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ﬁ)roblem 2.2.1 | Classify the following signals as energy or power signals and find the normal-

ized energy or power for each. (All signals are defined over —co < t < 00.)

(a) 4

(b) cost + cos2t
(c) et

(d) et

Recall that the total energy of a signal f(t) is given by

E= f (t)[2d¢

A signal is an “energy signal” if its total energy content is finite. If F' = oo, then if

L )2
111_1)130 T / (t)]*dt < o0,
the signal is called a power signal.
Thus in our case:
() )
/ |4[2dt = oo

is NOT an Energy signal, while,

. 1 rT/2 )
lim —/ |4|°dt = 16W
T J-1/2

T—o0

shows that it is a power signal.

(b) )
/ | cost + cos 2t|% dt = o0

(Consider the integral as an area under the curve of the integrand). This shows that it is not

an energy signal, while,

T/2
lim —/ | cost + cos 2t|2dt =

1 T/2
lim — / cos?t 4 cos® 2t + 2 cost cos 2tdt
~T/2

Using the identities: (i) cos?t = 1(1-+cos2t), and, (ii) 2 cos 2t cost = cos (2t + t)+cos (2t — t) =

cos 3t + cost, the value of the integral is computed as,



(c) Observe that,
/OO (e=2Mthy2dt = / el gt = 2/ et gt — 14(0 _1)=05J
—00 —00 0 -

This is therefore an energy signal.

(d) " -
/ |eI2™|2dt = / |1/?dt = co = Not an energy signal.

o0 -0

1 rT/2 . .
P= —/ [1}dt =1 W = Power signal.
T J-1)2

l Problem 2.2.2| Determine if each of the following signals is periodic. If a signal is periodic,

determine its periodic.

(a) cos (v/3t)
(b) elizmt—m/4)

(c) sin?(2t)
(d) sin(2t?)
Recall that a signal f(¢) is said to be periodic if there exists a number T' such that
for all ¢, f(t) = f(t + T). The number T is the period of the signal.

(a) cos(+/3t) is periodic because a number T' can be found such that cos (v/3t) = cos[V3(t + T))].
This number is easily found to be T = 27/4/3 (note that we are referring to the smallest

possible number here.).

(b)

e[j27r(t+T)—1r/4] — ej21rte—7r/4ej21rT — ej21rte—7r/4 (lf T = 1)
(since €72 = 1). This means that the function is periodic with period T = 1.
(c) )
sin®(2t) = 5[1 — cos(4t)] (1)
1
sin®2(t +T) = 5 [1 — cos4(t+ T)] (2)

If the function is periodic then (1) and (2) above must be equal V¢. This happens if, cos[4(t +
T)] = cos(4t), or if, 4T = 27, or T = 7 /2.

(d) Given f(t) = sin(2t?), recall that a sine function is periodic with period 2Km. If f(t) is
periodic, then
sin <2t2 + 2K7r) = sin [2(t + T)2}
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Figure 1: The function f(t) = sin(2¢%).

where T is the period. This means that, 2t>+2K7 = 2(t+T)2. This simplifies to: 2T +4Tt =

2K . This means that f(t) is not periodic, since we cannot get a constant value for the period
T from the above equation.

‘Problem 2.3.1| Let f(t) be the input to a given system and let g(t) be the corresponding
output. The input-output relationships of several systems are given below. Classify the systems
whether they are linear, time invariant, causal.

(#) 9(t) = 170

() o) = $(6) + 71
(©) () = £(4/2)

(@) 9(t) = exp[2£(2)

(a) Consider two different inputs to the system, fi(t) and fs(t). The output corresponding to
the input afi(¢) + B fa(t) is :

d d d
zﬁ[afl(t) +Bf@1)] = Ez[afl(t)] + C—lz[ﬂfz(t)]
= agi(t) + Bga(?)

where g, (t) and g2 (t) are the outputs corresponding to inputs f; (t) and f»(t) = Linearity is proved.
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To prove time invariance, let g1(t) be the output corresponding to the input fi1(t) and go(t) be the
output corresponding to the time shifted input fo(t) = fi(t — o).

