|Problem 4.6.2|

Two pulse waveforms z(t) and y(t) are shown in Fig. P-4.6.2. Determine and sketch r,(7),

ry(7), and 74,(7).

x(t) y(t)

Figure 20: P-4.6.2

The autocorrelation functions below are zero outside of the intervals given.

2)

1
re(T) = dt=1+7, for —1<7<0, (180)
1—7
= / dt=1-7, for 0<7<1. (181)
0
Combining the results, we have: r,(7) = A(7).
b)
1 1 1 1
ry(T) = f t(t+7)dt = —87'3 + 27 + 3 for -1 <71<0, (182)
1-7
= / t(t+r)dt:%(7‘3—3r+2), for0<r <1 (183)
0
c)
1
roy(r) = / (t+7)dt = (1+7)%/2, for —1<7<0, (184)
1-—1
= / (t+7)dt=(1-7%/2, for0<T<1. (185)
0

| Problem 4.7.1 |

In a certain condition it is given that the rms thermal voltage developed across the series

combination of two resistors R;, Ro is ¥ times that developed across the parallel combination of
these two resistors.

a) Determine a lower bound on v if both resistors are at the same temperature.
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b) Find the relation required between R;, R, to achieve this lower bound.

a)

4kTB(R; + Ry) = v*{4kTB[R,R2/(R1 + R»)]} (186)
R? — (y* - 2)RiRy + R2=10 (187)
v -2 1
Ri/Ry= —5— £ 0y/(r? —2)* — 4 (188)
which implies v > 2.
b) For v = 2
R} —2R Ry + R =0= R, = R,. (189)

[Problem 4.7.2 [
The frequency transfer function for the RC bandpass filter shown in Fig. P-4.7.2 can be

approximated by that for two independent cascaded RC filter sections if Ry < R,. Using this
approximation, determine an expression for the spectral density of the thermal noise voltage at the

output terminals of the filter.

w®( ) " T | W

Figure 21: P-4.7.2

To compute the effect of the noise, we assume that v; is short circuit. In this case, as Ry > Ry,
we can assume that the parallel combination of R; and () is short circuit and Ry and Cy are in
parallel, then, the transfer function from the noise source of Rs to the output terminal is equal to,
_ 1/]02&1

Ry + (1/§Cow)

This results in the following power spectral density for the noise at output.

H(w)

Sp,(w) = 2KTR,|H(w)|?.
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| Problem 4.7.3 ’

Find the rms thermal noise arising from the resistance bridge circuit in Fig. P-4.7.3 under the

— AN ————
S
A
vi(t) <> H/Li jﬁ(
R R

Figure 22: P-4.7.3

following limiting conditions:
a) Ro — 0,
b) Ro — 0.

We compute the output resistance referred to the output terminals. This results in,

a)

Rg=(R||R)+(R||R)=R (190)

Rey=(R+R)|(R+R) =R (191)

In both cases, assuming a bandwidth of B, we get: m = /4kTR.,B = VAkTRB.

Note that if we proceed using the superposition principle, in both cases of (a) and (b), consid-
ering the division of voltage in the corresponding circuit, the effect of each of the four noise sources
is multiplied by a factor of (1/4) when it appears at the output terminals. Then, adding up the

effect of the four sources, we get the same result.

lProblem 4.7.4
The input of a voltage amplifier is connected to a 1 — K {2 resistor and the output to a 100 — K2

resistor as shown in Fig. P-4.7.4. The voltage gain of the amplifier is 10, the input impedance is
1MQ (assumed noise-free), and the output impedance is 100Q (noise-free). The bandwidth of the
amplifier is 1IMHz and the amplifier noise is 10pV rms, referred to the input. The temperature of

the entire system is 300K . compute the rms thermal noise at the output (point 2).
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1 o A o 2

1 K 100 K

Figure 23: P-4.74

Output noise arising from thermal noise in input circuitry:

n?(t) = 4kTB(1k)(1000/1001)%(10)(1000/1001)% = 1.65 x 1071 V2. (192)

where K =1.38 x 10723 and K = 300. Note that the two (1000/1001)? terms arise from the voltage
dividing at the input and output of the amplifier and (10)? is the power gain of the amplifier.

Output noise resulting from amplifier noise:

nZ(t) = (10pV)?(10)(1000/1001)* = 9.98 x 10™° V? (193)

Output noise arising from thermal noise in output circuitry:

ni(t) = 4kTB(100k)(1/1001)* = 1.65 x 107** V2. (194)
nZ(t) = ni(t)+ni(t) +ni(t) =9.9817 x 107° V? (195)
n2(t) = 99.91uV. (196)

| Problem 4.7.5 |
A sinusoidal generator develops the waveform v;(¢) = A cos wpt as the input to the RC filter
shown in fig. P-4.2.4.

a) Derive an equation for the rms value of the thermal noise at the output of the filter.

b) Determine the value of C' which will yield the highest S/N ratio (i.e., ratio of average

signal power average noise power) at the output.

The frequency transfer function is:

H(w) = —————————1/(R10) where R, = —RR:_R; .
1 2

= ot J(®R,C)’ (197)
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Ry 1
vi(t) C) - C R, o(t)
O
Figure 24: P-4.2.4
a) Using circuit analysis:
vo(t) = A/(F1C) cos [wgt — tan ™ (wo R,C)], (198)

vV wg + 1/(R,C)?

The rms value of the output is:

_ L __A&O (199)

vorm.s .
V2 L\ Jud +1/(R,C)?

To compute the effect of the noise, we short circuit v;. Then, R; and R, become parallel. In
this case, referring to example 4.7.2 (page 193) of the text, we obtain /n2(t) = /KT /C.

The overall result is,

A/(R:C)

V2RT]C, /w2 + 1/(R,C)?

