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Abstract

A simple scheme for communication over MIMO broadcast channels is introduced which
adopts the lattice reduction technique to improve the naive channel inversion method. Lattice basis
reduction helps us to reduce the average transmitted energy by modifying the region which includes
the constellation points. Simulation results show that the proposed scheme performs well, and as
compared to the more complex methods (such as the perturbation method [1]) has a negligible loss.
Moreover, the proposed method is extended to the case of different rates for different users. The
asymptotic behavior (SNR— oo) of the symbol error rate of the proposed method and the outage
probability for the case of fixed-rate users are analyzed. It is shown that the proposed method
achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). Also,

the outage probability for the case of fixed sum-rate is analyzed.

. INTRODUCTION

In the recent years, communications over multiple-antenna fading channels has attracted
the attention of many researchers. Initially, the main interest has been on the point-to-point
Multiple-Input Multiple-Output (MIMO) communications [2], [3], [4], [5], [6]. In [2] and
[3], the authors have shown that the capacity of a MIMO point-to-point channel increases
linearly with the minimum number of the transmit and the receive antennas.

More recently, new information theoretic results [7], [8], [9], [10] have shown that
in multiuser MIMO systems, one can exploit most of the advantages of multiple-antenna
systems. It has been shown that in a MIMO broadcast system, the sum-capacity grows
linearly with the minimum number of the transmit and receive antennas [8], [9], [10]. To
achieve the sum capacity, some information theoretic schemes, based on dirty-paper coding,

are introduced. Dirty-paper coding was originally proposed for the Gaussian interference



channel when the interfering signal is known at the transmitter [11]. Some methods, such
as using nested lattices, are introduced as practical techniques to achieve the sum-capacity
promised by the dirty-paper coding [12]. However, these methods are not easy to implement.

As a simple precoding scheme for MIMO broadcast systems, the channel inversion
technique (or zero-forcing beamforming [7]) can be used at the transmitter to separate the data
for different users. To improve the performance of the channel inversion technique, a zero-
forcing approximation of the dirty paper coding (based on QR decomposition) is introduced
in [7]. However, both of these methods are vulnerable to the poor channel conditions, due
to the occasional near-singularity of the channel matrix (when the channel matrix has at
least one small eigenvalue). This drawback results in a poor performance in terms of the
symbol-error-rate for the mentioned methods [1].

In [1], the authors have introducedvactor perturbation techniquehich has a good
performance in terms of symbol error rate. Nonetheless, this technique requires a lattice
decoder which is an NP-hard problem. To reduce the complexity of the lattice decoder, in
[13], the authors have used lattice-basis reduction to approximate the closest lattice point
(using Babai approximation).

In this paper, we present a transmission technique for the MIMO broadcast channel
based on the lattice-basis reduction. Instead of approximating the closest lattice point in the
perturbation problem, we use the lattice-basis reduction to reduce the average transmitted
energy by reducing the second moment of the fundamental region generated by the lattice
basis. This viewpoint helps us to (i) achieve a better performance as compared to [13], (ii)

expand the idea for the case of unequal-rate transmission, and (iii) obtain some analytic results



for the asymptotic behavior (SNR~ oo) of the symbol-error-rate for both the proposed
technique and the perturbation technique of [1].

Sections Il and Ill briefly describe the system model and introduce the concept of
lattice basis reduction. In section IV, the proposed method is described and in section V, the
proposed approach is extended for the case of unequal-rate transmission. In section VI, we
consider the asymptotic performance of the proposed method for high SNR values, in terms
of the probability of error. We define the precoding diversity and the outage probability for
the case of fixed-rate users. It is shown that by using lattice basis reduction, we can achieve
the maximum precoding diversity. For the proof, we use a bound on the orthogonal deficiency
of an LLL-reduced basis. Also, an upper bound is given for the probability that the length
of the shortest vector of a lattice (generated by complex Gaussian vectors) is smaller than
a given value. Using this result, we also show that the perturbation technique archives the
maximum precoding diversity. In section VII, some simulation results are presented. These
results show that the proposed method offers almost the same performance as [1] with a much
smaller complexity. As compared to [13], the proposed method offers a better performance

with a similar complexity. Finally, in section VIII, some concluding remarks are presented.

[I. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiple-antenna broadcast system Wthransmit antennas ani
single-antenna users. Consider= [yi, ..., yn]7, x = [z1, ..., zp]T, W = w1, ..., wy|T, and
the N x M matrix H, respectively, as the received signal, the transmitted signal, the noise

vector, and the channel matrix. The transmission over the channel can be formulated as,

y = Hx + w. Q)



The channel is assumed to be Raleigh, i.e. the elemerk$ afe i.i.d. with the zero-
mean unit-variance complex Gaussian distribution and the noise is i.i.d. additive Gaussian.
Moreover, we have the energy constraint on the transmitted sigfigt)|E = 1. The energy
of the additive noise ig? per antenna, i.e. Bw||?) = No?. Therefore, the Signal-to-Noise
Ratio (SNR) is defined as = .

In a broadcast system, the receivers do not cooperate with each other (they should
decode their respective data, independently). The main strategy in dealing with this restriction
is to apply an appropriate precoding scheme at the transmitter. The simplest method in this
category is using the channel inversion technique at the transmitter to separate the data for
different users:

s=H"u, (2

whereH™ = H*(HH*)~!, and H* is the Hermitian ofH. Moreover,s is the transmitted

S

VE([s[?)

u is the data vector, i.ey; is the data for the'th user. ForN = M (the number of transmit

signal before the normalizatiorx (= is the normalized transmitted signal), and
antennas and the number of users are equal) which is the main focus of this paper, the
transmitted signal is

s=H'u. 3)

The problem arises wheH is poorly conditioned andls|| becomes very large, resulting
in a high power consumption. This situation occurs when at least one of the eigenvakldes of
is very small which results in vectors with large norms as the columiddf Fortunately,

most of the time (especially for high SNRs), we can combat the effect of a small eigenvalue



by changing the supporting region of the constellation which is the main motivation behind
the current article.

