8 Sampling Process

We have already talked about the transmission of a discrete source over a discrete chan-
nel in the previous sections. However, if the message signal happens to be analog in
nature, as in speech signal or video signal, then it has to be converted into digital form

before it can be transmitted by digital means. The sampling process is the first step

in analog-to-digital conversion. Two other processes, quantizing and encoding, are also

involved in the conversion. These operations will be discussed in subsequent sections.
Sampling also provides the basis for the time division multiplexing of signals which is a
method for simultaneous transmission of several signals through the same communication

channel without mutual interference. This is explained in the following:

8.1 Time division multiplexing versus frequency division multi-

plexing

As we saw before, a modulated signal using a sinusoidal carrier has the following general

form:
d(t) = a(t) cos[(t)] = a(t) cos|w.t + v(t)] (462)

where w, is called the carrier frequency.

In amplitude modulation, the phase y(¢) in (462) is constant and the amplitude a(t) is
changed in proportion to the input signal. In angle modulation, the amplitude a(t) in
(462) is constant and the phase y(t) is changed in proportion to the input signal.
Modulation results in a translation of the frequency components of the input signal to
higher frequencies around w,.. The frequency translating property of modulation can be
used to transmit a large number of signals at the same time without mutual interference.
This is called the frequency division multiplexing and is based on using different carrier
frequencies for different signals (refer to Fig. (56)). If the bandwidth of the signals is wy,,
then two subsequent modulating frequency should be at least 2w,, apart. In the receiver
side, depending of the application, one can demodulate all the signals simultaneously or

use a tunable bandpass filter to separate one of the signals.
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Figure 56: Frequency division multiplexing (FDM).

118



Time division multiplexing is an alternative method for the simultaneous transmission of

different signals. It is based on dividing the time axis into nonoverlapping segments and

assigning each segment to a different input signal. This is explained in Fig. (57). The

first step in TDM process is sampling.
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Figure 57: Time division multiplexing (TDM)

8.2 Sampling theory

In the sampling process, a continuous-time signal is converted into a discrete-time signal

by measuring the signal at periodic instants of time. For the sampling process to be of

practical utility, it is necessary that we choose the sampling rate properly, so that the

discrete time signal resulting from the process uniquely defines the original continuous-

time signal in an eflicient way (using a small number of samples).

Counsider an analog signal g(¢) that is continuous in both time and amplitude. We assume

that g(¢) has infinite duration but finite energy. A segment of the signal g(¢) is depicted
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in Fig. (58). Let the sample values of the signal g(t) at times ¢t = 0,+T,, £27,,... be
denoted by the series {g(nTs),n = 0,+1,4+2,...}. We refer to T, as the sampling period

and to f, = 1/T, as the sampling rate.

g(t)

T

(b)

Figure 58: Ilustration of the ideal sampling process. (a)Analog signal. (b) Discrete-time

signal.

We define the discrete-time signal, gs(t), that results from the sampling process as

gs(t) = i g(nTy)o(t — nTy) (463)

n=—aco

where 6(t — nTy) is a Dirac delta function located at time ¢t = nT;.

We have
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g(t)o(t — nTy) = g(nTy)d(t — nTy) (464)

Glt) = gt) 3 8(t—nT.)

n=—aco

= g(#)dn.(1 (465)

where o7,(t) = 200 6(t — nTy) is the Dirac Comb or ideal sampling function.

From the properties of the Fourier transform, we know that the multiplication of the two
time functions is equivalent to the convolution of their respective Fourier transforms. let
G(f) and Gs(f) denote the Fourier transforms of g(¢) and gs(t), respectively.

It is known that for the Fourier transform of ér,(¢), we have

Flon®) = £ S 5(f —mf.) (466)

where f, = 1/T,.