Setting the derivative of S/N with respect to C equal to zero gives the optimum C.

S/N = (200)

IProblem 4.7.7]
Compute the noise equivalent bandwidth of the RC bandpass filter shown in Fig. P-4.7.2 for
R,C1 = RyC5, and using the approximation described in Problem 4.7.2 for R; <« Rs. Choose the

midband frequency to be that frequency at which |H(w)| is maximum.

For the conditions specified, we can write:

jwRC
Hw) = Gorc 1) (201)
and therefore
2 (wRC)2

Setting d|H (w)|?/dw = 0 and solving for wg, we get: wy = 1/(RC).
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Using Eq. (4.67) of the text and noting that |H(wo = 1/RC)|? = 1/4, we obtain:

B, = — /OOO WRC)® 4, - 1 (203)

"TorJo [(WRCE+1127° T 2RC

| Problem 4.7.8
A bandpass amplifier is to be designed to meet the following specifications:
By = 200kHz
(S/N)output > 20 dB
Max. output = 1 V rms across 300 {2

Estimated noise temperature of input stage = 1000 K
What is the maximum gain, in dB, for which you would design the amplifier to meet these

specifications?

On the basis of the output S/N > 20 dB or 100 and the maximum output, we can find the

output noise power as:

S, = 100N (204)
S,+N = /R (205)
100N+ N = (1)?/300 — N =3.30x10"° W. (206)

Without any additional input thermal noise, the effect of the noise of the input stage at the
output is equal to, N = kT, BNyG)p. So that:

3.30 x 102

<
Gp - kT.Bn

=1.196 x 10! — G, < 100.8dB. (207)

[If To = 290 K were assumed at the input, this would change the answer only slightly to
99.7 dB.

| Problem 4.7.9 |

A certain amplifier has input and output resistances of 502 and a noise-equivalent bandwidth
of 140kHz. When connected to a matched source and a matched load, the net gain is 50dB. When
a 50 resistor at 290K is connected to the input, the output rms noise voltage across 50€2 is 100uV.

Determine the equivalent noise temperature, T, of the amplifier.

Py = (100 pV)?/50 = kToBnG)p + kT.BNG), (208)
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() vi R2 i

% L | Output

| I

N
from which
2
T, — (100 £V')*/50

— Ty = 1035 — 290 = 745 K.
FBNG, 0 5 | (209)

| A General Problem on Noise: | Consider the following circuit where,

v1(t) = cos(wot + ¢)

and
ve(t) = rectr(t/7), T=7T/2

find the power spectral density of the signal and the noise at the output terminal.

We know that the power spectral density of a periodic signal with the Fourier series expansion
3, Fned™ot is equal to Sp(w) = 21 Y, | Fi|?6(w — nwo). We have,

vy () = % [eilent+) 1 gmentt#)] = 3~ Feinent

n=—oo

This means that,
Fi=¢%/2, F,=¢9/2, F,=0 n#1,-1

As [Fy|2 = |F_y]? = (1/4), then,
Sur (@) = (m/2)[6(w — wo) + 8(w + wo)).

Similarly, for vy, we have,

F, =(1/2)Sa(nm/2)

and,

Sy, (W) = (7/2) ZSaz(mr/2)5(w — nwg).

The transfer function from v, (t) to output is equal to (short circuit v,),

_Rejlw
Hy(w) = Ra|(j 1) _ fegle
= 1 . - 1 RZJLw
(R1+_7'C'_w) + [Ral|(§ Lw)] (R1+ij> Ry +jLw
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The power spectrum of the output signal due to v; is equal to,
|H1(w)|Sy, (w) = (2/7)| Hi(wo) [*8(w ~ wo) + (2/7) Hi(~w0)(w + wo)
Due to the symmetry of H;(w), we have,
| H1(w)[*Su, (w) = (2/7)| Hi(wo) *[6(w — wo) + (w + wo)]

The transfer function from v,(t) to output is equal to (short circuit v,),

1
Gzl (B + -52)
H2(w) = ]Cwl
R ) L Ry + ——
o+ |20 | (Re+ <50 )]
The power spectrum of the output signal due to v, is equal to,

| Ha(w) |80, (w) = (m/2) D | Ha(nawo)|*Sa? (n /2)é(w — nwo).

As the noise sources are in series with the resistors, their effects can be computed using the
same transfer functions. This means that, to compute the effect of the two noise sources at the
output, we should replace S,, by S,, = 2KTR,; and S,, by S,,, = 2KT R, in the relationships used

to compute the signal power at the output.

| Problem 5.1.2| A modulating signal f(t) [with Fourier transform F(w)] is applied to a double

sideband suppressed carrier modulator operating at a carrier frequency of 200Hz. Sketch the
spectral density of the resulting DSB -SC waveform, identifying the upper and lower sidebands, for
each of the following cases.

a.) f(t) = cos1007t

b.)

0 elsewhere

m@:{ﬂ+wwwmwm|a<mw

[Solution:]
a.)

g(t) = cos 1007t cos 4007t = % cos 300wt + % cos 5007t
This gives the corresponding Fourier Transform:
G(w) = g[é(w — 3007) + 8(w + 3007) + 8(w — 5007) + 6(w + 5007)]
b.)

Gw) = %F(w — 4007) + %F(w + 4007);
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(a)

I

-500n -300n 300m 500

(b)

1/2
| 1 L/I\k

T T T T T T
—6007 —400r —200m 200m 4001 600

IProblem 5.1.3| We wish to examine the frequency and phase response of one low -frequency

oscillator relative to the second. We decide to multiply the outputs of the oscillators to make the
comparison. However, as a result of difficulties in building a low frequency multiplier we instead

choose to use the DSB-SC modulators and bandpass multiplier, as shown in Fig. P-5.1.3.

a.) Determine the expression for the DSB-SC signals.
b.) Determine the expression for g(t).
c.) Sketch a magnitude Spectrum of g(t).

d.) Under what conditions does g(t) represent the desired product of the two input waveforms?