When the data of different users are selected ftdtn the overall constellation can
be seen as a set of lattice points. In this case, lattice algorithms can be used to modify
the constellation. Especially, lattice-basis reduction is a natural solution for modifying the

supporting region of the constellation.

[11. L ATTICE-BASIS REDUCTION

Lattice structures have been frequently used in different communication applications
such as quantization or decoding of MIMO systems. A real (or complex) laftige a
discrete set ofV-D vectors in the real Euclidean spaRé’ (or the complex Euclidean space
C™) that forms a group under ordinary vector addition. Every latficis generated by the
integer linear combinations of some set of linearly independent vebtors - , by, € A,
where the integeiV/, M < N, is called the dimension of the lattick (here we assume
that N = M). The set of vectordb,,---,by} is called a basis of\, and the matrix
B = [by, -, by, which has the basis vectors as its columns, is called the basis matrix (or
generator matrix) of\.

The basis for representing a lattice is not unique. For any ordered basis sdy
(by,---,by), one can compute an ordered set of Gram-Schmidt VGC((ffﬁ,- = ,BM),

which are mutually orthogonal, using the following recursion:

~

< by, E)j > (4)



Usually a basis consisting of relatively short and nearly orthogonal vectors is desirable.
The procedure of finding such a basis for a lattice is cdlktice Basis ReductiorA popular
criterion for lattice-basis reduction is to find a basis such hat|-...-||b,,|| is minimal. This
problem is NP-hard [14]. Several distinct sub-optimal reductions have been studied in the
literature, including those associated to the names Minkowski, Korkin-Zolotarev, and more
recently Lenstra-Lenstra and Lovasz (LLL) [15].
An ordered basigby, - - - ,by,) is a Minkowski-Reduced Bas|46] if
« b; is the shortest nonzero vector in the lattiteand
. For eachk = 2,..., M, by is the shortest nonzero vector in such that(by, - -, by)
may be extended to a basis &f
Finding Minkowski reduced basis is equivalent to finding the shortest vector in the lattice
and this problem by itself is NP-hard. Thus, there is no polynomial time algorithm for this
reduction method.
An ordered basigb,,--- ,by,) is anLLL Reduced Basifl7] if,
o [lpill <ifor1<i<j<M,and
¢ W2 < i+ i Bl
where (Bl, e ,BM> is the Gram-Schmidt orthogonalization of the ordered basiskand
S by fori=1,.. M.
It is shown that LLL basis-reduction algorithm produces relatively short basis vectors
with a polynomial-time computational complexity [17]. The LLL basis reduction has found
extended applications in several contexts due to its polynomial-time complexity. In this paper,

we will use the following important property of the LLL reduction:



Theorem 1:Let A be an M-dimensional real lattice andlb,...,b,} be a reduced

basis ofA. Then, the following is true [14]:
1]l - .- oo} < 27 det A, (5)

wheredet A = v/det B*B.

IV. PROPOSEDAPPROACH

Assume that the data for different usets, is selected from the points of the integer
lattice (or from the half-integer grid [18]). The data vecioris a point in the Cartesian
product of these sub-constellations. As a result, the overall receive constellation consists
of the points fromZ?*™, bounded within &)/-dimensional hypercube. At the transmitter
side, when we use the channel inversion technique, the transmitted signal is a point inside
a parallelotope whose edges are parallel to vectors, defined by the colurkhis! off the
data is a point from the integer latti¢&", the transmitted signal is a point in the lattice
generated b§I~!. When the squared norm of at least one of the columrAd ofis too large,
some of the constellation points require high energy for the transmission. We try to reduce
the average transmitted energy, by replacing these points with some other points with smaller
square norms. However, the lack of cooperation among the users imposes the restriction that
the received signals should belong to the integer la#icé (to avoid the interference among
the users). The core of the idea in this paper is based on using an appropriate supporting
region for the transmitted signal set to minimize the average energy, without changing the

underlying lattice. This is achieved through the lattice-basis reduction.



When we use the continuous approximation (which is appropriate for large constella-
tions), the average energy of the transmitted signal is approximated by the second moment
of the transmitted region [18]. When we assume equal rates for the users; bits per
user @ bits per dimension), the signal points (at the receiver) are inside a hypercube with
an edge of lengtla where

a =282 (6)

Therefore, the supporting region of the transmitted signal is the scaled version of the funda-
mental region of the lattice generated By ' (corresponding to its basis) with the scaling
factor a. Note that by changing the basis for this lattice, we can change the corresponding
fundamental region (a parallelotope generated by the basis of the lattice and centered at
the origin). The second moment of the resulting region is proportional to the sum of the
squared norms of the basis vectors (see Appendix A). Therefore, we should try to find a
basis reduction method which minimizes the sum of the squared norms of the basis vectors.
Figure 1 shows the application of the lattice basis reduction in reducing the average energy
by replacing the old basis with a new basis which has shorter vectors. In this figure, by
changing the basih;, h, (columns ofH™!) to b, b, (the reduced basis), the fundamental
region F, generated by the original basis, is replacedAlygenerated by the reduced basis.
Among the known reduction algorithms, the Minkowski reduction can be considered
as an appropriate greedy algorithm for our problem. Indeed, the Minkowski algorithm is the
successively optimum solution because in each step, it finds the shortest vector. However,
the complexity of the Minkowski reduction is equal to the complexity of the shortest-lattice-

vector problem which is known to be NP-hard [19]. Therefore, we use the LLL reduction
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Fig. 1. Using lattice-basis reduction for reducing the average energy

algorithm which is a suboptimum solution with a polynomial complexity.

