, some spacial cases are listed for which the MG of the

X channel is the same as the MG of a point-to-point MIMO system resulting from

full cooperation between transmitters and between receivers. However, it does not

mean that the system does not gain any improvement by cooperation. The gain of

the cooperation is reflected in a metric known as the power offset. The power offset is

the negative of the the zero-order term in the expansion of the sum-rate, normalized

with multiplexing gain, with respect to the total power, i.e.

R = ρ(log2(PT )− L∞) + o(1), (78)

where PT denotes the total power, and L∞ denotes the power offset in 3dB unit. In

this definition, it is assumed that the noise is normalized as in system model 2. The
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power offset was first introduced in [16] to evaluate the performance of the different

CDMA schemes. Later, the power offset for MIMO channels in [17] and some special

cases of MIMO broadcast channels in [18] were computed. In what follows, the result

of [18] is adopted to compute the power offset of some special cases of MIMO X

channels.

Theorem 2 In an X channel with (m1,m2, n1, n2) = (2k, 2k, 3k, 3k) antennas, where

the entries of channel matrices have Rayleigh distribution, if the decomposition scheme

is employed, the power offset is equal to,

L∞(m1,m2, n1, n2) = L∞(2k, 2k)− 1

3

(
log2(α) + log2(1− α)

)
, (79)

in 3dB units, where P1 = αPT , P2 = (1− α)PT , 0 ≤ α ≤ 1,

L∞(m,n) = log2 m +
1

ln(2)

(
γ + 1−

m̃−ñ∑
i=1

1

i
− m̃

ñ

m̃∑
i=m̃−ñ+1

1

i

)
, (80)

γ = 0.5772, m̃ = max{m,n}, and ñ = min{m,n}. Furthermore, the power offset

of the X channels with (2k, 2k, 3k, 3k) antennas with respect to a MIMO Rayleigh

Channel with 4k transmit antennas and 6k receive antennas is equal to,

3

2 ln(2)

6k∑

i=2k+1

1

i
− 1− 1

2

(
log2(α) + log2(1− α)

)
(81)

in 3dB unit.

Proof: In this case, the matrix Q1, is randomly chosen from OC2k×2k, indepen-

dent of H11, and H21. In addition, the filters Ψ11 ∈ OC2k×2k and Ψ21 ∈ OC2k×2k

are independent of H11, and H21, respectively. Therefore, the matrices H11, and H21,

defined in (35), have Rayleigh distribution. Similar argument is valid for H12, and H22.

Therefore, the system is decomposed to two broadcast sub-channels, each with the

Rayleigh distribution. Therefore, the sum-rate of the MIMO broadcast sub-channel,

viewed from transmitter t, is approximated by [18]

2k[log2(Pt)− L∞(2k, 2k)] + o(1). (82)
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By summation of the approximated formulas for the two MIMO broadcast sub-

channels, (79) is obtained.

In [17], it is proven that power offset for a MIMO Rayleigh channel with m

transmit and n receive antennas is obtain by (80). By substituting m = 4k and

n = 6k (80), and subtracting (80) from (79), (81) is derived.

V. Joint Design

The decomposition schemes, proposed in Section III, simplify the signaling and

performance evaluation for X channels. However, such schemes deteriorate the perfor-

mance of the system because (i) Ψrt, r, t = 1, 2 are chosen such that the interference

terms are forced to be zero, rather than exploiting the statistical properties of the

interference, (ii) the matrices Qt, t = 1, 2 are randomly chosen, rather than choosing

them according to the channel matrices. For example, consider an X channel with

(2, 2, 3, 3) antennas. In Section III, the filters Ψrt, r, t = 1, 2, are chosen such that the

interference of each broadcast sub-channels over the other one is forced to be zero. In

low SNR regimes, the performance of the system is improved by choosing whitening

filter for Ψrt, r, t = 1, 2, instead of zero-forcing filters. In high SNR, the whitening

filters converge to zero-forcing filters, and the resulting improvement diminishes. Note

that in the X channel with (2, 2, 3, 3), the matrices Qt, t = 1, 2, are such that the entire

two dimensional spaces available at transmitter one and two are used for signaling.