Transforming equation (465) into the frequency domain, we obtain

Gs(f) = G(f) = | fs f: §(f —mf,) (467)

m=—0co

where % denotes convolution. Interchanging the order of summation and convolution

yields

Gs(f) =1 S G(f)*d(f —mf.) (468)

m=—0co

G(f)=f. S G(f—mf) (469)

Note that Gs(f) represents a periodic extension of the original spectrum G(f). This
means that the process of uniformly sampling a signal in the time domain results in a
periodic spectrum in the frequency domain with a period equal to the sampling rate.
Taking the Fourier transform of both sides of equation (463) and noting that the Fourier
transform of the delta function d(t — nTy) is equal to exp(—j2nnfT,) results in
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Gslf) = Y gnT)exp(—j2mnfT)) (470)

n=—aco

This relation may be viewed as a complex Fourier series representation of the periodic

frequency function G;(f), with the sequence of samples {g(nT})}, defining the coefficients
of the expansion.

Suppose that the signal is strictly band-limited, with no frequency components higher
than W hertz, as illustrated in Fig. 59.

Suppose also that we choose the sampling period T, = 1/2W. Then the corresponding
spectrum Gs(f) of the sampled signal gs(¢) is as shown in Fig. 59b. Putting T, = 1/2W

in equation (470) yields

Z g<2w> P (_jgflf) (471)

n=—aco

Putting f, = 2W in Eq. 469, we have

Gs(f) =2WG(f), —-W<f<W (472)

or

G(f) = 5GP ~W <F<W (473

It follows from equation (471) that we may also write

G(f) = 2[1/V Z g <2;V> exp ( JFan) , W< fFf<W (474)

Therefore if the sample values g(n/2W) of the signal g(t) are specified for all time, then
the Fourier transform G(f) of the signal is uniquely determined by using the Fourier series

of equation (474). In other words, the sequence {g(n/2W)} contains all the information
of g(t).

Counsider next the problem of reconstructing the signal g(¢) from the sequence of sample

values {g(n/2W)}. We get

/OO f)exp(j2n ft)df
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Figure 59: (a) Spectrum of signal g(¢). (b) Spectrum of sampled signal gs(¢) for a sampling

rate f, = 2W. (c¢) Ideal amplitude response of reconstruction filter.
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= /_V:V %n:izog <%> exp (_]Fan) exp(j2x ft)df

Interchanging the order of the summation and integration, we obtain,

H= 3 <i> L/W ox ['%f <t— i)] df (475)
F= L 9w ) aw Jow TP oW
The integral term in Eq. (475) may be readily evaluated, yielding

s n \ sin(2eWt — nx)
t) = 4

9() n:z_:oog <2W> (2r Wt — nr) (476)

Using the notation,
sinc ¢ = sin(mz) (477)

T
we obtain,
[o@) n .

g(t) = n:z_:oo g <—2W> sinc(2Wt — n) (478)

The sinc function exhibits an important property known as the interpolatory property,

which is described as follows:

1 z =0
sinc * = (479)

0 z=41,42, ...

Considering this property, it is seen that equation (478) provides an interpolation formula
for reconstructing the original signal g(¢) from the sequence of sample values {g(n/2W)},
with the sinc function sinc(2Wt) playing the role of an interpolation function.

A practical method for the reconstruction of the time signal g(t) from its samples is as
follows: By inspection of the spectrum of Fig. (59b), we see that the original signal
g(t) may be recovered exactly from the sequence of samples {g(n/2W)} by passing it
through an ideal low-pass filter of bandwidth W. The ideal amplitude response of the

reconstruction filter is shown in Fig. (59c¢).