Assume thatB = H~'U is the LLL-reduced basis for the lattice obtained Hy !,
whereU is a unimodular matrix (botfJ andU~! have integer entries). We use= Bu' =
H-'Uu’ as the transmitted signal where

v =U"'u moda (7)

is the precoded data vectatr, is the original data vector, and is the length of the edges
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of the hypercube, defined by (6). At the receiver side, we use modulo operation to find the

original data:

y=Hx+n=HH 'UU'u moda)+n=UU"'u moda)+n (8)
=UU'u moda+n=u moda+n. (9)

In obtaining (9) from (8), we use the fact thet and U~! have integer entries.

In this method, at the beginning of each fading block, we reduce the lattice obtained
by H~! and during this block the transmitted signal is computed using (7). Neglecting the
preprocessing at the beginning of the block (for lattice reduction), the complexity of the
precoding is in the order of a matrix multiplication and a modulo operation. Therefore, the
complexity of the proposed precoding method is comparable to the complexity of the channel
inversion method. However, as we will show by the simulation results, the performance of
this method is significantly better, and indeed, is near the performance of the perturbation
method, presented in [1].

In the perturbation technique [1], the idea of changing the support region of the con-
stellation has been implemented using a different approach. Ini{H; u + «l is used as
the precoded data, where the integer vedta chosen to minimizéd/H='(u + al)||. This
problem is equivalent to the closest-lattice-point problem for the lattice generateH by
and the point-H~!u. Therefore, in the perturbation technique, the support region of the
constellation is a scaled version of the Voronoi region [20] of the lattice. In the proposed
method, we use a parallelotope (generated by the reduced basis of the lattice), instead of the

Voronoi region. Although this approximation results in a larger second moment (i.e. higher
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energy consumption), it enables us to use a simple precoding technique, instead of solving the
closest-lattice-point problem. For the lattice constellations, using a parallelotope instead of
the Voronoi region (presented in this paper) is equivalent with using the Babai approximation
instead of the exact lattice decoding (presented in [13]). However, the new viewpoint helps
us in extending the proposed method for the case of variable-rate transmission and obtaining
some analytical results for the asymptotic performance.

In practical systems, we are interested in using a subset of points with odd coordinates
from the integer lattice. In these cases, we can improve the performance of the proposed
method by sending a very small amount of side information. When the data vector
consists of odd integers, using the lattice-basis reduction may result in points with some even
coordinates (i.eU~!'u has some even elements), instead of points with all-odd coordinates
in the new basis. For this case, the constellation is not centered at the origin. Therefore,
we can reduce the transmitted energy and improve the performance by shifting the center
of the constellation to the origin. It can be shown that the translation vector is equal to
(U1 +i 144, 1+i7+[1+4,1+4,---,1+4]7) mod 2 wherei = \/—1. When
we use this shifted version of the constellation, we must send the translation vector to the
users (by sending 2 bits per user) at the beginning of the block. However, compared to the
size of the block of data, the overhead of these two bits is negligible.

The above idea of using a shift vector can be also used to improve the perturbation
technique (If we only use the odd points of the lattice). After reducing the inverse of the
channel matrix and obtaining the bits (corresponding to the shift vector) at the beginning

of each fading block, the closest point to the signal computed in equation (7) can be found
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by using the sphere decoder. Then, the transmitted signal is obtained using this point. The
transmitted signal can be obtained by

x =B (u' + al + up) , (10)

whereu,,, is the zero-one shift vector, which is computed for users at the beginning of the
fading block, and the perturbation vectbrs an even integer vector such that the vector
has the minimum energy. This method which can be consideredaasfied perturbation
methodoutperforms the perturbation method in [1]. When we are not restricted to the odd
lattice points, using (10) instead &I~' (u’ + al) does not change the performance of the

perturbation method. It only reduces the complexity of the lattice decoder [21].

V. UNEQUAL-RATE TRANSMISSION

In the previous section, we had considered the case that the transmission rates for
different users are equal. In some applications, we are interested in assigning different rates
to different users. Considéek;, ..., Ry; as the transmission rates for the users. Equation (7)
should be modified as

v =U" u mod a, (11)
where the entries o = [a4, ..., ay]” are equal to
a; = 28/2, (12)
Also, at the receiver side, instead of (8) and (9), we have

y=Hx+n=HH'UU 'u moda)+n=U(U'u moda)+n  (13)

=UU 'u moda+n=u moda+n. 14)
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If we are interested in sum-rate, instead of individual rates, we can improve the perfor-
mance of the proposed method by assigning variable rates to different users. We assume that
the sum-rate (rather than the individual rates) is fixed and we want to reduce the average
transmitted energy. To simplify the analysis, we use the continuous approximation which has
a good accuracy for high rates.

Considering continuous approximation, the sum-rate is proportional to the logarithm of
the volume of the lattice with basB and the average energy is proportionak—t:(,ﬂi1 |b;||* =
trBB* (see Appendix A). The goal is to minimize the average energy while the sum-rate
is fixed. We can use another lattice generatedBbywith the same volume, where its basis
vectors are scaled versions of the vectors of the bBsisccording to different rates for
different users. Therefore, we can U3eé= BD instead ofB (whereD is a unit determinant
diagonal matrix which does not change the volume of the lattice). For a given reduced basis

B, the product of the squared norms of the new basis vectors is constant:

D32 [[b 1% b l1* = (Iball?[[b2]l?...[[bar[I*) det D (15)

= ||by||?||ba]?...||bas]|* = const.