Therefore, there is no improvement in modifying Qt, t = 1, 2.

In a system with (3, 3, 3, 3) antennas, the same argument for Ψrt, r, t = 1, 2

is valid. In this case, the matrices Qt, t = 1, 2, are chosen randomly, therefore the

signaling space is confined in a randomly-selected two dimensional sub-space of a

three dimensional space. One can take advantage of the degrees of freedom available

for choosing Qt to find the signaling sub-spaces at transmitter one and two for which

the channels offer higher gains.

Optimizing the filters Qt and Ψrt, r, t = 1, 2, depends on the signaling scheme

used for the MIMO broadcast or multi-access sub-channels. On the other hand, it
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is not possible to design a signaling scheme for each sub-channel separately, but we

have to jointly develop the design parameters. In what follows, we elaborate a joint

design scheme based on a generalized version of Zero-Forcing Dirty Paper Coding

(ZF-DPC) scheme, presented in [19] , for broadcast sub-channels for the cases one

to four. In this scheme, the number of data streams µrt, r, t = 1, 2, and also integer

parameters µ′rt, r, t = 1, 2 are selected as explained in Sub-section III-A. In addition,

we use filters Qt and Ψ†
rt, r, t, in a similar fashion as shown in Fig. 1 , but with a

new scheme of design.

According to the generalized ZF-DPC, explained in [19] for MIMO broadcast

channels, the vector s̃t, t = 1, 2, are equal to linear superpositions of some modulation

vectors, where the data is embedded in the coefficients. The modulation matrix Vt ∈
OC(µ1t+µ2t)×(µ1t+µ2t) is defined as

Vt = [v
(1)
t ,v

(2)
t , . . . ,v

(µ1t+µ2t)
t ], (83)

where v
(i)
t , i = 1, . . . , µ1t + µ2t, denote the normal modulation vectors, employed

by transmitter t, to send µ1t data streams to receiver one and µ2t data streams to

receiver two. The vectors s̃1 and s̃2 are equal to

s̃1 = V1d1, (84)

s̃2 = V2d2, (85)

where the vector dt ∈ C(µ1t+µ2t)×1 represents the µ1t + µ2t streams of independent

data. The covariance of the vector dt is denoted by the diagonal matrix Pt, i.e.

E[dtd
†
t ] = Pt, t = 1, 2. At transmitter t, the data streams which modulated over

the vectors v
(i)
t , i = 1, . . . , µ′1t and i = µ′1t + µ′21 + 1, . . . , µ1t + µ′2t, are intended

for the receiver one, and the data streams which modulated over the vectors v
(i)
t ,

i = µ′1t + 1, . . . , µ′1t + µ′2t and i = µ1t + µ′2t + 1, . . . , µ1t + µ2t, are intended for receiver

two. We define d1t and d2t as

d1t =


 d1(1 : µ′11)

d1(µ
′
11 + µ′21 + 1 : µ11 + µ′21)


 , (86)
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and

d2t =


 d1(µ

′
11 + 1 : µ′11 + µ′21)

d1(µ11 + µ′21 + 1 : µ11 + µ21)


 , (87)

which represent the data streams, send by transmitter t to receiver one and two,

respectively. The modulation and demodulation vectors are designed such that the

data stream i has no interference over the data stream j, where j < i. Choosing

the codeword for the data stream j, the interference of the data stream j over data

stream i is non-causally known, and therefore can be effectively canceled out based

on the dirty paper coding (DPC) theorem [20]. However, if the data streams i and j

are sent to the same receiver, none of them has interference over the other, and DPC

is not needed in this case.

At receiver one, to decode d11, the signal coming from transmitter two, i.e.