PROREATAC)

020 = L150] = FIAE - 1) = 91t~ to)

Since g2(t) = g1(t — to) it follows that the system is time invariant.
To check for causality, recall that for a causal system, the output of the system at any time to,
g(to), is only dependent on the values of ¢ < Zo. Considering this definition, we conclude that the

system is causal.

(b) The output corresponding to inputs afy(t) + Bf2(t) is

Il

afi(t) + afi(—t) + Bfa(t) + Bf2(-t)
a[fi(t) + fi(=t)] + B[f2(t) + f2-1)]
agi(t) + Bga(t)

=> Linearity is proved.
We have,

9(t) = T{F(O)} = F(&) + f(=1)
Output for the input f(t — to) = T{f(t — to)} = F(t — to) + f(—t — to)
g(t) shifted to to = f(t - tg) + f(—(t — to)) = f(t — to) + f(—t + to)

g(t —to) = f(t —to) + f(=t + to) # f(t — o) + f(~¢ — to)

= Not time invariant.

This is not a causal system because, if we consider (for instance) a step input function f(t) = au(t),
for t < 0, we have, f(t) = 0 but g(t) = ofu(t) + u(—t)] = o, which depends on f(¢) for t > 0 = the

system is non-causal.

(c) The system is linear since when f(t) = afi(t) + Bf2(t), the corresponding output is, g(t) =
afi(t/2) + Bf2(t/2) = agi(t) + Bga(t).

The system is not time invariant because the output corresponding to f(t —to) is f[(¢/2) - to] which
is not equal to f[(t — t0)/2].

The system is causal.

(d)
exp[2fi(t) + 2f2(t)] # exp[2f1(t)] + exp[2f2(2))]
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Figure 2: Set of functions related to the problem 2.5.3.

= System is not linear

It is easy to show that the system is time invariant and causal.

|Problem 2.5.3: | A given set of functions, ®,(t), is shown in Fig. 2.

(a) Show that these functions form an orthogonal set over the interval (0,1). Is the set an

orthonormal set?

(b) Represent the given signal f(t) = 2t over the interval (0, 1) using this set of orthogonal func-
tions.

(c) Sketch f(t) and the representation of f(t) on the same graph and compare.
(d) Compute the energy in each term of the series and the error energy remaining after each term
is included.

(a) Recall that two Complex valued functions ®,(t) and ®m(t) are said to be
Orthogonal over the interval (t;,t3) if :

/” B, ()&, (t)dt = { 0 ifngm

ty K, ifn=m

Using the given functions it can therefore be shown that:
1
/ B0 (), ()dt = 0
0
1
/ o ()B4 (t)dt = 0
0

and

/1 B, (£)®2(t)dt = 0
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likewise. ) ) L
/@S(t)dt:/ @f(t)dt:/ B2(t)dt = 1
0 0 0

Thus the set is orthogonal and orthonormal over the given interval.

(b) f(t) = 2 _o fn®a(t) over the interval (0,1), where f, = fo F(&)®5(¢)dt.
Evaluating, we get: f(t) = ®o(t) — $®1(t) — $®2(t) over (0,1).

(c) Shown in Fig. (3).

2 T T T T T T T T T
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Figure 3: Expansion of the function f(t) = 2t over the basis of problem 2.5.3.

(d) Energies of the terms f, @, are equal to:

Eo=(1)*(1)=1
By =(1/2)*(1) =1/4
Ey = (1/4)%(1) = 1/16
To compute the energy of the error signal after each successive term is added, recall that the energy
of the error signal in each case is equal to the difference between the energy of the actual signal
f(t) and the sum of the energies of the individual terms, fn®,(t), used in representing f(t).

The total energy of the original signal is £, = fol (2t)%dt = 4/3

Energy of the error signal using ¢ = E, — Eo=4/3-1=1/3.
Energy of the error signal using ¢, ¢1 = FE, — Eo— E1 = 4/3-1-1/4=1/12.