The average energy corresponding to the new lattice basis should be minimized. When
we use the modified basl¥ instead ofB, the average energy is proportional&” , ||b}||> =
trB'B’ (see Appendix A). According to the arithmetic-geometric mean inequalify, ||b;||> =
trB’B™ is minimized iff

DL = b5l = .. = [l (16)

Therefore,

3=

min trB'B"™ = 7 (|[b} [|*[[b5]|*... [y [1*) ™ = n (|[bx[*[[ba]*... [ barl|?) (17)
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Having the matrixB, the columns of matri¥B’ can be found using the equation (16)
and tBB’B™* can be obtained by (17). Now, for the selection of the reduced lasise

should findB such that||b;]||?||bs||?...||bas||* is minimized. Becauséet B = det H™! is

given, the best basis reduction is the reduction which maximizes“2.— or in other

words, minimizes the orthogonality defect which is defined as,

[by[[*[[Ds ... [bar )

(]
0= det BB*

(18)

In practice, we use discrete values for the rate, and sometimes, we should assign the
rate zero to some users (when their channel is very bad). In this case, for the rate assignment

for other users, we use the lattice reduction on the corresponding sublattice.

VI. DIVERSITY AND OUTAGE PROBABILITY

In this section, we consider the asymptotic behavipr<— oc) of the symbol error
rate (SER) for the proposed method and the perturbation technique. We show that for both
of these methods, the asymptotic slope of the SER curve is equal to the number of transmit
antennas. By considering the outage probability of a fixed-rate MIMO broadcast system,
we will show that for the SER curve in high SNR, the slope obtained by the proposed
method has the largest achievable value. Also, we analyze the asymptotic behavior of the
outage probability for the case of fixed sum-rate. We show that in this case, the slopes of

the corresponding curve is equal to the square of the number of antennas.
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A. Fixed-rate users

When we have the Channel-State Information (CSI) at the transmitter, without any
assumption on the transmission rates, the outage probability is not meaningful. However,
when we consider given rateB,, ..., R, for different users, we can define the outage
probability P,,; as the probability that the poirit?,, ..., R),) is outside the capacity region.

Theorem 2:For a MIMO broadcast system with/ transmit antennasy/ single-antenna

receivers, and given ratds,, ..., R/,

< M. (29)
p—oo logp

Proof: Define P,,;; as the probability that the capacity of the point-to-point system
corresponding to the first user (consisting df transmit antennas and one receive antenna

with independent channel coefficients and CSI at the transmitter) is lesgithan

Pyt = Pr{log (1 + p||hy||*) < Ry} (20)

whereh; is the vector defined by the first row @&1. Note that the entries di; have iid
complex Gaussian distribution with unit variance. Thus, its square norm has a chi square

distribution. We have,

Pr {log (2pl[hi|]*) < R} (21)
2 2R1
- Pr{||h1\| < Z} (22)



=1 Mol
— - g
; (M—l)'x e X

We are interested in the large valuespofFor p > 2%1-1,

oR oR
2 1 M-1_— 2 1 M-1_—1
Tdx > d
/0 (M—l)'m e a:_/o (M—l)'x e T
1 2
e 2p M—1
= d
M-nt)y "
MR .
— p

—1 .
wherec = sy IS @ constant number. Now,

1
log (14 pl[hy|*) <log (2p[h[?) for p > THE

—log Pr{log (1 + p|[h [*) < R}

—> lim
p—00 log p
< Ly —logPr{log (2p]hu[f*) < Ri}
~ pooo log p
1o 9MR
< lim & o =M
p—oo logp
—log P,
— lim — 108 Fout1 < M.

p—oo logp

17

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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According to the definition of°,,;1, P,.: > P,.:1. Therefore,

lim - IOg Pout < lim - lOg Poutl

< < M. (33)
p—oo  logp p—oo  logp

We can define the diversity gain of a MIMO broadcast constellation oprisoding

. : —log P, . . -
diversityaslim,_. IOg where P, is the probability of error. Similar to [22, lemma 5],
og p
. . . - 1 Pou
we can bound the precoding diversity by, # . Thus, based on theorem 2, the
0g p

maximum achievable diversity i&/.

We show that the proposed method (based on lattice-basis reduction) achieves the
maximum precoding diversity. To prove this, in lemma 1 and lemma 2, we relate the length
of the largest vector of the reduced baBsto dy- (the minimum distance of the lattice
generated byH*). In lemma 3, we bound the probability thdt;- is too small. Finally,
in theorem 3, we prove the main result by relating the minimum distance of the receive
constellation to the length of the largest vector of the reduced k&sand combining the
bounds on the probability thaly- is too small, and the probability that the noise vector is
too large.

Lemma 1:ConsiderB = [b;...by/] as anM x M matrix, with the orthogonality defect

4, and (B~1)* = [a;...a),] as the Hermitian of its inverse. Then,

Ve
min{|lay |, ..., [laar]|}*

Proof: Considerb, as an arbitrary column oB. The vectorb; can be written as

maX{Hblnv ) HbM”} <

(34)

b; + >, cijb;, whereb; is orthogonal tob; for i # j. Now,

[l Do [ IBil|-[Bsall---[bar|] = V6 det B (35)
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= Vb det[by..b;_ /b1 byl (36)
According to the Hadamard theorem:
det[br... bbby 1 bag] < (B[l [Bis | [B il [ ba. (37)
Therefore,
Bl il [Bll- Bl ABar [} < [ [biy [ [BF [ Bica - [Ioar [V (38)
= [Ibil| < |[b}[V5. (39)
Also, B™'B = I results in<a;,b,> = 1 and <a;, b;> = 0 for i # j. Therefore,
(40)