8.3 Signal space interpolation

The function sinc(2Wt — n), where n is an integer, is one of a family of shifted sinc

functions that are mutually orthogonal. To prove this, we use the formula
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[ amawid= [~ aneindg (480)

Put

u(t) = sinc(2Wt — ) = sine [2W (¢ — )] (481)
and

(1) = sinc(2Wt —m) = sinc [2W (¢ — ) (482)

we have the Fourier transform pair:

sinc(2Wt) = %rect (%) (483)
1 — % <x < %
rect(z) = (484)
0 2| > 3

Recall that if z(t) = X (f) then, z(t — to) = ¢ 77> X (f). Using this fact we obtain,

1 J TN
Gi(f) = Wrect (%) exp (—J Wf) (485)
and
1 jTm
Ga(f) = Wrect (%) exp (—J Wf) (486)
Hence,

/_O:O sinc(2Wt — n)sinc(2Wt — m)dt = < ! >2 /W exp [—Jﬂ—f(n — m)] df

oW/ Jow w
_ sin[m(n —m)]
2Wr(n —m)
1

= Wsinc(n —m)
This result equals 1/2W when n = m, and zero when n # m. We therefore have
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[ee) W mn=m
/ sinc(2Wt — n)sinc(2Wt — m)dt = (487)

— 0

This proves the orthogonality of the sinc functions.

Equation (478) represents the expansion of the signal ¢(¢) as an infinite sum of orthogonal

functions with the coefficients of the expansion, g(n/2W), defined by

g <%> =2W /_O:O g(t)sinc(2Wt — n)dt (488)

The minimum sampling rate of 2W samples per second, for a signal band-width of W
hertz, is called the Nyquist rate. Correspondingly, the reciprocal 1/2W is called the
Nyquist interval.

8.4 Quadrature sampling of band-pass signals

Counsider a band-pass signal g(¢) (limited to the frequency band [f. — W, f. + W] and its

negative) whose spectrum is illustrated in Fig. (60a) .

Let g7(t) denote the in-phase component of the band-pass signal ¢g(t) and go(t) denote its

quadrature component. We may then express ¢(t) in terms of gr(t) and go(t) as follows:

g(t) = g1(t) cos(2m fot) — go(t)sin(2m fet) (489)

We know that the two signals g;(t), go(t) are low pass and limited to a frequency band of
[—W, W]. This means that we can represent each of these two signals using 2W samples
per second. This results in a total of 4W samples per second for the bandpass signal
g(t) which has a band width of 2W. To reconstruct the original band-pass signal from
its quadrature-sampled version, we first reconstruct gr(t), go(t) and then combine them

using (489).
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Figure 60: (a) Spectrum of band-pass signal g(¢). (b) Spectrum of low-pass in-phase

component gr(t) and quadrature component go(t).
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8.5 Sampling procedure

We know that a signal cannot be finite in both time and frequency. In practice we
have to work with a finite segment of the signal, in which case the spectrum cannot
be strictly band-limited. consequently when a signal of finite duration is sampled, an

error in the reconstruction occurs as a result of the sampling process.

The spectrum Gs( f) of the discrete-time signal g5(¢), resulting from the use of the idealized
sampling, is the sum of G(f) and an infinite number of frequency-shifted replica of it. If
G(f) is not bandlimited, we find that points of the frequency-shifted replica are folded over

inside the desired spectrum. This is called aliasing or foldover.

Prior to sampling, a low-pass pre-alias filter is used to attenuate those high frequency
components of the signal. The filtered signal is sampled at a rate slightly higher than the
Nyquist rate 2W, where W is the cutoff frequency of the pre-alias filter.

The use of a sampling rate f, higher than the Nyquist rate 2W has the desirable effect
of making it somewhat easier to design the low-pass reconstruction filter so as to recover
the original analog signal from its sampled version. With such a sampling rate, we find
that there are gaps, each of width f, — 2WW between the frequent shifted replica of G(f).

Accordingly, we may design the reconstruction filter with a higher degree of flexibility.

8.6 Practical aspects of sampling and signal recovery
8.6.1 Ordinary samples of finite duration

Counsider the waveforms g¢(t), ¢(t), and s(¢) illustrated in parts (a), (b) and (c) of Fig.
(61) respectively.
We have

s(t) = c(t)g(t) (492)

However, ¢(t) may be expressed in the form of a complex Fourier series as

c(t)=f,TA i sinc(nf,T') exp(j2nnfit) (493)

n=—aco
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Figure 61: (a) Analog signal. (b) Sampling function. (c) Sampled signal.
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where T, f, = 1 defines the sampling rate f,.

s(t)=f,TA f: sinc(nfsT') exp(j2mn fst)g(t) (494)

n=—aco

Taking the Fourier transform, we get

S(F) = £TA Y sinc(mf.T)G(f - mf.) (495)

m=—0co

Where S(f) = F[s(t)] and G(f) = Flg(¢)].
The relation between the spectra G(f) and S(f) is illustrated in Fig. (62).

S(f)

sinc(nf,T)

~3f, —2f, - 4 P 2f, 34,
2W

Figure 62: INlustrating the effect of using ordinary pulses of finite duration on the spectrum

of a sampled signal

Signal g(t) can be recovered from s(¢) with no distortion by passing s(¢) through an ideal

low-pass filter.

8.6.2 Flat-top samples

Counsider the situation illustrated in Fig. (63), we may write

i g(nT,)h(t —nT,) (496)

n=—aco
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Figure 63: Flat-top Samples

1 0<t<T

0 t<0, andt>T

t 1
)
gs(t) = _zoj: g(nTy)o(t — nTy)

[ee)

gs(8) % h(t) = lm%ﬁM@—Tﬂr
= /_O:O _zoj: g(nT)o(r — nTs)h(t — 7)dr

= _zoj: g(nTy) /_O:O (= nTs)h(t — 7)dr

gs(t) * h(t) = _zoj: g(nT)h(t —nTy)
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Therefore,

s(t) = gs(t) * h(?) (501)

Taking the Fourier transform, we get

S(f) = Gs(f)H(f) (502)

Substituting of Eq. (469) into Eq. (502) yields

S =1 S G(f —mf)H(f) (503)

Suppose that g(t) is strictly band-limited and that the sampling rate f, is greater than
the Nyquist rate. Then passing s(¢) through a low-pass reconstruction filter, we find that
the spectrum of the resulting filter output is equal to G(f)H(f).

From Eq. (497) we find that

H(f) = Tsinc(fT)exp(—jnfT) (504)

which is plotted in Fig (64b). Hence we see that by using the flat-top samples, we have
introduced amplitude distortion as well as the delay of T'/2.

The distortion caused by lengthening the samples is referred to as the aperture effect.

This distortion may be corrected by connecting an equalizer in cascade with the low-pass

reconstruction filter. Ideally, the amplitude response of the equalizer is given by

1 1 1 wfT
|H(f)|  Tsinc(fT) T sin(nfT) (505)
8.7 Sample-and-hold Circuit for Signal Recovery
The output of the sample-and-hold circuit i1s given by
u(t) = Z g(nT)h(t —nTy) (506)

n=—aco
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Figure 64: (a) Rectangular pulse h(t). (b) Spectrum H(f).
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Figure 65: (a) Sample-and-hold circuit. (b) Idealized output waveform of the circuit.

where
1 0<t<T,
h(t) = (507)
0 t<0, andt>T,
Ulf) =1 _f: H(f)G(f —mfs) (508)
where
H(f) = Tysine(fTs) exp(—jn fTs) (509)

These operations are illustrated by the block diagram shown in Fig. (66).

8.8 Pulse-Amplitude Modulation

In pulse amplitude modulation (PAM), the amplitude of a carrier consisting of a periodic

train of rectangular pulses is varied in proportion to sample values of a message signal.
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Figure 66: Components of a scheme for signal reconstruction

We find that the PAM so defined is exactly the same as flat-top sampling.

According to the definition of given before in terms of rectangular pulses, we would require
a very wide band of frequencies to transmit PAM. However this need not be so if we were
to formulate the definition of PAM in terms of a standard pulse, which the system is
capable of transmitting. Let v(t) denote such a pulse. We then define a PAM wave , s(t)

as follows

s(t) = f: gnT)v(t —nTy) (510)

n=—aco

8.9 Time-Division Multiplexing (TDM)

The concept of TDM is illustrated by the block diagram shown in Fig. (57).

The function of the commutator is two-fold: (1) to take a narrow sample of each of the N
input messages at a rate f, (2) to sequentially interleave these N samples inside a sampling
interval T, = 1/f,.

The use of time-division multiplexing introduces a bandwidth expansion factor N, because

the scheme must squeeze N samples derived from N independent message signals into a

time slot equal to one sampling interval.
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9 Waveform Coding Techniques

Consider the problem of transmitting an analog source over a digital channel. There
are three major operations involved in this transmission. These are the operations of
(1) sampling (ii) quantization (analog-to-digital conversion), and (iii) encoding. Sampling
changes the analog signal (which is a continuous time, continuous amplitude process) into
a discrete time, continuous amplitude process. Then, quantization is achieved on this
discrete time, continuous amplitude process to produce a discrete time, discrete amplitude
process. We already talked about the sampling process. In this section, we address the

problem of quantization. The encoding process will be discussed in a subsequent section.

9.1 Quantizing

In a linear system, the transfer characteristics between the input and the output is in the
form of a straight line.

A quantizer is a nonlinear system based on a transfer characteristics looks like a staircase.
An example is given in Fig. 67(a). In a quantizer, the range of the input sample values
1s divided into a finite set of decision levels or decision thresholds that are aligned with
the risers of the staircase. The segment of the input axis located between two conseque-
tive decision levels is denoted as a quantization interval. If the input is located in a
given quantization interval, the output is assigned a discrete value which is aligned with
the tread of the staircase. This discrete value is called the representation level or recon-
struction value corresponding to the given quantization interval. In transfer characteris-
tic shown in Fig. 67(a), the decision thresholds are at points +A/2, £3A/2, £5A/2, ...
and the representation levels are located at points 0,+A,£2A,.... This is called a
midtread type quantizer. In transfer characteristic shown in Fig. 68(a), the decision
thresholds are at points 0, £A, £2A ... and the representation levels are located at points
+A/2,+3A/2, £5A/2,.... This is called a midriser type quantizer.

For an analog input sample that lies anywhere inside an interval of either transfer char-
acteristics, the quantizer produces a discrete output equal to the midvalue of the pair

of decision thresholds. A quantization error is introduced, the value of which equals the
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difference between the output and input values of the quantizer. Figures 67(b), 68(b)
show examples of such a quantization error.

Definition: A quantizer is called symmetric if its transfer characteristic is symmetrical
for positive and negative input values. Quantizers shown in Figs. 67(a), 68(a) are both
symmetrical.

Definition: A quantizer is called uniform if the separation between its representation
levels are the same with a common value is called the step size. Quantizers shown in
Figs. 67(a), 68(a) are both uniform.

Definition: A quantizer is called memoryless in that the quantizer output is determined
only by the value of a corresponding input sample, independent of the earlier analog

samples.

9.2 Idle Channel Noise

In a quantizer of the midrise type, as in Fig. 68(a), zero input amplitude is encoded
into one of the two innermost representations levels £A /2. This results in a quantization
error even if the input to the quantizer is equal to zero. This error is denoted as the
idle channel noise. Assuming that the two representation levels +A/2 are equiprobable,
the idle channel noise for midriser quantizer has zero mean and a variance of A?/4. In a
quantizer of the midtread type, as in Fig. 67(a), the output is zero for zero input and the

idle channel noise is correspondingly zero.

9.3 Quantization Noise and Signal-to-Noise Ratio (SNR)

Consider a symmetric, uniform, memoryless quantizer with a total of L representation
levels. Let « denote the quantizer input, and y denote the quantizer output. The transfer

characteristic of the quantizer is shown by,

y =Q(z) (511)

which is a staircase function. Suppose that we use the notation Jp, k& = 1,2,..., L,

to shown the quatization intervals. The decision thresholds corresponding to the kth
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quatization interval are denoted as zj and zp,;. We have,

jk:{:l?k<:13<:13k_|_1} k=1,2,...,L (512)

If the representation level corresponding to the kth quatization interval is denoted as ys,

we have,

Y = Y, if z lies in the interval 7 (513)

Let ¢ denote the quantization error, —A/2 < ¢ < A/2. We may write

yr = T + q, if z lies in the interval 7 (514)

If the quantizer is fine enough (small A), then the distortion produced by the quantization
operation affects the performance of the transmission as if it were an independent source
of additive noise. It is also found that the power spectral density of the quantization noise
has a large bandwidth compared with the signal bandwidth. Thus, with the quantization
noise uniformly distributed throughout the signal band, its interfering effect on a signal
1s similar to that of a white noise.

Assume that the quatization error (random variable ) is uniformly distributed over the

possible range —A/2 to A/2. We have,

+ <q< %
fola) = (515)

0 otherwise

o | >

where fg(q) is the probability density function of the quantization error. Then, the mean

of the quantization error is zero, and its variance aé is equal to,

Q] (516)

E|
= /_ 7’ fo(q)dq

1 a2
= — d
A /—A/2q 1
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A?
= — 517
D (517)
Note that A%/12 can be viewed as the variance of quantization error conditioned on the
interval 7.

Let the variance of the baseband signal z(t) at the quantizer input be denoted by o%. We

define an output signal-to-noise quantization noise ratio (SNR) as

2 2

Ox Ox
(SNR) = % = A?/12 (518)

It is seen that the quantization SNR depends on the variance (power) of the input signal.

It would be highly desirable from a practical viewpoint for the quantization SNR, to
remain constant for a wide range of input power levels. Such a quantizer is called a robust

quantizer. This i1s discussed in the following.

9.4 Robust Quantization

The provision for a robust performance necessitates the use of a nonuniform quantizer.
In this case, the range of the smaller input values are assigned more representation levels.
This selection is justified by considering the following two facts (i) generally, smaller input
values occur with higher probability and therefore should be represented with a higher
precision, (ii) the characteristics of human hearing has a special characteristics that large
signal amplitudes mask quantization noise to some extent.

Nonuniform quantization can be achieved by using a compressor followed by a uniform
quantizer. By cascading this combination with an erpander which acts as an inverse to
the compressor, the original signal samples are restored to their correct values except for
the effect of the quantization error. These operations are shown in Figures 70, 69. The
combination of a compressor and an expander is called a compander.

As we are concerned with symmetric, memoryless quantizers, then the transfer character-
istics of the compressor is represented by a memoryless nonlinearity ¢(z), that has odd

symmetry, i.e.,

c(—z) = —c(x) (519)



Input Uniform Output
—— =  Compressor Quantizer Expander .

Figure 69: Model of nonuniform quantizer.

We also assume that,

Lmazx T = Tmaz
() =19 0 z =0 (520)
“—Lmax LT = “Lmaz

The compression characteristic ¢(z) relates nonuniform intervals at the compressor input
to the uniform intervals at the compressor output.

The uniform intervals are of width 22,4, /L each, where L is the number of representation
levels of the quantizer. It is assumed that L is a large number (fine quantizer). Under these
conditions, the compression characteristic ¢(z) in the kth interval, Jj, in approximated
by a straight-line segment with a slope equal to 2,4,/ LA}, where Ay is the width of the

interval J,. This means that

de(x) _ 2Tiag

k=0,1,...,L—1 (521)
Two other assumptions are also made:
1. The probability density function of input fx(z) is symmetric with respect to .

2. In each interval Ji, k = 1,2,..., L, the probability density function fx(z) is ap-

proximately constant. This assumption is expressed as,

Fx (@) ~ fx(ys) rp < X < Tpy (522)

We assume that the representation level y;, corresponding to the kth quantization interval

Jr lies in the middle of J;, i.e.,
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Figure 70: Transfer characteristics of compressor, uniform quantizer, and expander (shown

for positive amplitudes only)
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1
yk:§($k‘|‘$k+1) kZO,l,...,L—l (523)

The width of the interval J; equals,
Ap = Tpy1 — Tp zp < X < 2pq (524)

Under these conditions, the probability that the input signal lies in the interval J; is

equal to,

e = Pz <X <apyq)

= fx(ye)Ax E=0,1,....L—1 (525)

Let the random variable () denote the quantization error

Q=y— X zp <X < @y (526)
We have,
99 = E[Q*]
= E[(X —yi)’]

(527)

I
—
8
3
2
8
~
<
|
8
ko
S—
o
S
—~
S—

Z [ @ e (528)

Substituting Eq. 523, we get the result

1 L-1
= Z prA; (529)
As we saw in the previous section, the quantity A}/12 can be viewed as the variance of
quantization error conditioned on the interval J.

From (521), we obtain,

-1
Ay ~ 28mas [dc(f”)] k=01,...,0—1 (530)



Substituting Eq. 530 in Eq. 529, we get the result

22 -2
2 mam )

~ 1

e S |7 1)

Replacing for p; from Eq. 525 and using integration instead of the summation over k, we
obtain ,
, _

2 Linaz “max dC(iB)
oo~ 32 /_mmw fx(z) [—dw ] dx (532)

The output signal-to-quantization ratio is defined by

2

(SNR) = (533)

%
where,

oy = /mmw 2’ fx (z)dz

—ZTmax

This results in,

Tmawx 9
32 / &’ fx(z)de
. s (534)

wmam Tmax dc T —2
/_mmw fx(z) l d(x)] dw

For a robust performance, the output signal-to-noise ratio should ideally be independent

(SNR) =

of the probability density function of the input random variable X. This requirement is

met if

— Tmaz S &r S Lmazx (535)

resulting in,

() = Tymax + Kln < > z >0 (536)

xmaﬂ:

Unfortunately, the characteristic function in (536) is unrealizable since ¢(0) is not finite.
Instead, we have to use an approximation to (536). Two widely used solutions to this
problem are as follows:

p-law companding

cllal) _ (1 + plalfoner)

Lrmax 111(]_ + ,u') Lmax

<1 (537)
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A practical value for p is 255. The p—law is used for PCM telephone systems in the
United States, Canada, and Japan.

A-law companding

Alz|/®mas
1+nA Tonas A

1+ In(Alz|/Tmaez) l< ||
1+InA A7 Toaw

A practical value for A is 87.56. The A-law companding is used for PCM telephone

<

—_

systems in Europe.

10 Differential Pulse-Code Modulation

In the use of PCM for the digitization of voice and video signal, the signal does not
change rapidly from one sample to the next with the result that the difference between
adjacent samples has a variance that is smaller than the variance of the signal itself.

In particular, if we know the past behavior of a signal up to a certain point in time, it is
possible to make some inference about its future values. This provides motivation for the
differential quantization scheme shown in Fig. 71(a).

The difference signal e(nTy) is called a prediction error, it is the amount by which the

predictor fails to predict the input exactly.

v(nTy) = Qle(nTy)]

= e(nTy) + q(nTy) (539)
where g(nT) is the quantization error.
For the system in Fig. 71, we may write,
w(nTy) = &(nTy) + v(nTs) (540)
w(nTs) = &(nTy) + e(nTy) 4+ q(nTy) (541)
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DPCM
Wave

Sampled e(nT,) v(nTy)
input by Quantizer ¢ Encoder — =
z(nTy) +
i) \
z(nTy) ¢ 3
/k
Predictor
w(nTs)
(a)
Input + Output
——— == Decoder by ®
_I_
Predictor
(b)

Figure 71: DPCM system. (a) Transmitter. (b) Receiver
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Finally, replacing z(nTs) = &(nTs) + e(nTs), we obtain,

w(nTy) = x(nTy) + q(nTy) (542)

This means that irrespective of the properties of the predictor, the quantized signal u(nT)
at the predictor input differs from the input signal x(nT,) by the quantization error.