Energy of the error signal using ¢o, ¢1, 92 = E, — Eo— E,—-E;=4/3-1-1/4-1/16=1/48.
Note that ¢g, ¢1, ¢ form a basis for the set of functions which have a constant value over each
of the subranges [0,1/4], [1/4,1/2], [1/2,3/4], [3/4,1].

| Problem 2.7 .1:| The complex exponential Fourier series of the signal f(t) = aexp (—alt]) over

a certain symmetric interval (—7/2,T/2) is :

ft) = f: a?(1 — e % cosmn) pinmt

a2 + n2mr?

=00

(a) Determine the value of T'.

(b) What is the average value of f(t)? (Use two ways.)

(¢) The component of f(t) at a certain frequency can be expressed as Acos3wt. Determine the
numerical value of the constant A.

(d) Write the first three non-zero terms in a series expansion for the value f (t) at t = 0.

(a) Recall the representation

oo
F) = D Fue™t i <t<ty

n=—0oo

It is seen that nwy = nr and therefore,
wo=2r/T =7 = T =2seconds

(b) Method I
The average value of f(t) is equal to Fy obtained by putting n = 0 in the expression for F,, i.e.,

a’(1— e %cos0)
a? + 02

Fo-': :1—6_0'

Method II

Average value =

T/2 T/2 1
—1—/ ae~tldt = 2a e %tdt = a/ e %dt=1-e"* (Notethat T = 2)
T J-1)2 T Jo 0

(c) The terms F3 and F_3 contribute to the coefficient of A cos 3wt as seen in the expression

below

a?(1—e “%cos3m) a’(l—e *cos3m) _;

A t — 337t —j3nt
cos3m (@@ + 3i) e + [ ¥ (<3)2n7]
2a%(1 — e™* cos 3m)
= t
1+ on? cos 3

Therefore,

2a%(1 — e™% cos 3m)
A=
a? + 9n?
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(d) By the same argument as above:

f(t):Co—Fio:Cncosmrt = f(O):C’o—i—iCn

n=1 n=1

where Cy = Fy =1 —€7% and
2a2(1 — e~* cos n)

Cpn=

a2 + n2x2
The other terms are therefore given by:
2a%(1 + e
C1= (2 2 )
a4+
Cy = 2a2(1 — e™%)
a? + 4n?

The first three term series expansion of f(t) at ¢ = 0 is then given by:

1+e®* 1—-e°

1—e*+ 24
e e a?+ 7% a4 4n?

[Problem 2.7.3:] Find the exponential Fourier series representation of the raised-cosine pulse

signal defined by :
14+cos2mt if |t| <1/2
F(t) =
0 elsewhere

over the interval (—1,1).

+o00
fR)= D Fae™

Nn=—00

where F), is defined as

1 t2 .
Fn — / f(t)e—ano tdt

to — 11 Jyy
In this case (t; — t1) = 2 and wg = 27/2 = m. The value of F,, can then be obtained as :
1 [+i/2 pi2mt  o—jomt )
F, = = 1 —Inmt gt
" 2 /_1 /2 ( Tt )l

1sin(nm/2) 1sin[(n - 2)w/2]  1sin[(n+ 2)w/2]
2 (nm/2) 4 (n-2)w/2 4 (n+2)r/2

[Problem 2.7.4:| The expressions for the coefficients in the exponential Fourier Series for a

given f(t) over (t1,t2) is given by the equation:

1 t2 .
Fn — / f(t)e—anotdt

ty — 11 Jyy
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A new function g(t), is formed from f(t) using the operations below. The series coefficients for
g(t) are designated by Gy. Determine the relations for G,, in terms of F,, for each of the following
casess:

(a) g(t) = f(at)

(b) g(t) = f(t — to) (assuming periodic f(¢))

(©) gt) = e (1) ~

(a) Note that g(t) = f(at) is defined over [t1/a, t2/a]. Consequently, the co-efficients

G,, are computed by replacing t;, ¢z, wo by t1/a,t2/a, awo, respectively, in the formula for F,. This

results in,

G 1 /t2/a f( t) —.‘inwoatdt
n= ————— at)e
(t2 —t1)/a Jey/a

Use the change of variable ¢ = at and dz = adt to obtain:

1 t2 .
Gn = / f(w)e_anomd:B

(t2 —t1) Ju

This shows that the fourier series coefficients are invariant with time scaling.