1 = <ai,b,-> = <ai,(b;+26i,jbj)> = <ai,b;>
i#j

Now, a;, andb’, both are orthogonal to the/ — 1)-dimensional subspace generated by the

vectorsb; (j # ). Thus,

b;
1= <anbl> = fadl bl > faull L] @)
a;
— 12 |12 (42)
4]
— < 2 (43
]

The above relation is valid for every 1 < i < M. Without loss of generality, we can

assume thamax{||by ||, ..., ||ba]|} = || bl
vo (44)

max{|[by], ..., [barl]} =[xl <
2l

Vo (45)

— min{(la ], .., [lan ([}
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Lemma 2:ConsiderB = [b;...by/] as an LLL-reduced basis for the lattice generated
by H™! and dyg- as the minimum distance of the lattice generatedtby Then, there is a

constanta,; (independent oH) such that

(0%
max{[[ba]l, ... [oa}} < 2. (46)
H*
Proof: Lattice generated b} is equivalent with a real lattice with)/ real dimensions.

Thus, for its lattice basis, obtained by LLL reduction, according to the theorem 1,
\/g < 22M(2]V[*1)/4' (47)

Consider(B™')* = [ay, ..., a)s]. By using lemma 1 and (47),

V3 92M (2M—1)/4
max{ b, .., [barll} < — < — (48)
' min{[lay ||, ..., |anl|} — min{([ai|, ..., [[ar]|}
The basisB can be written a8 = H~'U for some unimodular matriXJ:
(B™) = (HU)") = (U 'H) =H'(U)" (49)

Noting that (U~1)* is unimodular,(B~')* = [ai,...,ay] is another basis for the lattice
generated byH*. Therefore, the vectors,, ..., a,, are vectors from the lattice generated by

H*, and therefore, the length of each of them is at lefgst

|lail| > dg= for 1 <i< M (50)

= min{||a,||, ..., [|an]|} > du- (51)
oM(2M~1)/2

(48) and (51) = max{||b1]|, ..., [[ba]|} < i (52)
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Lemma 3:Assume that the entries of th€ x M matrix H has independent complex
Gaussian distribution with zero mean and unit variance and congigers the minimum

distance of the lattice generated B Then, there is a constapty ; such that

5N,M€2N for M < N
Pr{dg <e} < ) (53)

Byne?N. max {—(Ine)V*1 1} for M = N
Proof: See Appendix B.

Theorem 3:For a MIMO broadcast system with/ transmit antennas antl/ single-

antenna receivers and fixed ratgs, ..., R,;, using the lattice-basis-reduction method,

—log P,
lim Be _ M
p—oo logp

Proof: ConsiderB = [b;...by/] as the LLL-reduced basis for the lattice generated

(54)

by H~!. Each transmitted vectar is inside the parallelotope, generated ¥, ..., 7y/bas
(wherery, ...,y are constant values determined by the rates of the users). Thus, every

transmitted vectos can be written as

s =tby + ...+ tybu, _2 << 2 (55)

For each of the transmitted vectors, the energy is

P =|s|? = [[t:b1 + ... + tarbar]? (56)

— P < (|[tsby]| + ... + |[tasbu])? (57)
r r 2

— P < (Sl + o+ B oall) (58)

Thus, the average transmitted energy is

r r 2
Paw = B(P) < M* (max { b}, o, S Dol } ) < ex-(max{|[bu?, ., [bar[[2}) (89)
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wherec, = 22

—max {r7,...,r3,}. The received signals (without the effect of noise) are points

from the Z?M lattice. If we consider the normalized system (by scaling the signals such that
the average transmitted energy becomes equal to one),

L ! (60)

& =
Pay ~ cr(max{|[by][?, ... [Ibar]|2})

is the squared distance between the received signal points.
. 1. . . 1
For the normalized system, is the energy of the noise at each receiver %nds the
p

p
energy of the noise per each real dimension. Using (60), for any positive number

Plr{d2 < z}
p

1
< Pr < L 61
- {cummﬂwnPVwaMW}-p} (o1

)

Using lemma 2,

(0%
mase{ [ ... [Bar]}} < 52 62

2 2
e en e a2 w

The matrixH* has independent complex Gaussian distribution with zero mean and unit

variance. Therefore, according to lemma 3,

Pr{al2 <

ESEE

2
} < Pr {df{* < mz‘M } (64)
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70104M2 M 1 ’YclOéM2 M
S ﬁM,M p max —5 hl p ,1 (65)

o\ M
< Bu,m (’ycl&M ) max {(ln ,O)M+1 , 1} fory > 1 and p > (66)
P C1O
M 1
< el (In p)MJrl for v > 1 and p > max ,e (67)
pM cran?

wherec, is a constant number andis the Napier number.

If the magnitude of the noise component in each real dimension is less;thahe
transmitted data will be decoded correctly. Thus, we can bound the probability of error by

the probability thatw;|? is greater thartd” for at least one, 1 < i < 2M. Therefore, using

the union bound,

1
P, <2M (Pr {|w1|2 > Zd2}> (68)
4 1 4
=2M Pr{d2<—}.Pr{|w1|22—d2 d2§—}
p 4 p
4 1,4
+Pr —§d2<—}.Pr{|w1| > —d? —§d2<§}
p p 4 |p p
1 1 1
+Pr{§gd2g—6}.m{|wl|22—d2 §§d2§—6}+...) (69)
P P 4 {p p

1 1
+Pr{§§d2§—6} Pr{|w1|2 —-§}+~~) (70)
p dp
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4 1
<2M (Pr{d2 < —} +Pr{d2 < §} .Pr{\wlyZ > —}
P p p
—i—Pr{dQSE}.Pr{]wﬂzz2}4—...) (71)
p p