H̃12V12d2 is treated as interference, therefore the covariance of the interference plus

noise, R11, is equal to,

R11 = H̃12V2P2V
†
2H̃12 + I, (88)

where H̃12 is defined in (68). The received vector y1 is passed through the whitening

filter Ψ†
11 = R

− 1
2

11 . The output of Ψ†
11 is passed through the filter U†

11 which maximizes

the effective SNR. The design of U†
rt, r, t = 1, 2, is explained later. Similarly, to

decode d21 at receiver two terminal, the signal from transmitter two, i.e. H̃22V2d2 is

treated as interference. The received vector y1 is passed through the whitening filter

Ψ†
21 = R

− 1
2

21 , where

R21 = H̃22V2P2V
†
2H̃22 + I. (89)

The output of Ψ†
12 is passed through the filter U†

12 which maximizes the effective

SNR.

Let us assume that the modulation matrix V2, the covariance matrix P2, and

the precoding matrix Q2 are known, therefore one can compute Ψ†
11 and Ψ†

12. In the

sequel, we explain how to choose Q1, V1, P1, U11, and U21.
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The following algorithm is proposed to compute the columns of the matrix Q1 ∈
OCm1×(µ11+µ21).

1) Choose q
(i)
1 , i = 1, . . . , µ′11, as µ′11 right singular vectors (RSV) corresponding

to the µ′11 largest singular values of the matrix Ψ†
11H11.

2) Choose Φ1 = [φ1, . . . , φµ11+µ21−µ′11
] such that [Φ1,q

(1)
1 , . . . ,q

(µ′11)
1 ] forms a uni-

tary matrix.

3) Choose q′(i)1 , i = 1, . . . , µ′21, as the µ′21 RSVs corresponding to the µ′21 largest

singular values of the matrix Ψ†
21H21Φ1.

4) Let q
(µ′11+i)
1 = Φ1q

′(i)
1 , i = 1, . . . , µ′21.

5) If µ11 − µ′11 6= 0, then choose q
(i)
1 , i = µ′11 + µ′21 + 1, . . . , µ11 + µ′21, such that

Ω([q
(1)
1 , . . . ,q

(µ11+µ′21)
1 ]) = Ω([q

(1)
1 , . . . ,q

(µ′11+µ′21)
1 , N(H21)]).

6) If µ21 − µ′21 6= 0, then choose q
(i)
1 , i = µ11 + µ′21 + 1, . . . , µ11 + µ21, such that

Ω([q
(1)
1 , . . . ,q

(µ11+µ21)
1 ]) = Ω([q

(1)
1 , . . . ,q

(µ11+µ′21)
1 , N(H11)]).

After computing Ψ†
11, Ψ†

12, and Q1, the broadcast sub-channel with H11 and

H21, defined in Sub-section III-A as Hr1 = Ψ†
r1Hr1Q1, r = 1, 2, is developed. Here,

we explain how to choose the modulation and demodulation vectors for this broadcast

sub-channel.

1) Respectively choose v
(i)
1 and u

(i)
11 , i = 1, . . . , µ′11, as RSV and left singular vector

(LSV), corresponding to the ith largest singular value, σ
(i)
11 , of the matrix H11.

Therefore, we have [21]

σ
(i)
11 =‖ H11v

(i)
1 ‖, i = 1, . . . , µ′11, (90)

u
(i)
11 =

H11v
(i)
11

σ
(i)
11

, i = 1, . . . , µ′11. (91)

With the above choice of the matrix Q1, it is easy to see that v
(i)
1 is equal to

the column i of the identity matrix I(µ11+µ21)×(µ11+µ21), for i = 1, . . . , µ′11.

