
� Sampling Process

We have already talked about the transmission of a discrete source over a discrete chan�

nel in the previous sections� However� if the message signal happens to be analog in

nature� as in speech signal or video signal� then it has to be converted into digital form

before it can be transmitted by digital means� The sampling process is the �rst step

in analog�to�digital conversion� Two other processes� quantizing and encoding� are also

involved in the conversion� These operations will be discussed in subsequent sections�

Sampling also provides the basis for the time division multiplexing of signals which is a

method for simultaneous transmission of several signals through the same communication

channel without mutual interference� This is explained in the following�

��� Time division multiplexing versus frequency division multi�

plexing

As we saw before� a modulated signal using a sinusoidal carrier has the following general

form�

��t� � a�t� cos���t�	 � a�t� cos��ct
 ��t�	 ���
�

where �c is called the carrier frequency�

In amplitude modulation� the phase ��t� in ���
� is constant and the amplitude a�t� is

changed in proportion to the input signal� In angle modulation� the amplitude a�t� in

���
� is constant and the phase ��t� is changed in proportion to the input signal�

Modulation results in a translation of the frequency components of the input signal to

higher frequencies around �c� The frequency translating property of modulation can be

used to transmit a large number of signals at the same time without mutual interference�

This is called the frequency division multiplexing and is based on using di�erent carrier

frequencies for di�erent signals �refer to Fig� ������ If the bandwidth of the signals is �m�

then two subsequent modulating frequency should be at least 
�m apart� In the receiver

side� depending of the application� one can demodulate all the signals simultaneously or

use a tunable bandpass �lter to separate one of the signals�
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Time division multiplexing is an alternative method for the simultaneous transmission of

di�erent signals� It is based on dividing the time axis into nonoverlapping segments and

assigning each segment to a di�erent input signal� This is explained in Fig� ����� The

�rst step in TDM process is sampling�
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��� Sampling theory

In the sampling process� a continuous�time signal is converted into a discrete�time signal

by measuring the signal at periodic instants of time� For the sampling process to be of

practical utility� it is necessary that we choose the sampling rate properly� so that the

discrete time signal resulting from the process uniquely de�nes the original continuous�

time signal in an e�cient way �using a small number of samples��

Consider an analog signal g�t� that is continuous in both time and amplitude� We assume

that g�t� has in�nite duration but �nite energy� A segment of the signal g�t� is depicted

���



in Fig� ����� Let the sample values of the signal g�t� at times t � ���Ts��
Ts� � � � be

denoted by the series fg�nTs�� n � ������
� � � �g� We refer to Ts as the sampling period

and to fs � ��Ts as the sampling rate�

t

g�t�

�

g��t�

�
Ts

�a�

�b�

Figure ��� Illustration of the ideal sampling process� �a�Analog signal� �b� Discrete�time

signal�

We de�ne the discrete�time signal� g��t�� that results from the sampling process as

g��t� �
�X

n���

g�nTs���t� nTs� �����

where ��t� nTs� is a Dirac delta function located at time t � nTs�

We have

�
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g�t���t� nTs� � g�nTs���t� nTs� �����

g��t� � g�t�
�X

n���

��t� nTs�

� g�t��Ts�t� �����

where �Ts�t� �
P
�

n��� ��t� nTs� is the Dirac Comb or ideal sampling function�

From the properties of the Fourier transform� we know that the multiplication of the two

time functions is equivalent to the convolution of their respective Fourier transforms� let

G�f� and G��f� denote the Fourier transforms of g�t� and g��t�� respectively�

It is known that for the Fourier transform of �Ts�t�� we have

F ��Ts�t�	 � fs
�X

m���

��f �mfs� �����

where fs � ��Ts�

Transforming equation ����� into the frequency domain� we obtain

G��f� � G�f� �

�
fs

�X
m���

��f �mfs�

�
�����

where � denotes convolution� Interchanging the order of summation and convolution

yields

G��f� � fs
�X

m���

G�f� � ��f �mfs� �����

G��f� � fs
�X

m���

G�f �mfs� �����

Note that G��f� represents a periodic extension of the original spectrum G�f�� This

means that the process of uniformly sampling a signal in the time domain results in a

periodic spectrum in the frequency domain with a period equal to the sampling rate�

Taking the Fourier transform of both sides of equation ����� and noting that the Fourier

transform of the delta function ��t� nTs� is equal to exp��j
�nfTs� results in

�
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G��f� �
�X

n���

g�nTs� exp��j
�nfTs� �����

This relation may be viewed as a complex Fourier series representation of the periodic

frequency function G��f�� with the sequence of samples fg�nTs�g� de�ning the coe�cients

of the expansion�

Suppose that the signal is strictly band�limited� with no frequency components higher

than W hertz� as illustrated in Fig� ���

Suppose also that we choose the sampling period Ts � ��
W � Then the corresponding

spectrum G��f� of the sampled signal g��t� is as shown in Fig� ��b� Putting Ts � ��
W

in equation ����� yields

G��f� �
�X

n���

g
�

n


W

�
exp

�
�
j�nf

W

�
�����

Putting fs � 
W in Eq� ���� we have

G��f� � 
WG�f�� �W � f �W ���
�

or�

G�f� �
�


W
G��f�� �W � f �W �����

It follows from equation ����� that we may also write

G�f� �
�


W

�X
n���

g
�

n


W

�
exp

�
�
j�nf

W

�
� �W � f �W �����

Therefore if the sample values g�n�
W � of the signal g�t� are speci�ed for all time� then

the Fourier transform G�f� of the signal is uniquely determined by using the Fourier series

of equation ������ In other words� the sequence fg�n�
W �g contains all the information

of g�t��

Consider next the problem of reconstructing the signal g�t� from the sequence of sample

values fg�n�
W �g� We get

g�t� �
Z
�

��

G�f� exp�j
�ft�df

�
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Figure ��� �a� Spectrum of signal g�t�� �b� Spectrum of sampled signal g��t� for a sampling

rate fs � 
W � �c� Ideal amplitude response of reconstruction �lter�
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n���

g
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W

�
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�
�
j�nf

W

�
exp�j
�ft�df

Interchanging the order of the summation and integration� we obtain�

g�t� �
�X

n���

g
�

n


W

�
�


W

Z W

�W
exp

�
j
�f

�
t�

n


W

��
df �����

The integral term in Eq� ����� may be readily evaluated� yielding

g�t� �
�X

n���

g
�

n


W

�
sin�
�Wt� n��

�
�Wt� n��
�����

Using the notation�

sinc x �
sin��x�

�x
�����

we obtain�

g�t� �
�X

n���

g
�

n


W

�
sinc�
Wt� n� �����

The sinc function exhibits an important property known as the interpolatory property�

which is described as follows�

sinc x �

�					

					�

� x � �

� x � ����
� � � �

�����

Considering this property� it is seen that equation ����� provides an interpolation formula

for reconstructing the original signal g�t� from the sequence of sample values fg�n�
W �g�

with the sinc function sinc�
Wt� playing the role of an interpolation function�

A practical method for the reconstruction of the time signal g�t� from its samples is as

follows� By inspection of the spectrum of Fig� ���b�� we see that the original signal

g�t� may be recovered exactly from the sequence of samples fg�n�
W �g by passing it

through an ideal low�pass �lter of bandwidth W� The ideal amplitude response of the

reconstruction �lter is shown in Fig� ���c��

��� Signal space interpolation

The function sinc�
Wt � n�� where n is an integer� is one of a family of shifted sinc

functions that are mutually orthogonal� To prove this� we use the formula

�
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Z
�

��

g��t�g
�

��t�dt �
Z
�

��

G��f�G
�

��f�df �����

Put

g��t� � sinc�
Wt� n� � sinc
�

W �t�

n


W
�
�

�����

and

g��t� � sinc�
Wt�m� � sinc
�

W �t�

m


W
�
�

���
�

we have the Fourier transform pair�

sinc�
Wt�	

�


W
rect

�
f


W

�
�����

rect�x� �

�					

					�

� � �

�
� x � �

�

� jxj � �

�

�����

Recall that if x�t�	
 X�f� then� x�t� t��	
 e�j��ft�X�f�� Using this fact we obtain�

G��f� �
�


W
rect

�
f


W

�
exp

�
�
j�nf

W

�
�����

and

G��f� �
�


W
rect

�
f


W

�
exp

�
�
j�mf

W

�
�����

Hence�

Z
�

��

sinc�
Wt� n�sinc�
Wt�m�dt �
�

�


W

�� Z W

�W
exp

�
�
j�f

W
�n�m�

�
df

�
sin���n�m�	


W��n�m�

�
�


W
sinc�n �m�

This result equals ��
W when n � m� and zero when n �� m� We therefore have

�
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Z
�

��

sinc�
Wt� n�sinc�
Wt�m�dt �

�					

					�

�

�W
n � m

� n �� m

�����

This proves the orthogonality of the sinc functions�

Equation ����� represents the expansion of the signal g�t� as an in�nite sum of orthogonal

functions with the coe�cients of the expansion� g�n�
W �� de�ned by

g
�

n


W

�
� 
W

Z
�

��

g�t�sinc�
Wt� n�dt �����

The minimum sampling rate of 
W samples per second� for a signal band�width of W

hertz� is called the Nyquist rate� Correspondingly� the reciprocal ��
W is called the

Nyquist interval�

��� Quadrature sampling of band�pass signals

Consider a band�pass signal g�t� �limited to the frequency band �fc �W�fc 
W 	 and its

negative� whose spectrum is illustrated in Fig� ���a� �

Let gI �t� denote the in�phase component of the band�pass signal g�t� and gQ�t� denote its

quadrature component� We may then express g�t� in terms of gI�t� and gQ�t� as follows�

g�t� � gI�t� cos�
�fct�� gQ�t�sin�
�fct� �����

We know that the two signals gI�t�� gQ�t� are low pass and limited to a frequency band of

��W�W 	� This means that we can represent each of these two signals using 
W samples

per second� This results in a total of �W samples per second for the bandpass signal

g�t� which has a band width of 
W � To reconstruct the original band�pass signal from

its quadrature�sampled version� we �rst reconstruct gI�t�� gQ�t� and then combine them

using ������

�
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Figure ��� �a� Spectrum of band�pass signal g�t�� �b� Spectrum of low�pass in�phase
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��� Sampling procedure

We know that a signal cannot be �nite in both time and frequency� In practice we

have to work with a �nite segment of the signal� in which case the spectrum cannot

be strictly band�limited� consequently when a signal of �nite duration is sampled� an

error in the reconstruction occurs as a result of the sampling process�

The spectrumG��f� of the discrete�time signal g��t�� resulting from the use of the idealized

sampling� is the sum of G�f� and an in�nite number of frequency�shifted replica of it� If

G�f� is not bandlimited� we �nd that points of the frequency�shifted replica are folded over

inside the desired spectrum� This is called aliasing or foldover�

Prior to sampling� a low�pass pre�alias �lter is used to attenuate those high frequency

components of the signal� The �ltered signal is sampled at a rate slightly higher than the

Nyquist rate 
W � where W is the cuto� frequency of the pre�alias �lter�

The use of a sampling rate fs higher than the Nyquist rate 
W has the desirable e�ect

of making it somewhat easier to design the low�pass reconstruction �lter so as to recover

the original analog signal from its sampled version� With such a sampling rate� we �nd

that there are gaps� each of width fs � 
W between the frequent shifted replica of G�f��

Accordingly� we may design the reconstruction �lter with a higher degree of �exibility�

��� Practical aspects of sampling and signal recovery

����� Ordinary samples of �nite duration

Consider the waveforms g�t�� c�t�� and s�t� illustrated in parts �a�� �b� and �c� of Fig�

���� respectively�

We have

s�t� � c�t�g�t� ���
�

However� c�t� may be expressed in the form of a complex Fourier series as

c�t� � fsTA
�X

n���

sinc�nfsT � exp�j
�nfst� �����

�
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where Tsfs � � de�nes the sampling rate fs�

s�t� � fsTA
�X

n���

sinc�nfsT � exp�j
�nfst�g�t� �����

Taking the Fourier transform� we get

S�f� � fsTA
�X

m���

sinc�mfsT �G�f �mfs� �����

Where S�f� � F �s�t�	 and G�f� � F �g�t�	�

The relation between the spectra G�f� and S�f� is illustrated in Fig� ��
��
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Figure �
� Illustrating the e�ect of using ordinary pulses of �nite duration on the spectrum

of a sampled signal

Signal g�t� can be recovered from s�t� with no distortion by passing s�t� through an ideal

low�pass �lter�

����� Flat�top samples

Consider the situation illustrated in Fig� ����� we may write

s�t� �
�X

n���

g�nTs�h�t� nTs� �����

���
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Figure ��� Flat�top Samples

h�t� �

�					

					�

� � � t � T

� t � �� and t � T

� rect
�
t

T
�
�




�
�����

g��t� �
�X

n���

g�nTs���t� nTs� �����

g��t� � h�t� �
Z
�

��

g��
 �h�t� 
 �d


�
Z
�

��

�X
n���

g�nTs���
 � nTs�h�t� 
 �d


�
�X

n���

g�nTs�
Z
�

��

��
 � nTs�h�t� 
 �d
 �����

g��t� � h�t� �
�X

n���

g�nTs�h�t� nTs� �����

���



Therefore�

s�t� � g��t� � h�t� �����

Taking the Fourier transform� we get

S�f� � G��f�H�f� ���
�

Substituting of Eq� ����� into Eq� ���
� yields

S�f� � fs
�X

m���

G�f �mfs�H�f� �����

Suppose that g�t� is strictly band�limited and that the sampling rate fs is greater than

the Nyquist rate� Then passing s�t� through a low�pass reconstruction �lter� we �nd that

the spectrum of the resulting �lter output is equal to G�f�H�f��

From Eq� ����� we �nd that

H�f� � T sinc�fT � exp��j�fT � �����

which is plotted in Fig ���b�� Hence we see that by using the �at�top samples� we have

introduced amplitude distortion as well as the delay of T�
�

The distortion caused by lengthening the samples is referred to as the aperture e�ect�

This distortion may be corrected by connecting an equalizer in cascade with the low�pass

reconstruction �lter� Ideally� the amplitude response of the equalizer is given by

�

jH�f�j
�

�

T sinc�fT �
�

�

T

�fT

sin��fT �
�����

��	 Sample�and�hold Circuit for Signal Recovery

The output of the sample�and�hold circuit is given by

u�t� �
�X

n���

g�nTs�h�t� nTs� �����
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Figure ��� �a� Sample�and�hold circuit� �b� Idealized output waveform of the circuit�

where

h�t� �

�					

					�

� � � t � Ts

� t � �� and t � Ts

�����

U�f� � fs
�X

m���

H�f�G�f �mfs� �����

where

H�f� � Tssinc�fTs� exp��j�fTs� �����

These operations are illustrated by the block diagram shown in Fig� �����

��� Pulse�Amplitude Modulation

In pulse amplitude modulation �PAM�� the amplitude of a carrier consisting of a periodic

train of rectangular pulses is varied in proportion to sample values of a message signal�

���
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Figure ��� Components of a scheme for signal reconstruction

