Problem 1: When the input to a given audio amplifier is $(4\cos 800\pi t + \cos 1000\pi t)$ mV, the measured frequency components at 500Hz and 1000Hz are equal to 1V and 2V, respectively. Representing the amplifier output-input characteristic by,

$$e_o(t) = a_1 e_i(t) + a_2 [e_i(t)]^2$$

(10) Evaluate the numerical values of a_1 , a_2 from the test data given.

Problem 2: A carrier waveform is frequency-modulated by the sum of two sinusoids:

$$\phi(t) = A\cos(\omega_c t + \sin\omega_m t + \cos\omega_m t),$$

(10) Find an expression for the resulting spectrum.

Problem 3: Consider the signal

$$v(t) = \sum_{i=0}^N (N+1-i) [\cos(\omega_c t)\cos(i\omega_0 t) - \sin(\omega_c t)\sin(i\omega_0 t)]$$

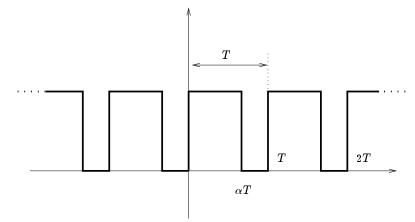
- (4) 3.1. Show that this is an SSB-LC signal $(\omega_c > N\omega_0)$. Is it the upper or the lower sideband?
- (2) **3.2.** Write an expression for the missing side-band.
- (2) **3.3.** Write an expression for the total DSB signal.
- (7) **3.4.** For the DSB signal (part 3.3.), what is he minimum value of the carrier needed to make the envelope detection possible?
- (5) **3.5.** Compute the efficiency of the modulation for the signal obtained in part 3.4.

Problem 4: Consider PM modulation $(k_p = 1)$ of the signal $x_{T_0}(t) = \sum_{k=-\infty}^{\infty} m(t - kT_0)$,

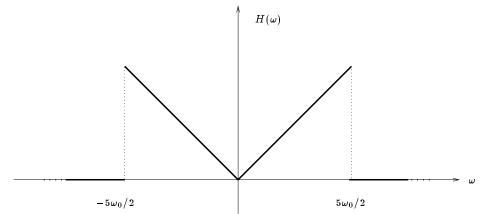
$$m(t) = \left\{egin{array}{ccc} 1, & 0 \leq t \leq T_0/2 \ 0, & T_0/2 \leq t \leq T_0 \end{array}
ight.$$

- (10) 4.1. Determine the frequency spectrum of the PM signal assuming that the carrier frequency is equal to $4\omega_0$ (where $\omega_0 = 2\pi/T_0$) and the total power of the modulated signal is unity.
- (10) 4.2. Compute the fraction of the total power of the resulting PM signal in the frequency range $[-3\omega_0/2, 3\omega_0/2].$

Problem 5: Consider the periodic signal shown in the following figure:

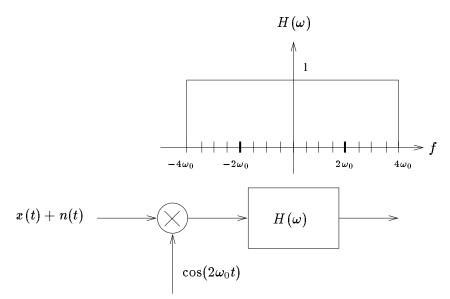


- (8) 5.1. Find the auto-correlation function, the power spectral density and the total power of this signal.
 - 5.2. Assume that a white noise of power spectral density $\eta/2$ is added to this signal and the combination of signal plus noise is passed through a linear filter with the frequency response shown in the following figure (where $\omega_0 = 2\pi/T$).

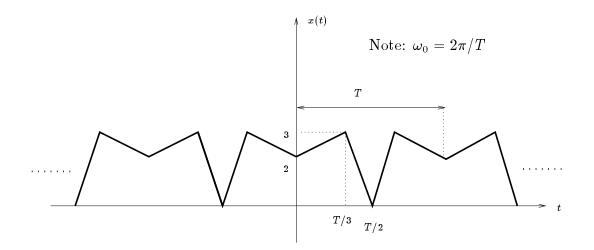


- (4) 5.2.1. Compute the power of the signal at the filter output.
- (4) 5.2.2. Compute the power of the noise at the filter output.
- (4) 5.2.3. Compute the value of α in the periodic signal such that the ratio of the signal power to the noise power at the output of the filter is maximized.

Problem 6: Consider the following linear system:



The autocorrelation of the noise source, n(t), is equal to $R_n(\tau) = \exp(-|\tau|)$. The signal source, x(t), is a periodic (voltage) signal as shown in the following figure:



- (7) 6.1. Compute the Fourier transform of x(t) (*Hint: compute the derivatives of* x(t))
 - **6.2.** Compute the power (square voltage) spectral density of the noise source, and the ratio of the signal power to the noise power at:
 - (4) 6.2.1. Input of the whole system.
 - (4) **6.2.2.** Input of $H(\omega)$.
 - (5) **6.2.3.** Output of $H(\omega)$.