2) Define ϕ
(1)
1 , . . ., ϕ

(µ11+µ21−µ′11)
1 such that [v

(1)
1 , . . . ,v

(µ′11)
1 ,ϕ

(1)
1 , . . . , ϕ

(µ11+µ21−µ′11)
1 ]

forms a unitary matrix. Then, define Ĥ21 as

Ĥ21 = H21[ϕ
(1)
1 , . . . , ϕ

(µ11+µ21−µ′11)
1 ]. (92)
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3) Respectively choose v
(i)
21 and u

(i)
21 as the RSV and LSV, corresponding to the

ith largest singular value σ
(i)
21 of the matrix Ĥ21. Therefore, we have,

σ
(i)
21 =‖ Ĥ21v

(i)
21 ‖, i = 1, . . . , µ′21, (93)

u
(i)
21 =

Ĥ21v
(i)
21

σ
(i)
21

, i = 1, . . . , µ′21. (94)

Then, let

v
(µ′11+i)
1 = [ϕ

(1)
1 , . . . , ϕ

(µ11+µ21−µ′11)
1 ]v

(i)
21 , i = 1, . . . , µ′21 (95)

It is easy to see that with the aforementioned choice of Q1, v
(µ′11+i)
1 is equal to

the column µ′11 + i of the matrix I(µ11+µ21)×(µ11+µ21), for i = 1, . . . , µ′21.

4) Define ϕ
(1)
2 , . . ., ϕ

(µ11+µ21−µ′11−µ′21)
2 such that [v

(1)
1 , . . . ,v

(µ′11+µ′21)
1 , ϕ

(1)
2 , . . . , ϕ

(µ11+µ21−µ′11−µ′21)
2 ]

forms a unitary matrix. Then, define Ĥ11 as

Ĥ11 = H11[ϕ
(1)
2 , . . . , ϕ

(µ11+µ21−µ′11−µ′21)
2 ]. (96)

5) Respectively choose v
(i)
11 and u

(i+µ′11)
11 as the RSV and LSV, corresponding to

the ith largest singular value of the matrix Ĥ11, denoted by σ
(i+µ′11)
11 , for i =

1, . . . , µ11 − µ′11. Therefore, we have,

σ
(i+µ′11)
11 =‖ Ĥ11v

(i)
11 ‖, i = 1, . . . , µ11 − µ′11, (97)

u
(i+µ′11)
11 =

Ĥ11v
(i)
11

σ
(i+µ′11)
11

, i = 1, . . . , µ11 − µ′11. (98)

Then,

v
(µ′11+µ′21+i)
1 = [ϕ

(1)
2 , . . . , ϕ

(µ11+µ21−µ′11−µ′21)
2 ]v

(i)
11 , i = 1, . . . , µ11 − µ′11. (99)

6) Define ϕ
(1)
3 , . . ., ϕ

(µ21−µ′21)
3 such that [v

(1)
1 , . . . ,v

(µ11+µ′21)
1 , ϕ

(1)
3 , . . . , ϕ

(µ21−µ′21)
3 ] forms

a unitary matrix. Then, define
̂̂
H21 as

̂̂
H21 = H21[ϕ

(1)
3 , . . . , ϕ

(µ21−µ′21)
3 ]. (100)
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7) Respectively choose v
(i)
21 and u

(i+µ′21)
21 as RSV and LSV, corresponding to the ith

largest singular value of the matrix
̂̂
H11, denoted by σ

(i+µ′21)
21 , for i = 1, . . . , µ21−

µ′21. Therefore, we have,

σ
(i+µ′21)
21 =‖ ̂̂

H21v
(i)
21 ‖, i = 1, . . . , µ21 − µ′21, (101)

u
(i+µ′21)
21 =

Ĥ21v
(i)
21

σ
(i+µ′21)
21

, i = 1, . . . , µ21 − µ′21. (102)

Then, let

v
(µ11+µ′21+i)
1 = [ϕ

(1)
3 , . . . , ϕ

(µ21−µ′21)
3 ]v

(i)
21 , i = 1, . . . , µ11 − µ′11, (103)

As shown in [19], by using this scheme, the broadcast channel, viewed from

transmitter one is reduced to a set of parallel channels with gains σ
(i)
11 , i = 1, . . . , µ11

and σ
(j)
21 , j = 1, . . . , µ21. For power allocation, the power P1 can equally be divided

among the data streams or the water-filling algorithm can be used for optimal power

allocation [22].