(b)

1 t2 —jnwgt
= F(t —to)e dt
1

Use the change of variable ¢ =t — ¢y and dz = dt so that:

Gn

1 t2—to — jnuwo (a-+to)
G, = ____/ Fz)emimwolztto) gy
(ta — t1) Jty—to
_ 1 123 f(z)e_jnw()(m+t0)da"
T (-t Iy
e—jnwo fo b2 —jnwoT —jnwot
N (ta — 1) Ji J(z)em 0 dz = e THERE, (3)
1
(c)
1 t2 1

t .
[ seit-imtae = F,

Gn ——
(tz - tl) t1

=gy ), Ot =
2 0 t1

| Problem 2.9.1 | (a) Determine the trigonometric Fourier series representation for the signal

2, —-1/2<t<1/2
Ft) = (4)

0, otherwise

over the interval (—1,1). (b) Compare your results with those obtained in example 2.5.1.
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-1 -05 +05 1

Figure 4: The function related to problem 2.9.1.

(a) (Note: If we already have the coefficient for a periodic square wave, those for

f(t) can be found by suitable adjustments.)

For the average value(ag), we have

1 to 1 1/2 1 1/2
a = / F(t)dt = —/ 2dt = 2 (-) / 2dt = 1
ta -t Jiy 1—(-1) Jo1/2 2/ Jo

and 2 t 2 2
2 T T
- t tdt = = —— =
an P— /t1 f(t) cos nwptdt, wo P— 5 T
2 1
a, = ———— t tdt
(1) /_1 f(t) cos nwg
1/2 4 1/2
a, = 2/ 2 cos nwtdt = — sin nwt
0 nw 0
4 nmw
— - sin— 0
—sin -, n #
. nw
sin —
a, = 2 nﬂ_2 = 2Sa (%)
2

Obviously b, = 0 because of the even symmetry. Finally,

fi)y=1+ 2nz=:18a <%> cos nmt

(b): Expanding f(t), we have,

f(t =1 — Tt — — 3wt - 5t —
+ T
) + cos 3 COos Ccos
Comparison with the example 2.5.1 which gives the expansion of the function,

1 0<t<1
F@t) =
1 1<t<2

11
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as,
1 1
f(t) = i— (sinﬂ't + 3 sin 37t + A sin bwt + %sin77rt + .. )
e Has the same harmonics (i.e., multiples of wp),
e Has an average or DC value of 1, rather than 0,

e Expands in cosines as a result of even symmetry.

Note from a comparison with Drill Problem 2.5.1 that time scaling affects wo, but does not affect

the Fourier series coefficients.

|Problem 2.9.2J Represent the signal,

2 —-1<t<0
f)=<{1 0<t<1
0 elsewhere

over the interval (-2, 2).
(a) Use the exponential Fourier series.
(b) Use the trigonometric Fourier series.

(c) Compare your results using equations (2.49)-(2.51).

(a) Recall the representation
[e o}
)= Y i,
n=—oo

where

F, = /T/2 f(t)e~Imotdt
" =T g, (t)e .

We have T' = 4, and
wo=2m/T =2r/4=m7/2

Note that the even and the odd part of f(t) are equal to: f.(t) = 3/2, —1 <t <1 and
) =1/2, —1<t<0 & fo(t)=-1/2, 0 <t < 1. Breaking the function into even and odd

parts, we obtain,

1 3 _. 1 /01 _. 1 r'1 .