In the absence of the channel noise the corresponding receiver output is equal to u(nTy).
Obviously, the power of the process E is smaller than the power of the original signal X.

The corresponding reduction in power is measures by the prediction gain which is defined

as,
We have,
(SNR), = (%) = (%) (%) = Gp(SNR)p
o3 0% ) \ o}

where (SNR)p is the SNR of the quantizer in Fig. 71. This means that we have an

improvement in the overall SNR with a factor equal to Gp.

11 Delta Modulation

The use of DPCM suggest the following possibility: Quersampling a signal (at a rate higher
than the Nyquist rate) purposely to increase the correlation between adjacent samples of
the signal, so as to permit the use of a simple quantizing strateqy.

This strategy results in a higher number of samples per second, however, exploiting the
large dependency between successive samples, we are able to quantize the samples using
a smaller number of quantization symbols. On the other hand, as we already discussed in
the section on signal constellations, for a given channel bandwidth, having a larger number
of symbols per second requires a higher average energy for transmission. The objective is
to find an intermediate solution which provides a compromise between the sampling rate
and the number of the quatization symbols resulting in a good overall performance. In
the following section, we discuss an example of such a method acting in an extreme case

of using a quantizer with only two levels.
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Figure 72: Illustration of delta modulation

Delta modulation (DM) is the one-bit (or two level) version of DPCM. DM provides a
staircase approximation to the oversampled version of the input signal. The difference
between the input and the approximation is quantized into only two levels, namely, +4.

The step size A of the quantizer is

A =26 (543)

Denote the input signal as #(t) and the staircase approximation to it as u(¢). Then

e(nts) = wx(nTy) — &(nTy)

= z(nTs) —u(nTs — Ts) (544)
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Output
+4
Input
0
-4
Figure 73: Input-output characteristic of two-level quantizer
b(nTs) =6 sgule(nTy)] (545)
w(nTs) = w(nTs — Ts) + b(nTy) (546)

We assume that the accumulator is initially set to zero. Then

u(nT,) = Si sgn(e(iT,)]

— YT (547)

11.1 Quantization Noise in Delta Modulation

Delta modulation systems are subject to two types of quantization errors: slope-overhead
distortion, and granular noise.

Let q(nTs) denote the quantizing error. We have,

w(nTy) = x(nTy) + q(nTy) (548)
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Figure 74: DM system. (a) Transmitter.
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Figure 75: Illustration of quantization error in delta modulation

Accordingly, using Eq. 548 to eliminate w(nTs — T;) from Eq. 544, we may express the

prediction error e(nTy) as

e(nTy) = x(nTy) — x(nTs — Ty) — q(nTs — T}) (549)

Except for the quantization error g(nTs — T;), the quantizer input may be viewed as a

digital approximation to the derivative of the input signal. In order for the sequence of

samples {u(nTs)} to increase as fast as the input sequence of samples {z(nT})} in a region

of maximum slope of (t), we require that the condition
) dz(t)

EZmaX| o |

Otherwise the step size A = 2§ is too small with the result that w(¢) falls behind z(¢), as

(550)

llustrated in Fig. 75. This condition is called slope-overhead.

Granular noise occurs when the step size A is too large relative to the local slope
characteristics of the input waveform «(t).

The choice of the optimum step size that minimizes the mean-square value of the quan-
tizing error in a linear delta modulator will be the result of a compromise between slope

overhead distortion and granular noise.
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