Similar procedure is applied for transmitter two to compute Q2, V2, U12, U22,

P2, where

R22 = H21V1P1V
†
1H

†
21 + I, (104)

Ψ†
22 = R

− 1
2

22 , (105)

R21 = H11V1P1V
†
1H

†
11 + I, (106)

Ψ†
12 = R

− 1
2

12 . (107)

Note that to compute Q1, V1, and P1, we need to know Q2, V2, and P2 (Ψ11,

and Ψ21 are functions of Q2, V2, and P2), and vice versa. To derive the modulation

vectors, we can randomly initialize the matrices, and iteratively follow the scheme,

until the resulting matrices converge. Simulation results show that the algorithm

converges very fast.

The dual of the the proposed scheme here can be employed for the cases five to

eight.
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VI. Simulation Results

In the simulation part, we assume that the entries of the channel matrices have

complex normal distribution with zero mean and unit variance.

Fig. 5 shows the sum-rate versus power for a X channel with (2, 2, 3, 3) antennas,

where the decomposition scheme presented in Section III is employed. Therefore,

the achievable sum-rate is indeed equal the twice of the sum-capacity of a MIMO

broadcast channel with 2 transmit antennas, and two user each with one antennas.

The sum-capacity of the MIMO broadcast channel is fully characterized in [23]–[25].

To compute the sum-capacity, the effective algorithm presented in [26] is utilized. As

a comparison, the capacity of a point-to-point MIMO channel with 4 transmit and

6 receive antennas is depicted. It is easy to see that both curves have the same slope

(multiplexing gain). In addition, as expected by (81), the sum-rate of the X channel

has 6.2 dB power lost in comparison with that of the MIMO channel.

Figure 6 shows the sum-rate versus power for a X channel with (2, 2, 3, 3) and

(3, 3, 3, 3) antennas, where ZD-DPC scheme is used. As it is shown in Fig. 6, for

the case of (2, 2, 3, 3) antennas, the jointed design scheme has better performance

than the decomposition scheme in low SNR regimes. The improvement is mainly due

to utilizing whitening filters instead of zero-forcing filters. It is easy to see that in

high SNR, the whitening filters converges to zero-forcing filters. Note that in this

case, optimizing the Qt, t = 1, 2, has no improving effect. The reason is that the

entire two-dimensional space available at each transmitter is utilized and there is

no room for improvement. As depicted in Fig. 6, for the case of (3, 3, 3, 3)-antenna

X channel, the jointed design scheme has better performance as compared with the

decomposition scheme in both high and low SNR regimes. The improvement relies

on the fact that in this case at each transmitter, a two-dimensional sub-space of

three dimensional space is needed for signaling. By using the scheme presented in

Section V, a sub-space for which the channel gains are optimal is chosen.
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Fig. 5. The Sum capacity of Point-to-Point MIMO Channel with 4 Transmit and 6 Receive Antennas, and

the Sum-Rate of the X Channel with (2,2,3,3) Antennas Achieved based on Decommission Scheme

VII. Conclusion

In a multiple antenna system with two transmitters and two receivers, a new

non-cooperative scenario of data communication is studied in which each receiver

receives data from both transmitters. For such a system a scheme of preceding

and filtering is proposed which decomposes the system to two broadcast or two

multi-access sub-channels. Using the decomposition scheme, it is shown that this

method of signaling outperforms other known schemes of non-cooperative schemes

in terms of the multiplexing gain. In particular, it is shown that for a system with

(d1
2
b4n

3
ce, b1

2
b4n

3
cc, n, n) and (n, n, d1

2
b4n

3
ce, b1

2
b4n

3
cc) antennas, the multiplexing gain

of b4n
3
c is achievable, which is the MG of the system where full-cooperation between

transmitters or between receivers is provided.
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