We �nd that the PAM so de�ned is exactly the same as �at�top sampling�

According to the de�nition of given before in terms of rectangular pulses� we would require

a very wide band of frequencies to transmit PAM� However this need not be so if we were

to formulate the de�nition of PAM in terms of a standard pulse� which the system is

capable of transmitting� Let ��t� denote such a pulse� We then de�ne a PAM wave � s�t�

as follows

s�t� �
�X

n���

g�nTs���t� nTs� �����

��
 Time�Division Multiplexing �TDM�

The concept of TDM is illustrated by the block diagram shown in Fig� �����

The function of the commutator is two�fold� ��� to take a narrow sample of each of the N

input messages at a rate fs �
� to sequentially interleave these N samples inside a sampling

interval Ts � ��fs�

The use of time�division multiplexing introduces a bandwidth expansion factor N� because

the scheme must squeeze N samples derived from N independent message signals into a

time slot equal to one sampling interval�

���



� Waveform Coding Techniques

Consider the problem of transmitting an analog source over a digital channel� There

are three major operations involved in this transmission� These are the operations of

�i� sampling �ii� quantization �analog�to�digital conversion�� and �iii� encoding� Sampling

changes the analog signal �which is a continuous time� continuous amplitude process� into

a discrete time� continuous amplitude process� Then� quantization is achieved on this

discrete time� continuous amplitude process to produce a discrete time� discrete amplitude

process� We already talked about the sampling process� In this section� we address the

problem of quantization� The encoding process will be discussed in a subsequent section�


�� Quantizing

In a linear system� the transfer characteristics between the input and the output is in the

form of a straight line�

A quantizer is a nonlinear system based on a transfer characteristics looks like a staircase�

An example is given in Fig� ���a�� In a quantizer� the range of the input sample values

is divided into a �nite set of decision levels or decision thresholds that are aligned with

the risers of the staircase� The segment of the input axis located between two conseque�

tive decision levels is denoted as a quantization interval� If the input is located in a

given quantization interval� the output is assigned a discrete value which is aligned with

the tread of the staircase� This discrete value is called the representation level or recon�

struction value corresponding to the given quantization interval� In transfer characteris�

tic shown in Fig� ���a�� the decision thresholds are at points ���
�����
�����
� � � �

and the representation levels are located at points ������
�� � � �� This is called a

midtread type quantizer� In transfer characteristic shown in Fig� ���a�� the decision

thresholds are at points ������
�� � � � and the representation levels are located at points

���
�����
�����
� � � �� This is called a midriser type quantizer�

For an analog input sample that lies anywhere inside an interval of either transfer char�

acteristics� the quantizer produces a discrete output equal to the midvalue of the pair

of decision thresholds� A quantization error is introduced� the value of which equals the

���



di�erence between the output and input values of the quantizer� Figures ���b�� ���b�

show examples of such a quantization error�

De�nition� A quantizer is called symmetric if its transfer characteristic is symmetrical

for positive and negative input values� Quantizers shown in Figs� ���a�� ���a� are both

symmetrical�

De�nition� A quantizer is called uniform if the separation between its representation

levels are the same with a common value is called the step size� Quantizers shown in

Figs� ���a�� ���a� are both uniform�

De�nition� A quantizer is called memoryless in that the quantizer output is determined

only by the value of a corresponding input sample� independent of the earlier analog

samples�


�� Idle Channel Noise

In a quantizer of the midrise type� as in Fig� ���a�� zero input amplitude is encoded

into one of the two innermost representations levels ���
� This results in a quantization

error even if the input to the quantizer is equal to zero� This error is denoted as the

idle channel noise� Assuming that the two representation levels ���
 are equiprobable�

the idle channel noise for midriser quantizer has zero mean and a variance of ����� In a

quantizer of the midtread type� as in Fig� ���a�� the output is zero for zero input and the

idle channel noise is correspondingly zero�


�� Quantization Noise and Signal�to�Noise Ratio �SNR�

Consider a symmetric� uniform� memoryless quantizer with a total of L representation

levels� Let x denote the quantizer input� and y denote the quantizer output� The transfer

characteristic of the quantizer is shown by�

y � Q�x� �����

which is a staircase function� Suppose that we use the notation Jk� k � �� 
� � � � � L�

to shown the quatization intervals� The decision thresholds corresponding to the kth