COS Wyt — rrﬁ() l
cos we! @—* g@)

cos [(wy + Aw)t + 8] ——>n

a.)

®,(t) = cos(wmt) cos(w,t)
$,(t) = cos[(wm + Aw)t + 8] cos(w,t)

You can simplify /expand these if you wish.
b)
1
g(t) = 21(t) x () = 1 [cos (Awt + 8) + cos (2wt + Awt + 0)] [1 + cos 2w,t] ;
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¢.) We know that,
cos(Awt + 0) + cos(2wpt + Awt + )

has the Fourier transform,
re?§(w — Aw) + me P8 (w + Aw) + T8 (w — 2w, — Aw) + Te (W + 2w, + Aw)
Let us show this Fourier transform by F(w), then we have,
|F(w)| = mé(w — Aw) + mé(w + Aw) + 76 (w — 2wy, — Aw) + mé(w + 2w, + Aw)

Note that here we have simply added the magnitudes of different terms because we have impulses.
However, in general, this is not possible.

The resulting magnitude spectrum after multiplication by (1/4)[1 + cos 2w,t] is equal to,
1 1 1
FF@I+ 1P = 200 + LIF(w +200)

d.) g(t) will represent the product of the two waveform if 2w, > (4w, + 2Aw), or w, >
(2w, + Aw), and a low pass filter is used at the output.

’Problem 5.1.4) A sinusoidal signal f(t) = cos 2000t is multiplied by a periodic symmetric tri-

angular waveform (c.f. Table 2.1) with unit peak amplitude and T = 100usec. The output of the
multiplier is applied to a low pass filter with a unity gain within the passband.

a.) Determine the minimum and maximum bandwidth of the LPF if the output is to be a DSB-SC
waveform corresponding to f(t).

b.) Determine an expression for the output of the LPF under the above conditions

c.) Can this system be represented by the DSB-SC modulator shown in Fig. 5.1.(a) under the

above conditions ? If your answer is yes, the determine the two inputs to the modulator.

a.) The signal has a bandwidth of 1 KHz. For the triangular waveform fo = 1/T = 10
KHz and it has odd harmonics only. Therefore, the LPF bandwidth must satisfy the condition
11 KHz < B < 29 KHz where 11 = 10 (first harmonic) + 1 (bandwidth of the signal) and 29 = 30
(third harmonics) — 1 (bandwidth of the signal). Use sketches to visualize this properly.

b.) Using Table 2.1, we represent the triangular signal by the corresponding Fourier series. The

coefficients for the first harmonic are equal to (2/7)%. Assuming unity scale factor for the multiplier

and LPF, we have:
2 2
(_2_) edwot + (z) e—jwot + ... [lejwlt + le_jwlt
T T 2 2

= (2/m)? cos 220007t + (2/7)® cos 180007t

g9(t)
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Note that wg = 200007 and w; = 2000~.
c.) Yes, the equivalent inputs are: cos 20007t and (2/7)?2 cos 200007t.

lProblem 5.1.6 ] When the input to a given audio amplifier is (4 cos 8007t + cos 10007t) mV, the
measured frequency component at 1000Hz is 1V and the ratio of the frequency component at 500Hz

to that at 1000Hz is 0.002. Represent the amplifier output-input characteristic by
eo(t) = are;(t) + azle;(t)]?.

a.) Evaluate the numerical values of a;, a; from the test data given. (This type of test is known
as the intermodulation distortion test.)
b.) What would you expect to be magnitudes of the frequency component at 800Hz and at 1600Hz?
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a.)

eo(t) = a1(4cos8007t + cos1000mt) + az(4 cos 8007t + cos 10007t)?
— 4aq cos 8007t + a; cos 10007t +
8.bay + 8ay cos 16007t + 0.5a4 cos 20007t + 4a, cos 2007t + 4aq cos 18007t

For the given values 0.5a; = 1000 mV, then a; = 2000, and 2a,/a; = 0.002,= a; = 2
b.)

@400Hz : 4a; mV
@800Hz : 8a; mV

]Problem 5.1.10| Two measurement systems are shown in Figure P-5.1.10. Find the output of

each system if e;(t) = coswyt. What type of modulation is present in each and how should it be
detected 7

f(f)\ . T
e, (1)
eo(t)
1 2 3
0 R mnr O TA —«r i
e
' " ) JARVAVAY}
/
Ferrous rod —0
(1)
—
R, = R{1 + af(1)], Liy = k[1 + ax(s)]
alf(n)l << 1 Lys = k[1 - ax(D)]
(a) (b)

a.) It can be shown that

(t)—[ BR___& ] t—[l— il ]coswt
W= IR+R R+R, YT |27 B+R, 1

If we substitute the relation

R, = R[1+ af(t)]
we obtain the relationship

eo(t) =

[ —af(t)
2(2 + af(?))

] coswit
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Given |af(t)] < 2, this can be simplified to give eq(t) ~ =2 f(t) cosw;t
b.) The voltage developed across the inductances is equal to,
eg(t) = elg(t) - 823(t)
= k[1+4 oz(t)]coswit — k[l — az(t)] coswt
= 2akz(t)cosw;t

Both a.) and b.) are examples of DSB-SC modulation. They require synchronous detection.

| Problem 5.2.4 | For the sinusoidally modulated DSB-LC waveform shown in figure P-5.2.4

a.) Find the modulation index.

b.) Write an expression for the waveform in the form of equation (5.18).

c.) Sketch a line spectrum for the waveform.

d.) Show that the sum of the two sideband lines in part c.) , divided by the carrier line yields the
modulation index.

e.) Determine the amplitude and phase of the additional carrier which must be added to make the
waveform shown to attain a modulation index of 20%

f.) Repeat part e.) to attain a modulation index of 80%.

. ‘H\W p/rﬂ”w

~

—125 -J/ d M\U__U

a.) Consider the AM signal ¢(t) = A(1+m coswpt) cosw.t. Let ¢(t) = A(1+m cosw,,t) denote
the corresponding envelope. We have ¥yax/%min = (1 + m)/(1 — m), or,

m= 'l)bmazz: - ¢min
'l)bmam + ¢min
In this case, we obtain,
125-25 100

M= 95125~ 150 = 007%

b.) We have . = A(1 + m) = 125 resulting in A = 75. (The same result is obtained by using
Ymin = A(1 — m) = 25.) Then,

@(t) = 75[1 + 0.667 cosw,,t] cosw,t
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c.) Straightforward.
d.) Each spectrum line of the carrier has amplitude 75/2 = 37.5 and each sideband has ampli-
tude 75 x 0.667/4 = 12.5, then, (12.5+ 12.5)/37.5 = 25/37.5 = 66.7%

e.)

#(t) = (75 + A) coswct + 50 coswy, t cosw,t;

This gives the value of m as m = 50/(75 + A) = 0.20 resulting in, A = 175 V.

f.) Using the same procedure as above we get:
50/(75+ A) = 0.80;

Solving for a yields A = —12.5V = 12.5¢ 79" V

|Problem 5.2.6 | A given AM (DSB-LC) transmitter develops an unmodulated power output of

1KW? across a 50-ohm resistive load . When a sinusoidal test tone with a peak amplitude of 5V
is applied to the input of the modulator, it is found to the spectral line for each sideband in the
magnitude spectrum for the output is 40% of the carrier line. Determine the following quantities
in the output signal:

a.) The modulation index .

b.) The peak amplitude of the lower sideband.

c.) The ratio of the total sideband power to carrier power.

d.) The total power output.

e.) The total average power in the output if the peak amplitude of the modulation sinusoid is
reduced to 4.0V.

a.) Using the result of problem 5.2.4(d), we conclude that the modulation index is equal to

m = 0.8. This results in the following modulated signal,
A(1 + 0.8 coswyt) cosw.t = Acosw,t + 0.44 cos (we — wp )t + 0.4A cos (we + wpm )t

b.) A%/2 = PR = A = /(2)(1000)(50) = 316.22V = Peak amplitude of sideband = 0.44 =
126.5.

c.) P,/P. =m?/2=(0.8)%/2 =0.32.

d.) Using the equation:

T /R = (/R34 + (3) (5) ma?

and replacing A2?/(2R) = 1000, We get the result : P, = 1000 x [1 + (m?/2)] = 1.32kW

2FCC power ratings for AM broadcast transmitters are for an average carrier (i.e. unmodulated) power.
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e.) P, = 1000[1 + (4/5)%(m?/2)] = 1.025kW

|Problem 5.2.10 | Let f(t) = cos wy,t in Eq. (5.28) and add the term age®(t) to Eq. (5.27); then

revise Eq. (5.29) and derive an expression for the modulation index m.

i(t) = are(t) + aze’(t) + aze>(t), (210)
where
e(t) = cos wy,t + cos wt (211)
Expanding and collecting terms at the carrier frequency, we have
vo(t) = kR[a; + as(3 + k?)/2] cos w.t + 2kRas cos wy,t cos w,t + (3kRaz/2) cos 2wyt cos w,t (212)

The third term in the expression represents second-harmonic distortion in the output. Defining

the modulation index for the fundamental,

m = 40,2
- 2(11 + (3 + kz)ag

(213)

Thus it is desirable to keep a3 very small, and not let k& become large.

]Problem 5.2.11 '
A sinusoidally modulated DSB-LC waveform ¢(t) [cf. Eq. (5.18)] is applied to a square-law
device, such that the output voltage eg(t) is eo(t) = [f(¢)]?>. Show that the ratio of the second

harmonic to the first harmonic in eg(t) is equal to m/4.

eot) = A*(14 mcos wyt)? cos® wet, (214)
1., m?  m?
eo(t) = §A (14 2mcos wnt + > + —- cos 2wt)(1 4 2 cos w,t) (215)

m?/2 _m

The ratio of the second harmonic to the fundamental is: 1
m

| Problem 5.4.2|
A SSB— LC, transmitter is modulated with the input f(t) = cos 20007t. In complexed-valued

notation, the output waveform can be written as

$ssp_ro, (t) = R{A[l + mf(t) + jmf(t)]e’ (216)
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a) Evaluate f(t).

b) What is the maximum value of m if envelope detection is used?

¢) Determine the numerical values of A, m if the unmodulated power across 50 ohms is 500
W, and the average power is found to increase 50

d) Find the peak envelope power (PEP; see Problem 5.4.1) under both the unmodulated and

the modulated condition in part (c).

a)

F(t) = cos (2000t — 7/2) = sin 20007t [cf. Fig. 5.31] (217)

b) The envelope is:

r(t) = \/(1 + mcos wmt)? + (msin wpyt)? (218)
= 14+ m%/1+ 2m COS Wyt (219)
14+ m? m

Using a binomial series approximation, we obtain,

r(t) ~ VIE 2 <1 +

m
T m? cos wy,t
The power of the cosw,,t term is equal to 0.5m?/(1 + m?). To compute the proper value of m, we

know that the total power of r(t) is equal to, 1 +m? (AC power m?) and we set the criterion of
having THD < 0.1.

c)

®(t) = Acosw.t+ mAcos(we+ wp)t (220)
A% m?a?
= Ps = -
Pi = P+ P=i=t s (221)

from which: A = 223.6V, m = 0.707.
d) Unmodulated:

2

A
S 222
PEP = = =500 W, (222)

Modulated at m = 0.707:

(14 0.707)2A%

PEP = °R

= 1457 W (223)

|Pr0blem 5.5.1

69



A vestigial sideband signal is generated from an input f(t) by first generating a DSB-LC signal
(m = 0.8) with a carrier frequency f. = 10 kHz and then passing this signal through a filter whose

magnitude frequency transfer function is

1+ cos [(w — wp)/8000], |w — wp| < 80007

0 elsewhere

(224)

IH(w)\={

where wy = 24,0007. Find an expression for the resulting VSB signal, sketch the spectral
density, and calculate the peak envelope power (cf. Problem 5.2.3) to average power if
a) f(t) = cos 1000xt.
b) f(t) = cos 20007t.
c) f(t) = cos 4000~t.