_ L [P 5 —itmn/2t gy _/ 1 —itmy2yt gy _/ 1 —itan/2)t gy
F, 4/_126 —|—4 _126 t 4026 d
_ 3sin(nm/2) lsin(mr/4)ejm/4 B lsin(n7\'/4)e_jmr/4

4 (nm/2) 8 (nm/4) 8 (nm/4)

3 sin(nm/2) isin2 (nm/4)
4 (nm/2) 4 (nm/4)

F

F, =

12



(b)

1 0 1 i 3
_ 2 odt+= [ 1dt=2
o 4ﬁ1 +4A 4

1 1 ;
Ay = g/ gcos(mr/Z)tdt = g/ cos(nw /2)tdt = 8 sin(nr/2)
0

2 (nw/2)
b, = —/0 %sin(mr/2)tdt = %95%7%/722))_—_1_

(c) It is seen that ag = Fo, @, = 2R{F,}, b, = —2T{F,}.

rProblem 2.10.1:| One method used in the design of direct current(dc) power supplies is to

rectify input waveform. If the rectifier input is f(t) and its output is g(¢), then the output of a
full-wave rectifier is given by g(t) = |f(t)|. In this case let the input to the full-wave rectifier be:
F(t) = A cos wot. (a) Sketch the input and output waveforms. (b) Determine the dc component in
F(¢) and in g(¢). (c) Find the coefficients of the trigonometric Fourier series of f(t) and g(t) at the

frequencies wg and 2wyg.

0.81

@®

0.6+

@

0.4

'S

0.2F

N

(a)
-0.2

-0.2F
-0.4r -0.4r
-0.6F -0.61

-0.84 -0.8

Figure 5: Functions f(t) = Acoswt and g(t) = A| coswt|.

(b) Since ag = Fo = 0, the dc component in f(t) is zero. The dc component in g(t) is (Note
that g(t) has a period of T'/2).

4A [T/4 2

W = ; cos wotdt, wp = 77:— (14)
44 [T/*  omt  4A 1 . 2mt|t

ag — —1—1— o cos —j,,— t = —1-;‘_27‘—11 sin T o (15)
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24 . ® 24

= Zsin —=-— =0.6374
T 2 T
(c) For f(t),
_ 24 (% 2mt  2nmt
a, = —1—," _%_1 cos —TI— cos T t

Using the relation cos A cos B = [cos(4 — B) + cos(A + B)]/2

24 (% o 24 [7 o

@ = 5 A COS(n_l)Tt—'—T/(; cos(n-{—l)Ttdt
A ) A

= noDr 1)71_[51n(n -]+ CEE
= ASa[(n — 1)7] + ASa[(n + 1)7]

[sin(n + 1)]

For n = 1, we have

ay = ASa(0) + ASa(27) = A1)+ A(0)= A

and a, = 0 for n > 2.

For g(t), we have b, = 0 since there is even symmetry. The a,’s are:

T

2A 7 2nmt

o= 2 t) cos ———dt
¢ T/2 s
4
A% dnmt
= §T_ 04 g(t) cos 7;? dt
. 8A %CO 2mt 4wt 44
- - g — —_— —_
! T Jo T “®T 37
and,
8A [T 2t o 4t & 4A
= -— cos §S ——dt = ———
2 T Jo T T2 157

Eroblem 2.11.H Show that Parseval’s theorem for the trigonometric Fourier series is:

1 /T 1 &
7 ) Urd=d+ 53 @+ )

In terms of the complex Fourier series, the Parseval theorem is as follows:

o0

L[ irwpa = 3 IR

n=—oo

14
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where Fp = (an — jbn)/2, n # 0. This results in |F.[> = (a} + b2)/4, n # 0. Summing over

positive n, this results in,
1 X0
5 2 (an+tn) (29)
=1

also ag = Fy. The final result is then given by:

—%/()T[f(t)]zdt =a+ % i(ai + b2). (30)