For the product terms in (71), we can bound the first part by (67). To bound the second

part, we note thaty; has real Gaussian distribution with variange Therefore,

0
R e R (72)
1
Now, for p > max {W’ 6},
1
(67), (71) and (72) = P. < 2M (Pr {|w1\2 > ZCF}) (73)
M M(i+3) ;
<2M (4 2 (lnp)M*' 4 Z 2 62 np)V e ? > (74)
pM
In p)M+1 i ;
< %.CQQM (4M + ) oMt ) (75)
=0
c3(In P>M+1
< (76)
wherecs is a constant number which only dependsMnThus,
—log P, M1 — log(In p)M+1 —1
p—oe logp T poe log p

According to Theorem 2, this limit can not be greater thidn Therefore,
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= M. (78)

u

Corollary 1: Perturbation technigue achieves the maximum precoding diversity in fixed-
rate MIMO broadcast systems.

Proof: In the perturbation technique, for the transmission of each data vectonong
the set{H™!(u + al)||1 € Z*}, the nearest point to the origin is chosen. The transmitted
vector in the lattice-reduction-based method belongs to that set. Therefore, the energy of the
transmitted signal in the lattice-reduction-based method can not be less than the transmitted
energy in the perturbation technique. Thus, the average transmitted energy for the perturbation
method is at most equal to the average transmitted energy of the lattice-reduction-based

method. The rest of the proof is the same as the proof of theorem 3. [ |

B. Fixed sum-rate

When the sum-rat&,,,,,, is given, similar to the previous part, we can define the outage
probability as the probability that the sum-capacity of the broadcast system is ledsthan
Theorem 4:For a MIMO broadcast system with/ transmit antennagy/ single-antenna
receivers, and a given sum-rak&,,,,,
- lOg Pout

lim

< M?. (79)
p—oo  logp

Proof:

For any channel matri¥l, we have [10]
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Csum = suplog|I; + pH*DH]| (80)
D

whereD is a diagonal matrix with non-negative elements and unit trace. Also, [23]

. 2ptrH*DH)M  (2ptrH*H)Y
12pH*DH| < T = (81)

The entries ofH have iid complex Gaussian distribution with unit variance. Thus
trpH*H is equal to the square norm of ai?-dimensional complex Gaussian vector and
has a chi square distribution with)/? degrees of freedom. Thus, we have (similar to the

equations 21-27, in the proof of theorem 2),

2ptrtH'H M
Pr {1og L Rsum} 62)
Rsum
2 M
= Pr {trH*H < L} (83)
2p
QM Baum ) [M? 275 M
wherec is a constant number. Now,
—log P,
lim 28 out _ (85)
p—oo logp
lim log Pr {supp, log |In; + pH*DH| < R} (86)
p—00 IOg P
— * <
< lim log Pr{supp log |2pH*DH| < Rsum}' (87)

T pmoo log p
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By using (81), (84), and (87):

lo oM Rsum pyM?2,,
—log P, —log =7 —
lim — 8 out < lim i = M2 (88)
p—oo  logp p—oo log p

|
The slope)? for the SER curve can be easily achieved by sending to only the best user.

Similar to the proof of theorem 3, the slope of the symbol-error rate curve is asymptoticly
determined by the slope of the probability that,,..| is smaller than a constant number, where
hmae 1S the entry ofH with maximum norm. Due to the iid complex Gaussian distribution
of the entries ofH, this probability decays with the same rategas!”, for largep. However,
although sending to only the best user achieves the optimum slope for the SER curve, it is
not an efficient transmission technique because it reduces the capacity to the okggr of

(instead ofM log p).

VIlI. SIMULATION RESULTS

Figure 2 presents the simulation results for the performance of the proposed schemes,
the perturbation scheme [1], and the naive channel inversion approach. The number of the
transmit antennas i8/ = 4 and there arel\/ = 4 single-antenna users in the system. The
overall transmission rate is 16 bits per channel use, where 4 bits are assigned for each user.

By considering the slope of the curves in figure 2, we see that by using the proposed
reduction-based schemes, we can achieve the maximum precoding diversity, with a low
complexity. Also, as compared to the perturbation scheme, we have a negligible loss in the
performance (about 0.2 dB). Moreover, compared to the approximated perturbation method

[13], we have about 1.5 dB improvement by sending the bits, corresponding to the shift vector,
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at the beginning of the transmission. Without sending the shift vector, the performance of
the proposed method is the same as that of the approximated perturbation method [13]. The
modified perturbation method (with sending two shift bits for each user) has around 0.3 dB
improvement compared to the perturbation method.

Figure 3 compares the performances of the fixed-rate and the variable-rate transmission
using lattice-basis reduction. In both cases, the sum-rate is 8 bits per channel use. We see
that by eliminating the equal-rate constraint, we can considerably improve the performance
(especially, for high rates). In fact, the diversity gains for the equal-rate and the unequal-rate

methods are, respectively/ and M?2.

VIIl. CONCLUSION

A simple scheme for communications in MIMO broadcast channels is introduced which
is based on the lattice reduction technique and improves the performance of the channel
inversion method. Lattice basis reduction helps us to reduce the average transmitted energy
by modifying the region which includes the constellation points. Simulation results show that
the performance of the proposed scheme is very close to the performance of the perturbation
method. Also, it is shown that by using lattice-basis reduction, we achieve the maximum

precoding diversity with a polynomial-time precoding complexity.