The general solution is
#(t) = [(1 + mcos wpt) cos w.t] @ h(t) (225)
with the Fourier transform,
1 m m
$(w) =27 {Eé(w + we) + -4—6[w + (we +wm)] + Z&[w + (we — wm)]} H(w) (226)
a) we = 200007, wy, = 10007.

#(t) = cos w.t+ 0.4[1+ cos(37/8)]cos(we + wm)t + 0.4[1 4 cos (57/8)] cos (we — wrm )§227)

= cos wet + 0.553 cos(w, + wpn )t + 0.247 cos (w, — wi )t (228)
PEP (14 0.553 + 0.247)2

= =2.37 229
Paug 1+ (0.553)2 + (0.247)2 (229)

b) w. = 200007, w,, = 20007.

#(t) = cos wet+ 0.4[1+ cos (27 /8)] cos(we + wn )t + 0.4[1 4 cos (67/8)] cos (we — wm )§230)

= cos w.t+ 0.683 cos(w, + wp )t + 0.117 cos (we — wp )t (231)
PEP (1+ 0.683 + 0.117)?

= =219 232
Prng 1+ (0.683)2 + (0.117)2 (232)

¢) we = 200007, w,,, = 40007.

d(t) = cos wet + 0.8cos(we + wi)t (233)
PEP (1+0.8)?

= =1.98 234

Pog 1+ (0.8)2 (234)

[Problem 5.6.1
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A noise waveform with a power spectral density S,(w) = 10~ 7e~*l/* W/Hz, where a = 27 X

107 /sec, is passed through an ideal BPF with unity gain, unity resistance levels, and a bandwidth

of 200 kHz centered at 10 MHz.

a) Determine the mean-square values of the in-phase and quadrature components of the band-

pass time representation given in Eq. (5.59).

b) Repeat part (a) assuming that S,(w)is constant (at the center frequency value) across the

bandwidth of the filter.
c¢) Repeat parts (a) and (b) for a bandwidth of 2 MHz.

Let W be the low-pass bandwidth [i.e., 100 kHz for (a) and (b)].
a) Lowpass approach: using Eq. (5.65), we have

Snc(w) = Sno (U-’) = 10—7[€_|w_w0[/a + e_|w+w0|/a]lp

w
ni(t) =ni(t) = -21;10_76_“"’/0‘ /_W[e“’/"‘ + e/ dw = 2e " [eW/* — W/

= 2e 1 [e"0 — 7091 = 0.014715 V2
Bandpass approach:

—— w0+W
n2(t) = 2310—7/ e/ dw = 2¢71[e"0! — ¢7001] = 0.014715 V2.
m wo—W

b) Lowpass approach:

— == 1 W 2
nZ(t) = ni(t) = —10"Te w0/ 2dw = 2 10-7e=1 — 0.04¢"! = 0.014715 V?
¢ ¢ 27 W T

Bandpass approach:

s 2 g [tV -1
n?(t) = —10 / e™*/“dw = 0.04e! = 0.014715 V2.
wo—W

¢) For exponential S,,(w)
nZ(t) = n2(t) = 2¢7'[e”! — %] = 0.1474 V?

For constant S,,(w)

n2(t) = n2(t) = 0.4e~! = 0.1472 V2
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| Problem 5.7.1 |
A DSB-SC and a SSB-SC transmission are each sent at 1 MHz in the presence of additive noise.

The modulating signal in each case is band-limited to 3 kHz. The received signal power in each case

is 0.2 mW. The received noise is assumed to be white with a (two-sided) power spectral density of
10™3 pW/Hz. The receiver consists of a band-pass filter whose bandwidth matches the bandwidth
of each transmission, followed by a synchronous detector.

a) Compare the signal-to-noise ratios at the detector inputs.

b) Compare the signal-to-noise ratios at the detector outputs.

c) Repeat part (a) if the (two-sided) power spectral density were 103/|f| pW/Hz. Would a

“white noise” assumption be valid here?

a)
0.2mW

S

N = 2(10-% oW /Hz) (6 kiiz) — 16.7 for DSB, (243)
0.2 mW
= — . f B
2107 oW o) (3 i) = 333 r SSB, (244)
b) From Egs. (5.73) and (5.80)

]évo; = 2;—1 = 33.3 for DSB, (245)
= % = 33.3 for SSB, (246)

Thus the net S,/N, ratio is the same for both systems in the presence of additive white noise.
c¢) For DSB

fe+3000 103 . 5 . 5
N; = 2/ ——df = 2000[In(10° + 10°) — In(10° — 10°)] = 12 uW (247)
.—3000 f
For SSB., we have:
fe+3000 103 . 5 o
Ny =2 / ~-df = 2000[in(10° + 10°) ~ In(10%)] = 5.99 W (248)
For SSB_, we have:

fe 3
N; =2 10—olf = 2000[In(10%) — In(10° — 103)] = 6.009 LW (249)
f.—3000 f

Thus, the white noise assumption is good here as a result of narrow bandwidth, even though

the noise power spectral density is not flat.
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IProblem 5.7.2|

Show that, strictly on an average power basis, use of an envelope detector in a DSB-LC system

results in a linear (S/N), versus (S/N); relationship. What makes this relationship nonlinear for

commercial AM systems?

For the DSB-LC signal, we have, (Eq. 5.81):
Si(t) + ni(t) = [A+ f(t)] coswet + ne(t) coswet — n,(t) sinw,t (250)

Assuming the signal and noise to be zero-mean, i.e.

F&) = ne(t) = ns(8) = 0 (251)

and that the cross-correlations with the noise terms are zero, i.e.,

F(E)ne(t) = ne(t)n,(t) = f(t)ny(t) =0 (252)

we get,

B = 3 [47 + FP00) + n200) + 200 (253)

Because the signal and noise terms are additive in this result, the S/N dependence is a linear one
in terms of average power. However, in AM detection the envelope is taken first to demodulate the
signal, then the power is computed. In this case there is no longer a linear relation, as exhibited
by Eq. (5.91). (Note that the subject of noise in AM using envelope detection, and in specific

Eq. (5.91), has not been covered in the lectures and is not included in the exam.)

IProblem 5.7.4]
The DSB-LC signal

#(t) = 3cos(10,0007t) + cos (10007t) cos (10,0007t) V (254)

is present with additive white noise whose (two-sided) power spectral density is1 p¢W/Hz. This
signal-plus-noise is passed through an ideal low-pass filter with a bandwidth of 10 kHz. Assume all
resistance levels are 1 ohm.

a) Compute the average S/N ratio at the output of the low-pass filter.

b) A synchronous detector is used to demodulate the above signal. Compute the average S/N
ratio if the output of the detector is filtered to 0 < f < 1 kHz.

c) An ideal square-law detector (i.e., the signal-plus-noise is multiplied by itself) is used to
demodulate the above signal. Compute the average S/N ratio if the output of the detector is
filtered to 0 < f < 1 kHz. [Hint: Use frequency convolution, and signal-signal, signal-noise,

noise-noise products.]
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a)

N; = 2(n/2)B=2x107%(10*) =0.02 W (255)
S; = ¢2(t) = (3)%(1/2) + (1/2)(1/2) = 4.75 W (256)

Si
N, = 2875 (23.8 dB) (257)

b) After LPF

eo(t) = (1/2)cos(10007¢) (258)
So = €)= (1/2)(1/2) = 1/8 (259)
(260)

Using Eq. (5.72), N, = N;/4 = 0.005 and S,/N, = 25 (14dB). Note that using Eq. (5.88)
for m = 1/3 (which is the modulation index for the signal given in 254, gives (2/19)(237.5) = 25,
checking this result.

c) After LPF

eft) = {[qﬁ(t) + n.(t) coswet + n,(t) sinwct]z}l (261)
P

1
= 3coswpt + 3nc(t) + nc(t) coswpt + 7 58 2wt + %nz (t) + %nﬁ (t) (262)

The first term in this result is the modulated signal, with the average power (3)%/2, the second
term is the primary noise term, with average power (3)2N; = (3)2(0.02), the ratio of these two terms
is 25, the same as was obtained in (b) using synchronous detection. The third term represents the
harmonic distortion, with average power (1/4)?(1/2). The forth term represents a bandpass in
phase noise term around frequency w,,. This noise term has the power N;/2 = 0.01. The last two
terms represent noise-noise interactions in the square-law detection. To compute the power of these
terms, we neen to know the probability density of the noise. We assume that this is a Gaussian
distribution. For a Gaussian distribution, we have n% = 3n2 = 3 x 0.02. Taking the effect of the
(1/2) factor into account, the power of each these two noise terms is equal to 0.03/2. The overall

result is,

So _ (3)%/2 _
N, (3)2(0.02) + (1/4)2(1/2) + 2(8 x 10-6) 213 (13.3dB) (263)

Note that the noise-noise term do not contribute appreciably here because the input S/N ratio

is relatively high.

| Problem 6.1.1
Determine the instantaneous frequency, in Hertz, of each of the following waveforms.
a) 10 cos(1007t + w/3)
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b) 10 cos(2007t + 10sin7t)

c) 2exp[j2007t(1 + /1))
d) cos 2007t cos(5 sin 27t) + sin 2007t sin(5 sin 27t)

The instantaneous frequency, in Hertz, is

1 db

il 264
f 2m dt (264)
where 6 is the instantaneous phase of the signal.
a)
1d 1007
s = — (100t = —=50H 2
f 27rdt( 007t + 7/3) o 50 Hz (265)
b)
1d .
fi = ——(2007t + 10sinmt) = 100 + 5 cos wt Hz (266)
2 dt
c)
1d
fi = o= [200m¢(1 4 Vt)] = 100 + 150+/¢ Hz (267)
d)
cos 2007t cos(5 sin 27t) + sin 2007t sin(5 sin 27¢) = cos(2007t — 5 sin 27t) (268)
d
fi= 2i2i—t-(2007rt — 5sin27t) = 100 — 5 cos 27t Hz (269)
T

| Problem 6.1.3 |

a) Find an approximation to the Fourier series expansion of the angle-modulated waveform

P(t) = R[Aexp(jw.t) exp(jfsinwnt)] for small § by using the MacLaurin series expansion for
exp(z) and retaining only the first two terms in the expansion.

b) Sketch the line spectrum of the approximation to %(t), as determined in part (a).

c¢) Determine the Fourier transform (spectral density) of the approximation to %(t), as deter-

mined in part (a).
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a)