‘Problem 2.13.1] The periodic signal in problem 2.7.1! is applied to the input of a system

whose frequency transfer function is:

/(147 3w /2
iy | MF /) 1ol <37/ o
0 elsewhere
a.) Determine an expression for the output, g(t), of the system.
b.) Find the average power in the system output.
a.) From problem 2.7.1.
> a%(1 — e~%cosnm)e"™
t) =
0=y S (52)
We have T = 25, fo =1/T = 0.5 Hz, and wo = 27 fo = 7 rad/s.
Recall that the response g(t) of a system to a periodic input f(¢) is given by,
+oo .
g(t) = 2 H(na_:g)F’nfz]”“’Olt (33)
Here, as wo = 7 and H(w) = 0 for |w| < 37/2, we obtain,
<1
H(nwp)=<¢ 1+in (34)
0 elsewhere
This means that H(nw) is nonzero only for n = —1,0, 1. For the signal f(t), we have,
a*(l—e® —a
FOZ——(—;——):(].—E ) (35)
a?(1+e?%)
h=F = ————
1 1 -, (36)

1This function is equal to, f(t) = aexp(—alt|) over t € [-T/2,T/2].

15



Then, we obtain,

a?(l+e?) 1 ejwt+a2(1+e_a) 1
a?+m2 1+7j a2+ w2 1-—3

a?(1+e9) 1

gt)=(1-e*)+ e Tt (37)

a?(1+4 e %) 1

_ _ ,—a jmt —jnt
gt)=(1-e")+—5 Tt Jaein/a’ TR oot (38)
or,
oy, V2d2(1+e7)
gty =(1—e )+—?—;—7r2———cos(7rt—7r/4) (39)
b.) The average output power is,
P, = Y |H(nwo)l*|Fal?
= (1 e—a)2 + M :
- a2 + w2

’?roblem 2.14.Zl A potential problem in push-pull amplifiers is that a voltage pedestal €A
may be introduced into the sinusoidal waveform, as shown in Fig. P-2.14.2.

a) Develop an expression for the resulting total harmonic distortion (THD).
b) Compute the THD for € = 0.10.

A(sin wot + €)

—T/2 )
T/2
A(sin wot — €)
Figure 6: P-2.14.2
ao = 0 (No dc component) (40)
a, = 0 (Odd symmetry) (41)
4 T/2
b, = T / A(e + sin wot) sin nwot dt (42)
0
T/2 T/2
= 44 sin wyt sin nwgt dt + 44e / sin nuwgt dt (43)
T Jo T Jo
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44c

A+ n=1
T
= il—& n>1 and odd
™
0 n>1 and even.

Note that, sin me sin nz = [cos (m — n)z — cos (m + n)z]/2, and,

sin (m —n)z _ sin(m+ n)z

/ sin me sin nedz =

2(m —n) 2(m+n)
From equation 2.8.1,

> (ay +b7)

THD ="™=2_
a? +b?
which in our case is equal to,
Z bi Z (4Ae/71'n)2 Z (4.5/71'71,)2
THD = n=2 _ n(odd)=3 _ n(odd)=3
b [A+ (44¢/m)]? [1+ (4¢/m)]?

Using a result of problem 2.11.2, for the sum of the series

i 1 2 _ i 1w 1
2° 8 ne &
n(odd)=1 n 8 n(odd)=3 n 8

Applying this result to the numerator, the THD is written as,

(4e/m)1(x*/8) ~ 1]

THD =
[1+ (4e/m)]’

b) Let € = 0.1, then, THD = 0.298.

(44)

(45)

(46)

(47)

(48)

|Problem 2.14.3| A proposed method for generation of harmonic content is the triangular

wave form with fixed slope shown in Fig. P-2.14.3, where 0 < 7 < T'/2.

a) Determine the amplitude of a given harmonic n.

b) Find the optimum value of 7 for the generation of a given harmonic n.

c) For this optimum value of 7, compute the average power in a given harmonic, normalized

to the average power in the triangular waveform.
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Slope = a

~T/2 T T/2

Figure 7: P-2.14.3

ao = 0 (No dc component) (50)
a, = 0 (0Odd symmetry) (51)
b, = % /(;T at sin nwotdt = s (sin nwoT — NWET €OS NWET). (52)
b)
O _ _2a (n*wir sin nwot) (53)

1 mwon?
To maximize the amplitude of the desired harmonic, we set: 8b,/dT = 0, from which: nwer = m,

or, Topt = ™ /nwo = T/2n, and,

. 2a
(bn)opt = ") (sin m —wcos W) = oo? (54)
c) Average power is,
2 (7 2a273
P== t)2dt = 55
= [ (== (55)

The desired ratio is equal to,

[(Br)opt]®/2 _ % < 2a )2 ( 8T ) _5 (56)

p won? 2a273 m2n’

Eroblem 2.15i] The line spectrum, in volts, of a certain periodic function f(t) is shown in
Fig. P-2.15.1.
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a) What is the value of the period, T'?

b) What is the value of f(0)?

c¢) What is the value of f(1/2)?

d) A second function, g(t), is related to f(t) by g(t) = f(t/2). Sketch the line spectrum of

9(t).
F,

Tt
-3 —27 -7 0 T 2n 3

Figure 8: P-2.15.1

a) T = 27 /7 = 2 seconds.
b) £(0) = e=9%7(0) 4 2¢=927(0) 4 2¢327(0) 4 £337(0) =14 242+ 1=6.
) f(1/2) = e—33m(1/2) 4 9—32m(1/2) 4 9¢i27(1/2) 31/ = j 22— j=—-4.
1 T . 1 r7T/2 .
d = — 9 —inl2m/(2T)]t — __/ —jnwoT — )
) G = o /_T F(t/2)e dr=rg [ S@eitda = F,
Thus the line spectrum is the same as that for the F,,, with the exception of a change in the

frequency scaling (horizontal axis).

| Problem 2.15.3 | The output, g(t), of a half-wave rectifier for input f(¢) can be written as
F) if f(t) >0,
sy={ 7O 270 7
0 if f(t) <o0.

a) Compute the trigonometric Fourier series for the output if the input is f(t) = sin 27t.

b) Sketch the Fourier magnitude line spectrum for both f(t) and g(t).
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a) Using table 2.2, p. 35, from item #5, we have,

1/m(1—n?) for n even,
F,=1 —j/4 for n = 41, (58)

sin wot for 0<t<T/2,
f(t) = { /
0 otherwise.

0 for —-T/2<t<0

g(t) is neither even nor odd, so both ax, b, are in general nonzero,

a = l/mr=F (59)
2/m(1 —n?
0, = 2R{F.}= /m(1—n?) for n even, (60)
0 for n odd.
1/2 fi =1
b, = _aT(F}—{ Y2 Prns (61)
0 otherwise.
CIEETN — ot + © sin2mt 62
= — ——C —
I T n(even):Z ﬂ-(l - nz) = 2 e ( )

b) The corresponding graphs are composed of a set of lines at points corresponding to integer

values of n where the height of each line is equal to the corresponding fourier series coefficient.

[Problem 2.15.4 | The following facts are known about a given waveform F(t):

i) It has zero average value.
ii) It is real-valued and has even symmetry in t.
iii) Coefficients for harmonic terms |n| = 1 and |n| > 5 are zero.
iv) The following sample points are known: f(0) = 4, f(T/4) = -1, f(T/2)=2.
a) Sketch the Fourier line spectrum of the exponential and trigonometric series for f(t) if
T=1.

b) Calculate the percentage of the total average power in the waveform for |n| > 2.

a) Based on the first three facts, we can write:

f(t) = agcos 2wot + azcos 3wt + a4 cos 4wot (63)

= asycos 22—;?— 4+ as cos 32—;—t + a4 cos 4—2%, (64)

F(0) = ascos(0)+ ascos(0) + agcos (0) = az + az +as =4, (65)
f(T/4) = azcos(mw)+ azcos (37/2) + ascos (2m) = —az +as = —1, (66)
F(T/2) = ascos(2r)+ agcos (37) + agcos (4m) = a; — az + as = 2, (67)
(68)
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from which: a3 =2, az =1, ag4 = 1.

b) [(1)2+ (1)3/[(2)% + (1)? + (1)%] = 1/3 = 33.3%.

‘ Problem 2.18,ﬂ Show that a periodic train of unit impulse functions, spaced T' seconds apart,

may be represented by the trigonometric Fourier series:

Z cos nwo(t — 7) wo = 2m/T, (69)

'ﬂlt—‘
'ﬂlw

if one of the impulses is at { = 7.

If 7 = 0, the train of impulses has even symmetry, so that the b),s = 0, and,

T/2
_ = 70
a0 T /T/Z (70)
@& = 5 /T/z §(t) cos nwot dt = 52; (71)

Using a delay of T units, we obtain the answer given.

Eroblem 2.18.2 ‘ Evaluate the following integrals:
2) /°° §(t — 2)e "t cos m(t — 1) dt
o
b) / §(r — 3)e
0) / (£ +4)6(4— t) dt
- 00
o0
d) / (t* +4)6(4 — 2t) dt
3 poo
e) / / (t* +4)8(t — ) dt dr
0 J—oo

§(t — a) is zero everywhere except at ¢ = a. Using this fact, the integrals are simply

calculated as:
2) / 5(t — 2)e~* cos w(t — 1) dt = e~ cos[(2 — 1)] = ~0.135

—_— 00

b) /_too §(r — 3)e " dr = e u(t — 3) = 0.05u(t — 3)

) /Oo(t2+4)5( 4— t)dt = (4)* +4=20

d)/ (£ + 4)8(4 — 2t) dt 1/2/ (& +4)5(2— 1) dt = [(2)*+4]/2=4
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3 px 3
o [ [ @+ 05 drt= [ (r*+4)dr = (3)°/3+4(3) = 21.

ﬁ’roblem 2.18.3 | Evaluate the following integrals:
a) / * tu(t)u(2 — o) dt
b) / Hut) — ult — 2)] dt
) / e~ t=t)y(t — 1) dt
[e e}
d)/ 8(t — to)e W u(t — t;) dt

/ / ~+ )yt + 7)6(t — 7) dr dt

m Slmllar to the P-2.18.2, we can write,
a) / tu(t)u(2 — t) dt = / tdt =2
0

b)/ ult) — u(t — 2)] dt:/ztdt:2

c)/ e~t)y(t — t) dt = / e (t_tl)dt:/ e *de=1
0
d) / §(t — to)e~ "t u(t — 1y) dt = e (0t — 1) = e~ ™H) (if to > 1)&0 (if 2o < t1)

/ / ~C )yt + 7)8(t — 7) drdt = /e"ztdt:1/2.
0

Eroblem 2.1814\ Show that the following properties hold for the derivative of an impulse

function defined under the operation of integration.
) [~ F0F @ de=-1'©0) where ) _&
b) /00 f(t)5(”)(t) dt = (_1)"f(n)(0)
c) té_’(o:) = —4(t)

a) Assuming continuity of f(¢) and using integration by parts, we obtain,

- [T rwsmar=-s©) (1)

—0

[~ rwswa= [ om0 = 1050)|

b) Assuming continuity of f(t), using integration by parts and recognizing that 5 (t)f(t) =0,t #

0, and also using the result of the previous part, we obtain,

/_ Z F(0)8"(2) dt = /_ 0:0 F(£)d6' (8) = f(t)6’(t)‘io _ /_ O:O £(5)5'(2) dt = £"(0) (73)
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etc.,

b b b
-/a 5(2) dt:—/a 5(¢) dt,

therefore t§'(t) = —&(t) within the operation of integration.

/ ’ t8'(t) dt = / ’ tdd(t) = té(t)

a
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