APPENDIXA

In this Appendix, we compute the second moment of a parallelotope whose centroid is

the origin and its edges are equal to the basis vectors of the lattice.
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M=4 antennas, M = 4 single—antenna users, rate=2x4bits per channel use

107}

10_2 L T R N P T R R F TR
Symbol F
Error
Rate

107}

— — Channel inversion
© - Perturbation with Babai approximation
» —*— Proposed method without shift vector
10 F —— Proposed method with shift vector
r —+— Perturbation technique
—&— Modified perturbation technique

10’5 I I 1 I I
8 10 12 14 16 18 20 22 24

SNR (dB)

Fig. 2. Symbol Error Rate of the proposed schemes, the perturbation scheme [1], and the naive channel inversion approach

for M = 4 transmit antennas an = 4 single-antenna receivers with the ra@e= 2 bits per channel use per user.

Assume that4 is the mentioned parallelotope withh dimensions andX is its second

moment. The second moment df is (%)N+2

X. The parallelotoped can be considered
as the union oR" smaller parallelotopes which are constructectbyb;, £31b,, ..., +iby,
whereb;, 1 < i < N, is a basis vector. These parallelotopes are translated versions of

1A with the translation vector§; = +£1b; & 1by, £+ ... = 1by, 1 < i < 2V, The second

moments of these parallelotopes are equa(%t))NHX + |T;|I*Vol (3.4), 1 < i < 2N, By
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Sum-Rate = 8 bits per channel use M=2, K=2
10 r T T

—O— Fixed-rate
—&— Variable-rate |]

Symbol
Error
Rate

10‘5 l I
15 20 25 30

SNR (dB)

Fig. 3. Performance comparison between the fixed-rate and the variable-rate transmisgibn=f@r transmit antennas

and N = 2 single-antenna receivers with sum-rate 8 bits per channel use.

the summation over all these second moments, we can find the second moméent of

2N 1 N+2 1
x= [(5) X 4 [T Vol (5 A (89)
= (5) X+ 2B+ P0G A (90)
= X 2B+ o) Vol (4) (91)

X = %(HblHQ + o+ [balP). Vol (A). (92)
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APPENDIX B
PROOF OFLEMMA 3

Lemma 3 states that the probability that a lattice, generated/bindependentV-
dimensional complex Gaussian vectols,> M, with a unit variance per each dimension,
has a nonzero point inside a sphere (centered at origin and with the radsubounded by
Byme? for N > M, and By pe?N max {(—Ine)V*!, 1} for N = M > 2. We can assume

thate < 1 (for e > 1, lemma 3 is trivial because the probability is bounded).

A. Case 1:M =1

When M = 1, the lattice consists of the integer multiples of the basis veetdf the
norm of one of these vectors is less thanthen the norm ofv is less tharc. Consider
the variance of the components ofas ¢?. The vectorv has anN-dimensional complex

Gaussian distributionf, (v). Therefore, the probability of this event is,

2N
Pr{|lvl < ¢} = / Fo(v) dv < / v < (93)
Ivii<e Ivi<e T 0 0
When the variance of the componentswofs equal to one, we have,
Pr{||v] < e} < Bn.e*V. (94)

B. Case 22N > M > 1

ConsiderLy, ) as the lattice generated by,vs,....vy,. Each point ofL,

7777 VM

can be represented by, . .,) = z1V1 + 22Va + ... + 2V, Wherezy, ..., zy, are complex

integer numbers. The vectoss,v,,....v), are independent and jointly Gaussian. Therefore,
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for every integer vector = (zi,..., zp), the entries of the vectov., y have complex

----- zZMm

Gaussian distributions with the variance

05 = |z]?0®* = (|a]* + ... + |z2m]?) 07 (95)

Therefore, according to the lemma fof = 1,

€2N
Pr HV Z1yeey2 || S € S ﬁN,l . (96)
UVeranll <} (21 + oo + |22V
Now, by using the union bound,
Pr{du <e} <) Pr{[lvi, .l <&} 97)
z#£0
)3
< Bna (98)
(AP DY
€2N €2N
= B Z 2] 2V + Z 2] 2V
1<]|z||<2 2<||z||<3
€2N
+ ) e ] (99)
3<]|z) <4

The M-dimensional complex integer points= (z1, ..., zjr), such thatc < ||z|| < k+1,
can be considered as the centers of disjoint unit-volume cubes. All these cubes are inside the
region between th2)/-dimensional spheres, with radii-1 andk+2. Therefore, the number

of M-dimensional complex integer pointgs= (z1, ..., za), such thatk < ||z|| < k£ + 1, can
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be bounded by the volume of the region between these2tWedimensional spheres. Thus,

this number is bounded hy £ ~! for some constahtc,. Therefore,

2N 2N

€ 4 €
Z 2|2V < ek 1]€2_N (100)
k<|lz||<k+1
2N
(99), (100) = Pr{dn < ¢} < C15N,1€2N + 22M’1C1ﬂN,1;2_N+
2M—1 g2
+3 B 616N7132—N =+ ... (101)
- 1
<™y NI (102)
k=1

According to the assumption of this caseé,> M; hence2N —2M +1 > 2. Therefore,

the above summation is convergent:

Pr{||v] <&} < Bnue®™. (103)

C. Case3IN=M >1

Each point ofL(,, ... v,) can be represented by — v, wherev belongs to the lattice

.....

Lv,,..vx_,) @ndz is a complex integer. Considé¥, as the sphere with radiusand centered

atv. Now, zvy — v belongs taS, iff the zvy belongs taS,. Also, the sphere, includes

a pointzvy iff S, . includesv , wheres, , = Sv js the sphere centered af > with radius

z

|€—’ (see figure 4). Therefore, the probability that a lattice point existS,ifs equal to the
z

probability thatvy is in at least one of the spher¢s, .}, z # 0.

Throughout this proofes, c2, ... are some constant numbers.
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=

So
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radius = /n
center = v/n

radius = ¢
center = 0

Fig. 4. The family of sphere§, .