���
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quatization interval are denoted as xk and xk��� We have�

Jk � fxk � x � xk��g k � �� 
� � � � � L ���
�

If the representation level corresponding to the kth quatization interval is denoted as yk�

we have�

y � yk� if x lies in the interval Jk �����

Let q denote the quantization error� ���
 � q � ��
� We may write

yk � x
 q� if x lies in the interval Jk �����

If the quantizer is �ne enough �small ��� then the distortion produced by the quantization

operation a�ects the performance of the transmission as if it were an independent source

of additive noise� It is also found that the power spectral density of the quantization noise

has a large bandwidth compared with the signal bandwidth� Thus� with the quantization

noise uniformly distributed throughout the signal band� its interfering e�ect on a signal

is similar to that of a white noise�

Assume that the quatization error �random variable q� is uniformly distributed over the

possible range ���
 to ��
� We have�

fQ�q� �

�					

					�

�

�
��

�
� q � �

�

� otherwise

�����

where fQ�q� is the probability density function of the quantization error� Then� the mean

of the quantization error is zero� and its variance ��Q is equal to�

��Q � E�Q�	 �����

�
Z
�

��

q�fQ�q�dq

�
�

�

Z ���

����
q�dq

���



�
��

�

�����

Note that ����
 can be viewed as the variance of quantization error conditioned on the

interval Jk�

Let the variance of the baseband signal x�t� at the quantizer input be denoted by ��X � We

de�ne an output signal�to�noise quantization noise ratio �SNR� as

�SNR� �
��X
��Q

�
��X

����

�����

It is seen that the quantization SNR depends on the variance �power� of the input signal�

It would be highly desirable from a practical viewpoint for the quantization SNR to

remain constant for a wide range of input power levels� Such a quantizer is called a robust

quantizer� This is discussed in the following�


�� Robust Quantization

The provision for a robust performance necessitates the use of a nonuniform quantizer�

In this case� the range of the smaller input values are assigned more representation levels�

This selection is justi�ed by considering the following two facts �i� generally� smaller input

values occur with higher probability and therefore should be represented with a higher

precision� �ii� the characteristics of human hearing has a special characteristics that large

signal amplitudes mask quantization noise to some extent�

Nonuniform quantization can be achieved by using a compressor followed by a uniform

quantizer� By cascading this combination with an expander which acts as an inverse to

the compressor� the original signal samples are restored to their correct values except for

the e�ect of the quantization error� These operations are shown in Figures ��� ��� The

combination of a compressor and an expander is called a compander�

As we are concerned with symmetric� memoryless quantizers� then the transfer character�

istics of the compressor is represented by a memoryless nonlinearity c�x�� that has odd

symmetry� i�e��

c��x� � �c�x� �����

���
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Figure ��� Model of nonuniform quantizer�

We also assume that�

c�x� �

�										

										�

xmax x � xmax

� x � �

�xmax x � �xmax

��
��

The compression characteristic c�x� relates nonuniform intervals at the compressor input

to the uniform intervals at the compressor output�

The uniform intervals are of width 
xmax�L each� where L is the number of representation

levels of the quantizer� It is assumed that L is a large number ��ne quantizer�� Under these

conditions� the compression characteristic c�x� in the kth interval� Jk� in approximated

by a straight�line segment with a slope equal to 
xmax�L�k� where �k is the width of the

interval Jk� This means that

dc�x�

dx
�


xmax

L�k
k � �� �� � � � � L� � ��
��

Two other assumptions are also made�

�� The probability density function of input fX�x� is symmetric with respect to x�

�� In each interval Jk� k � �� 
� � � � � L� the probability density function fX�x� is ap�

proximately constant� This assumption is expressed as�

fX�x� � fX�yk� xk � X � xk�� ��

�

We assume that the representation level yk corresponding to the kth quantization interval

