E&CE 318: Introduction to Communication Systems

Instructor: E. Yang

Midterm Exam, Fall 2000, Oct. 25, 2000, 5:00-6:30 p.m.

University of Waterloo Dept. of E&CE

Special Instructions

- Time allowed: 90 minutes.
- Closed book & notes. No crib sheet is allowed.
- Answer all questions.
- Justify your answers.
- Cheating will not be tolerated. Any instances of cheating will be handled according to university rules.

Problem 1 A modulating signal $f(t) = 4\cos 10\pi t + 8\cos 25\pi t$ is applied to a DSB-LC modulator operating at a carrier frequency of $250\sqrt{2}$ Hz. Denote the resulting modulated signal by $\phi_{AM}(t)$.

- (a) (5 points) Is f(t) a periodic signal? If no, explain why; if yes, determine the fundamental (i.e., the smallest) period.
- (b) (15 points) Determine the time-autocorrelation function, power spectral density, and time-averaged power of f(t).
- (c) (10 points) Sketch the power spectral density of $\phi_{AM}(t)$. Is $\phi_{AM}(t)$ periodic? Explain why.
- (d) (10 points) Suppose that in $\phi_{AM}(t)$, the carrier power is a doubling of the time-averaged power of f(t). Determine the exact time-domain representation of $\phi_{AM}(t)$ and the power efficiency of the corresponding DSB-LC modulator.
- (e) (10 points) Under the condition of Part (d), can $\phi_{AM}(t)$ be correctly demodulated by an envelope detector? If no, explain why; if yes, sketch the corresponding envelope detector and explain how it works.
- (f) (10 points) Compute the power spectral density of $f^2(t)$. Is DSB-LC modulation suitable for the transmission of $f^2(t)$? Explain why.

Problem 2 Two signals $f_1(t)$ and $f_2(t)$ are transmitted simultaneously by using QAM(quadrature amplitude modulation). Let $\phi_{QAM}(t)$ be the resulting modulated signal.

- (a) (5 points) Is $\phi_{QAM}(t)$ a band-pass signal? If yes, determine its baseband complex envelope; if no, explain why.
- (b) (5 points) Sketch a synchronous detector for $\phi_{QAM}(t)$.

(c) (10 points) Analyze the effect of a phase error in the local carrier generated at the receiver on the output of your synchronous detector.

Problem 3 In the frequency domain, DSB-SC modulation simply translates the frequency spectrum of an information signal f(t) by $\pm \omega_c$.

- (a) (5 points) Explain why frequency translation can NOT be achieved by linear time-invariant systems.
- (b) The spectrum of an information signal f(t) is given in Figure 1. It is desirable to translate the spectrum of f(t) to a high carrier frequency ω_c for transmission.

- (b1) (5 points) An engineer, Mr. "Careful", follows the standard approach by multiplying f(t) by $\cos \omega_c t$. Sketch the spectrum of the modulated signal obtained by Mr. "Careful".
- (b2) (10 points) Since it is not easy to generate a local carrier of very high frequency ω_c , another engineer, Mr. "Smarter", suggests the following approach:

Figure 2.

where $\omega_1 > 0$, $\omega_2 > 0$, and $\omega_1 + \omega_2 = \omega_c$. Determine the spectrum of $\phi_s(t)$. Comment on the approach of Mr. "Smarter"?

A.1 TRIGONOMETRIC IDENTITIES

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos (A + B) + \cos (A - B)]$$

$$\sin A \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A = \cos^2 A - \sin^2 A$$

$$\sin^2 A = \frac{1}{2} (1 - \cos 2A)$$

$$\cos^2 A = \frac{1}{2} (1 + \cos 2A)$$

$$\sin A = \frac{1}{2j} (e^{jA} - e^{-jA})$$

$$\cos A = \frac{1}{2} (e^{jA} + e^{-jA})$$

$$e^{-jA} = \cos A \pm j \sin A$$

Selected Fourier Transform Pairs

	Transform Lans		
f(t)	$F(\omega) = \mathcal{F}\{f(t)\}\$	f(t)	$F(\omega) = \mathcal{F}\{f(t)\}\$
1. $e^{-at}u(t)$	$1/(a+j\omega)$	11. $\cos \omega_0 t$	
$2. te^{-at}u(t)$	$1/(a+j\omega)^2$	12. $\sin \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
3. $e^{-a t }$	$2a/(a^2+\omega^2)$	O.	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
	2α/ (α · · ω)	13. $rect(t/\tau)$	$ au$ Sa $(\omega au/2)$
4. $e^{-r^2/(2\sigma^2)}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	$14. \frac{W}{2\pi} \operatorname{Sa}(Wt/2)$	$\mathrm{rect}(\omega/W)$
5. $sgn(t)$	$2/(j\omega)$	15. $\frac{W}{\pi}$ Sa(Wt)	$rect(\omega/2W)$
6. $j/(\pi t)$	$\operatorname{sgn}(\omega)$	16. $\Lambda(t/\tau)$	$ au[\operatorname{Sa}(\omega au/2)]^2$
7. $u(t)$	$\pi\delta(\omega) + 1/(j\omega)$	$17. \frac{W}{2\pi} [\operatorname{Sa}(Wt/2)]^2$	$\Lambda(\omega/W)$
8. $\delta(t)$	1	18. $\cos(\pi t/\tau) \operatorname{rect}(t/\tau)$	$\frac{2\tau}{\pi} \frac{\cos(\omega\tau/2)}{1 - (\omega\tau/\pi)^2}$
9. 1	$2\pi\delta(\pmb{\omega})$	19. $\frac{2W}{\pi^2} \frac{\cos(Wt)}{1 - (2Wt/\pi)^2}$	$\cos[\pi\omega/(2W)] \operatorname{rect}[\omega/(2W)]$
0. e ^{±jω₀s}	$2\pi\delta(\omega \mp \omega_0)$	20. $\delta_{T}(t)$	$\omega_0 \delta_{\omega_0}(\omega),$ where $\omega_0 = 2\pi/T$

Some Fourier Transforms Corresponding to Given Mathematical Operations

Operation	f(t)	\leftrightarrow	$F(\omega)$
Linearity (superposition)	$a_1f_1(t) +$	$a_2f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$
Complex conjugate	f*(t)		$F^*(-\omega)$
Scaling	$f(\alpha t)$		$\frac{1}{ \alpha }F\left(\frac{\omega}{\alpha}\right)$
Delay	$f(t-t_0)$		$e^{-j\omega t_0}F(\omega)$
Frequency translation	$e^{j\omega_0t}f(t)$		$F(\omega - \omega_0)$
Amplitude modulation	$f(t) \cos \omega$	₀ t	$\frac{1}{2}F(\omega + \omega_0) + \frac{1}{2}F(\omega - \omega_0)$
Time convolution	$\int_{-\infty}^{\infty} f_1(\tau) f_2(\tau)$	(t- au)d au	$F_1(\omega)F_2(\omega)$
Frequency convolution	$f_1(t)f_2(t)$		$\frac{1}{2\pi}\int_{-\infty}^{\infty}F_1(u)F_2(\omega-u)du$
Duality: time-frequency	F(t)		$2\pi f(-\omega)$
Symmetry: even-odd	$f_{\epsilon}(t)$		$F_{\epsilon}(\omega)$ [real]
	$f_o(t)$		$F_o(\omega)$ [imaginary]
Time differentiation	$\frac{d}{dt}f(t)$		$j\omega F(\omega)$
Time integration	$\int_{-\infty}^{t} f(\tau) d\tau$		$\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega),$
			where $F(0) = \int_{-\infty}^{\infty} f(t) dt$