If we considerdy as the minimum distance df,, _.,) andR as an arbitrary number

greater than 1:

Pr{dg <e} = Pr{(L(vh,,,7vN) - 0) N So # @} = Pr {VN € U U SV,Z} (104)

v z#0

<Privye |J S:p+Privne |J S (105)

IZI<R IZI1>R

In the second term of (105), all the spheres have centers with norms greatdt #drahradii



35

less than 1 (becauge| > 1). Therefore,

U Sv:cix|lx|>RrR-1} (106)
I1¥I>R
(106) = (105) <Pr{ vy € ) Sy p+Pr{|vyll > R—1} (107)
I¥I<Rr

<Privye€e U Sy p+Privye U Sy p+Pr{|vy| > R—1}.

IZI<R |z[<et=N [ ZI<R,|2[>et =N
(108)
We bound the first term of (108) as the following:
Pr{vy € U S} (109)
<R |2|<et =N
< D> Y Pr{vyeStt+ D ) Pr{ivyeS, i+
[IVII<2R [2]>1 2R<||v[|<3R |z|>2
.+ > > Pr{ivyeS..}|. (110)

[N R vI([e' N+ DR 2|2 V]

Noting that the pdf ofv is less than or equal tgjﬁ,

(109) < WLN DTN VollSe) + D> D Vol(Sy )+

(IVIIS2R [2]>1 2R<||V||<3R |z]>2

L+ > > Vol(S,,.) (111)

[N R<|IVI<([e' =N +D)R - |2]= [N

1 2N 2N
ATy ¥ oy

Ivl<2R|2]>1 2R<||[v[|<3R |z[>2
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2N

t 3 3 TZTW . (112)

e N]R<|IVIS([e' N +DR 2|zt

By using (100), for one-dimensional complex vecior z,

2N 00 2N 00 2N 2N
CoE 5 C1Co€ C3€
ER - Zcz‘ Z EE S Z L2N-1 B jZN—2 (113)

|2|>i k=i k<|z|<k+1 k=i
Now,
(113) - (109) < 7T_N Z c3e™ + Z W—F
IvII<2R 2R<||v||<3R
2N
C3&
. > TN | (114)
et =N R<|Iv]I<([e' N [+1)R

Assume that the minimum distance Bf,, . v, _,) is dy—_;. The spheres with the radius
dy-1/2 and centered by the points df, ., ,) are disjoint. Therefore, the number of

points from the {V — 1)-dimensional complex latticé(,, .., ,), such that||v| < 2R, is

bounded by:EHaN_1/2P77 it is hounded by the ratio between the volumes 2 (— 2)-

2N -2
dN—l

dimensional spheres with radii? + dy_1/2 anddy_;/2). Also, the number of points from

vn_1)» Such thatk—1)R < |v|| < kR, is bounded b;y%(kR)QZ;s(,}f*dN*l) (it is bounded

N—-1

77777

by the ratio between the volumes of the region defined by 1)R — dy_1/2 < ||x|| <

kR + dy_1/2 and the sphere with radiugy_;/2):

65(2R—|— dN71/2)2N_2 €2N N C5R2N_3(R—|— dN—l) E2N le

1
(114) < - . _ - (115)
Ay’ Ay —~ k
2 d B 2 2N -2 2N -3 d _
(114) < ¢ 2R +dy1/2) vy Goft (4 dy 1).52N.1n(51_N) (116)

2N -2 : 2N -2
del del



37

IN-2
< cge?™ . max (R— 1> .max{—Ine, 1}. (117)

d2N—2 )

According to the proof of the case 2, we ha¥e{dy_1 < n} < Byy_17*". Therefore,

R2N72
EdN71 max W, 1 (118)
N-1

1 1 1
<1.Pr {dN—l > R}+22N_2. Pr {ER < dN_1 < R}+32N_2. Pr {gR < dN_1 < ER}+

(119)
1
<14+ 22Y2 Pr{dy_, < R} +3*N72. Pr {dN_1 < 5R} + ... (120)
=1 (k+1)2N2
Z k;2N R¥ By n_y < ;RPN (121)
k=1
RQN—Q
— Bqy_, { ce®” . max ANT 1| . max{—1Ing 1} p < cge®™.R* max{—1Ine, 1}.
N—1
(122)

To bound the second term of (108), we note that/for> ¢!~ the radii of the spheres
S, . are less or equal to", and the centers of these spheres lie on(fkie- 1)-dimensional
complex subspace containing,, .- Also, the norm of these centers are less titan

Therefore, all of these spheres are inside the regiomhich is an orthotope centered at the

origin, with 2N real dimensions (see figure 5):
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2R + 2¢N
[\7 777777777777777777 +\\ 2R + 2N
L0
E— Wl
Subgacc containing Ly, .vy_,
Fig. 5. The orthotoped
J Sw.c4 (123)

[ZI<R,|2[>e! =N

1 1
— Pr{vy € U sr< — Vol U s < —y Vol(4)  (124)
ISR |z >e1-N |2 ISR |z >e2-N
1 N\2 N\2N—-2
< ’7T_N(28 2R+ ¢e") (125)

Also, according to the Gaussian distribution of the entries pf(which have Variance

% on each real dimension), we can bound the third term of (108) as,

Pr{[[vy| > R -1} <2NQ <\/ %) < Cge_(%>2. (126)

By using (122), (125), and (126),

R—

1 _ 2
Pr{dy < e} < cge®™ R*M max {—Ine, 1} +—(2c")*(2R+e" )N 4 cge (V). (127)
™
The above equation is true for eveRy> 1. Therefore, using? = v2N+/— In(e2V) + 1,

Pr{dg <e} < 5N,N52N. max {(— lna)NH, 1} . (128)
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