Jk lies in the middle of Jk� i�e��

��
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for positive amplitudes only�
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yk �
�



�xk 
 xk��� k � �� �� � � � � L� � ��
��

The width of the interval Jk equals�

�k � xk�� � xk xk � X � xk�� ��
��

Under these conditions� the probability that the input signal lies in the interval Jk is

equal to�

pk � P �xk � X � xk���

� fX�yk��k k � �� �� � � � � L� � ��
��

Let the random variable Q denote the quantization error

Q � yk �X xk � X � xk�� ��
��

We have�

��Q � E�Q�	

� E��X � yk�
�	

�
Z xmax

�xmax
�y � xk�

�fX�x�dx ��
��

��Q �
L��X
k��

pk
�k

Z xk��

xk

�x� yk�
�dx ��
��

Substituting Eq� �
�� we get the result

��Q �
�

�


L��X
k��

pk�
�
k ��
��

As we saw in the previous section� the quantity ��
k��
 can be viewed as the variance of

quantization error conditioned on the interval Jk�

From ��
��� we obtain�

�k �

xmax

L

�
dc�x�

dx

�
��

k � �� �� � � � � L� � �����

���



Substituting Eq� ��� in Eq� �
�� we get the result

��Q �
x�max

�L�

L��X
k��

pk

�
dc�x�

dx

�
��

�����

Replacing for pk from Eq� �
� and using integration instead of the summation over k� we

obtain

��Q �
x�max

�L�

Z xmax

�xmax
fX�x�

�
dc�x�

dx

�
��

dx ���
�

The output signal�to�quantization ratio is de�ned by

�SNR� �
��X
��Q

�����

where�

��X �
Z xmax

�xmax
x�fX�x�dx

This results in�

�SNR� �
�L�

x�max

Z xmax

�xmax
x�fX�x�dx

Z xmax

�xmax
fX�x�

�
dc�x�

dx

�
��

dx

�����

For a robust performance� the output signal�to�noise ratio should ideally be independent

of the probability density function of the input random variable X� This requirement is

met if

dc�x�

dx
�
K

x
� xmax � x � xmax �����

resulting in�

c�x� � xmax 
K ln
�

x

xmax

�
x � � �����

Unfortunately� the characteristic function in ����� is unrealizable since c��� is not �nite�

Instead� we have to use an approximation to ������ Two widely used solutions to this

problem are as follows�

��law companding

c�jxj�

xxmax
�

ln�� 
 �jxj�xmax�

ln�� 
 ��
� �

jxj

xmax
� � �����

���



A practical value for � is 
��� The ��law is used for PCM telephone systems in the

United States� Canada� and Japan�

A�law companding

c�jxj�

xxmax
�

�										

										�

Ajxj�xmax

� 
 lnA
� �

jxj

xmax
�

�

A

� 
 ln�Ajxj�xmax�

� 
 lnA

�

A
�

jxj

xmax
� �

�����

A practical value for A is ������ The A�law companding is used for PCM telephone

systems in Europe�

�� Di�erential Pulse�Code Modulation

In the use of PCM for the digitization of voice and video signal� the signal does not

change rapidly from one sample to the next with the result that the di�erence between

adjacent samples has a variance that is smaller than the variance of the signal itself�

In particular� if we know the past behavior of a signal up to a certain point in time� it is

possible to make some inference about its future values� This provides motivation for the

di�erential quantization scheme shown in Fig� ���a��

The di�erence signal e�nTs� is called a prediction error� it is the amount by which the

predictor fails to predict the input exactly�

v�nTs� � Q�e�nTs�	

� e�nTs� 
 q�nTs� �����

where q�nTs� is the quantization error�

For the system in Fig� ��� we may write�

u�nTs� � �x�nTs� 
 v�nTs� �����

u�nTs� � �x�nTs� 
 e�nTs� 
 q�nTs� �����

���
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Finally� replacing x�nTs� � �x�nTs� 
 e�nTs�� we obtain�

u�nTs� � x�nTs� 
 q�nTs� ���
�

This means that irrespective of the properties of the predictor� the quantized signal u�nTs�

at the predictor input di�ers from the input signal x�nTs� by the quantization error�

In the absence of the channel noise the corresponding receiver output is equal to u�nTs��

Obviously� the power of the process E is smaller than the power of the original signal X�

The corresponding reduction in power is measures by the prediction gain which is de�ned

as�

GP �
��X
��E

We have�

�SNR��
�
�

�
��X
��Q

�
�

�
��X
��E

��
��E
��Q

�
� GP �SNR�P

where �SNR�P is the SNR of the quantizer in Fig� ��� This means that we have an

improvement in the overall SNR with a factor equal to GP �

�� Delta Modulation

The use of DPCM suggest the following possibility� Oversampling a signal �at a rate higher

than the Nyquist rate� purposely to increase the correlation between adjacent samples of

the signal� so as to permit the use of a simple quantizing strategy�

This strategy results in a higher number of samples per second� however� exploiting the

large dependency between successive samples� we are able to quantize the samples using

a smaller number of quantization symbols� On the other hand� as we already discussed in

the section on signal constellations� for a given channel bandwidth� having a larger number

of symbols per second requires a higher average energy for transmission� The objective is

to �nd an intermediate solution which provides a compromise between the sampling rate

and the number of the quatization symbols resulting in a good overall performance� In

the following section� we discuss an example of such a method acting in an extreme case

of using a quantizer with only two levels�

���



x�t�

Staircase

� � � � � � � � � � � � � � � �

�a�

�b�

Binary

sequence

at modulator
output

approximation

Ts

�

u�t�

Figure �
� Illustration of delta modulation

Delta modulation �DM� is the one�bit �or two level� version of DPCM� DM provides a

staircase approximation to the oversampled version of the input signal� The di�erence

between the input and the approximation is quantized into only two levels� namely� ���

The step size � of the quantizer is

� � 
� �����

Denote the input signal as x�t� and the staircase approximation to it as u�t�� Then

e�nts� � x�nTs�� �x�nTs�

� x�nTs�� u�nTs � Ts� �����

���
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Figure ��� Input�output characteristic of two�level quantizer

b�nTs� � � sgn�e�nTs�	 �����

u�nTs� � u�nTs � Ts� 
 b�nTs� �����

We assume that the accumulator is initially set to zero� Then

u�nTs� � �
nX
i��

sgn�e�iTs�	

�
nX
i��

b�iTs� �����

���� Quantization Noise in Delta Modulation

Delta modulation systems are subject to two types of quantization errors� slope�overhead

distortion� and granular noise�

Let q�nTs� denote the quantizing error� We have�

u�nTs� � x�nTs� 
 q�nTs� �����

���
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Accordingly� using Eq� ��� to eliminate u�nTs � Ts� from Eq� ���� we may express the

prediction error e�nTs� as

e�nTs� � x�nTs�� x�nTs � Ts�� q�nTs � Ts� �����

Except for the quantization error q�nTs � Ts�� the quantizer input may be viewed as a

digital approximation to the derivative of the input signal� In order for the sequence of

samples fu�nTs�g to increase as fast as the input sequence of samples fx�nTs�g in a region

of maximum slope of x�t�� we require that the condition

�

Ts
� max j

dx�t�

dt
j �����

Otherwise the step size � � 
� is too small with the result that u�t� falls behind x�t�� as

illustrated in Fig� ��� This condition is called slope�overhead�

Granular noise occurs when the step size � is too large relative to the local slope

characteristics of the input waveform x�t��

The choice of the optimum step size that minimizes the mean�square value of the quan�

tizing error in a linear delta modulator will be the result of a compromise between slope

overhead distortion and granular noise�

��



