University of Waterloo Department of Electrical and Computer Engineering Thursday, October 25, 2001 4:30pm to 6:00pm

E&CE-318 Midterm Examination

Instructor: W. Zhuang

Time allowed: 1.5 hours.

[10]

[2.5]

[2.5]

[2.5]

[2.5]

NO AIDS ALLOWED (Some mathematical formulas are given on page 4).

Attempt all the questions. JUSTIFY ALL YOUR ANSWERS.

The marking scheme is shown in the left margin and [30] constitutes full marks.

1. Consider the single-tone sinusoidally modulated DSB-LC signal as shown in Figure 1, where the carrier frequency is ω_c and the modulating signal frequency is ω_m .

- Figure 1
- (a) Determine the modulation index m.
- (b) Write an expression for the modulated signal $\phi(t)$.
- (c) Specify the upper sideband component $\phi_{USB}(t)$ and the lower sideband component $\phi_{LSB}(t)$.
- (d) Determine the modulation efficiency μ .

2. This question studies the carrier recovery for coherent demodulation of SSB-SC signals. Two single-tone pilot signals are transmitted for the carrier recovery, as illustrated in Figure 2(a) for transmission of the lower sideband. The two pilot frequencies ω_1 and ω_2 are given by

$$\omega_1 = \omega_c - B - \Delta \omega$$
 and $\omega_2 = \omega_c + \Delta \omega$

where ω_c is the carrier frequency and B is the message bandwidth in rad/s. The $\Delta\omega$ is chosen as to satisfy the relation

$$n = \frac{B}{\Delta \omega}$$

where n is an integer. Carrier recovery is accomplished by using the system shown in Figure 2(b). The outputs of the two narrowband filters centered at ω_1 and ω_2 are given by

$$v_1(t) = A_1 \cos(\omega_1 t + \phi_1)$$
 and $v_2(t) = A_2 \cos(\omega_2 t + \phi_2)$

The lowpass filter is designed to select the lower frequency component of $v_3(t)$. The frequency divider actually divides both frequency and initial phase (at t=0) of the input signal by n+2.

- [2] (a) Describe how the system in Figure 2(b) works.
- [5] (b) Derive the output signal $v_7(t)$.

[10]

[2]

[1]

- (c) Specify the bandwidths of the lowpass filter and the bandpass filter respectively.
- (d) Specify the relation between ϕ_1 and ϕ_2 for $v_7(t)$ to be proportional to the carrier $A_c \cos(\omega_c t)$.

Figure 2(a)

3. Figure 3 shows a block digram of the VSB-SC modulator, where f(t) is the baseband [10]message signal with bandwidth B Hz and Fourier transform $F(\omega)$. The VSB-SC signal can be represented by

$$\phi(t) = \frac{1}{2} A_c[f(t) \cos \omega_c t - f_q(t) \sin \omega_c t]$$

where $f_q(t)$ is a quadrature component at baseband, depending on f(t) and $H(\omega)$.

- (a) Derive $\Phi(\omega)$ of the VSB-SC signal in terms of $F(\omega)$ and $H(\omega)$.
- (b) In order to use an envelope detector for demodulation, the following VSB-LC signal is transmitted

$$\phi_{LC}(t) = \alpha A_c \cos \omega_c t + \frac{1}{2} A_c [f(t) \cos \omega_c t - f_q(t) \sin \omega_c t]$$

where α (> 0) is a constant. Derive an expression for the envelope of $\phi_{LC}(t)$ and specify the condition (for the α value) under which the distortion in demodulation is negligible.

(c) The transfer function of the VSB filter is shown in Figure 4, where

$$H(\omega) = U(\omega - \omega_c) - H_{\beta}(\omega - \omega_c), \quad \text{for } \omega > 0.$$

 $U(\omega)$ is the step function and

[3]

[3]

[4]

$$H_{eta}(-\omega) = -H_{eta}(\omega) \qquad ext{and} \qquad H_{eta}(\omega) = 0, \quad |\omega| > eta$$

 $\beta \in (0, 2\pi B)$. (i) Derive an expression for $f_q(t)$ of the VSB-SC signal $\phi(t)$, in terms of $H_{\beta}(\omega)$, $F(\omega)$ and/or f(t); (ii) Show that $f_q(t)$ is a real-valued function.

Figure 4

Trigonometric functions

$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

Fourier transform pairs

(Note: * denotes conjugate and * denotes convolution.)

time domain	frequency domain
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$\cos(\omega_c t)$	$\pi[\delta(\omega-\omega_c)+\delta(\omega+\omega_c)]$
$\sin(\omega_c t)$	$-j\pi[\delta(\omega-\omega_c)-\delta(\omega+\omega_c)]$
$f(t-t_0)$	$\exp(-j\omega t_0)F(\omega)$
$\exp(j\omega_c t)f(t)$	$F(\omega-\omega_c)$
$f^*(t)$	$F^*(-\omega)$
$f_1(t) \star f_2(t)$	$F_1(\omega)F_2(\omega)$
$f_1(t)f_2(t)$	$[F_1(\omega) \star F_2(\omega)]/2\pi$