IB Jwmt ée—jwmt (270)

exp(jfsinwmt) & 1+ jBsinwmt =14 Te g

R[A exp(jw.t) exp(jB sinwy,t)] ~ Acos wct+f12£ cos(wetwpm, ) t— 14—2@— cos(we—wm )t = A coswt—BAsinwp,tsinw,t

b) Easy.
¢)
AB rAB

(W) = TAS(w £ we) + 12—5[w  (we + wm)] = 500w & (o — w)] (271)

|Problem 6.2.1 |
A 1-GHz carrier is frequency-modulated by a ten-KHz sinusoid so that the peak frequency

deviation is 100 Hz. Determine
a) the approximate bandwidth of the FM signal;
b) the bandwidth if the modulating signal amplitude were doubled;
c) the bandwidth if the modulating signal frequency were doubled;
d) the bandwidth if both the amplitude and the frequency of the modulating signal were doubled.

a)

Aw 102
p = - =imE=001 - NBFM (272)
B ~ 2f,=20KHz (273)
b)
Aw 2 x102
b = - ="jpr =002 - NBFM (274)
B ~ 2f,=20KHz (275)
c)
Aw 102
= — = -———=0.005 NBFM 276
A om  Tx10f 0008 = (276)
B ~ 2fn,=40KHz (277)
d)
Aw 2x102
B ~ 2f,, =40 KHz (279)
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| Problem 6.2.3]
The upper sideband of an AM waveform (DSB-LC) with sinusoidal modulation and modulation

index m is multiplied by a factor o, where: 0 < a < 1. Derive a relation for the peak (i.e.,

maximum) phase deviation from the carrier as a function of m and a.
Solution:

amA

#(t) = Acoswct+ mTA cos(we — W)t + cos(we + wp )t

mA mA . ) am
= Acosw.t+ 5 cos wet cosw,,t + N sinw,lsinw,,t +

1 1-—
= A1+ %m coswmt] coswet + A [——é—gmsinwmt sin w,t

cosw.t cosw,,t —

The phase angle from the carrier is, assuming A cos(w.t + v(t)],

1-a

(t) = — tan™! g mement (281)
= 1fa
1+ 5 M Cos Wy, t

For w,,t = 7 /2, the denominator of y(t) is minimum and the numerator is maximum. Therefore

Ymaz occurs for w,,t = w/2

Ymas = — tan”! [m <1 5 a)] (282)

| Problem 6.3.5 |

A 1-KHz sinusoid is used to frequency modulate a 50-KHz carrier signal; the peak frequency

deviation from carrier is 200 Hz. This FM signal is applied to a non-linear system whose input-
output transfer characteristic is e,(t) = 2e?(¢). The output is filtered with an ideal bandpass filter
(BPF) having a bandwidth of 20 KHz, centered at 100 KHz.

a) Sketch to scale the resulting line spectrum. b) Using a table of Bessel functions, estimate

the modulation index # of the output signal.
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a) Easy.
b) # =200/1000 = 0.2 = NBFM. Then, we have,

ei(t) = Jocoswet + Jy cos(we + wm )t — J1 cos(we — Wi )t (283)
We make use of the identity, 2 cos A cos B = cos(A + B) + cos(A — B).

eo(t) = 2e2(t) = (J2 — 2J%) cos 2wt + 2J0J1 cos(2we + W )t + J7 cos (2w, + 2wy, )t
—2J0J; c08(2we — Wiy )t + J7 cos(2w, — 2wy, )t
+(JE 4 2J}) — 2J3 cos 2wt (284)

The last line does not pass through the LP-filter.

Now we compare these coefficients with the corresponding coefficients of an FM signal. We have

JZ —2J% = (0.99)% — 2(0.10)* = 0.960 (285)
2JoJ1 = 2(0.99)(0.10) = 0.198 (286)
J? = (0.10)* = 0.01 (287)

From tabulated values, the closest match is # = 0.4, which is the predicted result.

IProblem 6.3.6 ‘

A carrier waveform is frequency-modulated by the sum of two sinusoids:

&(t) = 100 cos(wct + sin wy,t + 2 sin 2wy, t), (288)

where f, = 100 KHz and f,, =1 KHz.

a) What is the peak frequency deviation from the carrier?

b) Estimate the net bandwidth required for transmission of this FM signal.

c) Sketch to scale the resulting magnitude line spectrum (one-sided above carrier).

[Hint: Express ¢(t) in complex-valued notation and use Bessel functions for series representa-

tions to recognize the required coefficients.]

a)

1 db
Af = Max (5—7;:&‘ - fc) (289)
= Max (fin cOSwpt + 4 fm, cos 2wnt) (290)

The maximum value occurs at w,,t = 0, so that
Af=5f, =5KHz (291)
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¢(t) — m{Aejwctejﬁlsinwltejﬁzsinwzt} (292)
_ %{Aej“’ct S Ta(Bemt 3 anz)ef‘Wﬂ} (293)

= ?R{Ae"“’” > o Jm(ﬂl)Jn(ﬁz)eﬂm“lWﬂt} (294)

MmM=—0o0 N=—00

(295)

where 81 = 1, B2 = 2, w1 = Wy, Wy = 2wy = 2wy,

To determine the bandwidth, using a 1% criterion, we find values for which |J,,(81)Jn(82)| >
0.01 and then determine the resulting bandwidth. Consider a matrix where m is the index of the
row and n is the index of the column. We put J,,(1) x J,,(2) in location (m, n) of the matrix. The

frequency corresponding to the (m, n) element is equal to 2n + m KHz.

(77)(.22) = 1694 (.77)(.58) = .4466 (.77)(.35) = .2695 (.77)(.13) =.1001 (.77)(.03) = .0231
(.44)(.22) = .0068 (.44)(.58) = .2552 (.44)(.35) = .1540 (.44)(.13) =.0572 x(.44)(.03) = .0132«
(.11)(.22) = .0242 (.11)(.58) = .0638 (.11)(.35)=.0385 (.11)(.13)=.0143 (.11)(.03) = .0033
(.02)(.22) = .0044 (.02)(.58) = .0116 (.02)(.35) =.0070 (.02)(.13)=.0026 (.02)(.03) = .0006

The bandwidth is determined by the element with the * sign because it has the maximum
frequency. It corresponds to m = 1 and n = 4, resulting in a total bandwidth of: 2[4(2) + 1} = 18
KHz.

| Problem 6.3.9]
The analytical method used to find the spectral density of FM with sinusoidal modulation can

be used for more general periodic modulating signals with zero mean. Consider the case in which
modulating signal is a periodic square wave of unit amplitude and period T. (For convenience,
assume that the square wave has even symmetry about the origin). Let the peak frequency deviation
from carrier be Aw, and define a modulation index 8 = Aw/wo where wy = 27/T.

a) Sketch the instantaneous frequency and phase.

b) Derive an expression for the spectral density.

c) Sketch the magnitude spectrum for 8 = 5.
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a)

o(t) = /O Cwit)dt = wt + (t) (207)

where w; is the instantaneous frequency and

| Awt -T/4a<t<T/4
() = { Aw[(T/2)—t] T/4<t<3T/4 (268)
b) We can write
#(t) = R{ AP} = R{AeTvetei7(V)} (299)

The function ¢”® is periodic with period T and can be represented by a Fourier series with

coefficients F,

7 1 /T/4 e Bwt —jwot 1y n 1 [3T/4 eI BWT /2, ,—jAwt ,~jwot gy (300)
n = 5 = €
T J-7/4 T Jr/a
1
= S{Salr(8 —n)/2]+ (~1)"Saln(F +n)/2]}, B = Aw/wo (301)
This result is real-valued, we can write it in terms of cosines
o0
¢rm(t) = A D Fycos(we + nwo)t (302)
The spectral density is
Srpy(w)=7A Z Fo[8(w+ we + nwp) + 8(w — we — wp)] (303)

¢) Easy.

| Problem 6.4.1]
The sinusoidal signal f(t) = acos2w f,t is applied to the input of a FM system. The corre-

sponding modulated signal output (in volts) fora =1V, f,, =1 KHz, is
#(t) = 100 cos(2m x 107t + 4 sin 2000m¢) (304)

across a 50-ohm resistive load.

a) What is the peak frequency deviation from the carrier?

b) What is the total average power developed by ¢(t)?

c) What percentage of the average power is at 10 MHz?

d) What is the approximate bandwidth, using Carson’s rule?
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e) Repeat (a)-(d) for the input parameters a = 0.75 V, f,, = 2 KHz; assume all other factors

remain unchanged.

a)

f; = 107 4 4000 cos 20007t

which leads to f. = 10 MHz, Af = 4 KHz.

b)
_ 21 _ (100)* _
P = R 2(50) 100 W
c)
_ Af_
b= 5.1
_ 54 _ 2 _
Po = P b =100(-0.40) = 16 W
Note that J2(4) = —0.4 and 3, J2(4) = 1.
d)
B 2fn +2AF = 2(1) + 2(4) = 10 KHz
e)

Af = 4(0.75/1) = 3 KHz = = 3/2
P, = 100 W (unchanged)

Py, = PJ2(3/2)=100(0.51) =26 W
B 2(2) + 2(3) = 10 KHz.

2

(305)

(306)

(307)

(308)

(309)

(310)
(311)
(312)
(313)

IProblem 6.4.2J A certain sinusoid at a frequency of f,, Hz is used as a modulating signal in
both an AM (DSB-LC) and an FM system. When modulated, the peak frequency deviation of the
FM system is set to three times the bandwidth of the AM system. The magnitudes of of those

sidebands spaced at 4 f,, Hz from carrier in both systems are equal, and the total average powers

are equal in both systems. Determine a.) The modulation index of the FM system, and b.) the

modulation index of the AM system.
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Solutiont =)

Af

fm

b.) Let A; and A; be the AM and FM carrier peak amplitudes, respectively.
We have total average power for FM = total average power for AM. Then,

Af=3x (2fn) = == =6

A% = A} (14 m?/2) (314)
and also magnitudes of sidebands at f. + f,, are equal in both systems, i.e:

From equations (314) and (315) above it can be seen that the modulation index m is given by:

2|J1(6)]

- /1 - 2J%(6)

|Problem 6.4.3| The output of a given FM modulator with a sinusoidal input is: ®(t) =

~ 0.61

A cos (wet + Bsinwy,t). This output () is applied to a synchronous detector and an RC lowpass
filter, with RC~! = w,,. Develop an expression for the average power at the filter output (for an

arbitrary 3) if it is given that the output is one watt when 8 = 0.

®(t) can be written as :

=A Z Jn(B) cos (we + nwp, )t.
n=—0oo
After the synchronous demodulator, assuming that the frequency components around w, are filtered,

the output is equal to:

A

:E Z Jn(B) cos nwpt

n=—od

Using equation (6.43) of your book (Stremler) the power across a 1-ohm resistor is given by:

P=20=% 3 20

n=—oo
The magnitude squared of the RC low-pass filter transfer function is given by:

(o) = .
1+ (w/RC)? wz—!—wfn

The average output power of a linear system is given by equation (2.78) of your text (Stremler) as:

(oo}

P, = E |H(nwo)|2|Fn|2.

n——oo
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In this case w, = w,,. Using this relationship we get :

g2 A2 &0 JEB
5 2 nBH (e = = wnzgr)l

Nn=—o0 n——

P,= (316)

The case of 8 = 0 corresponds to having only the carrier. For 8 = 0, the total power is 1W. Or:

AZ
)
replacing in equation (316), A2/8 by 1W we get :

P, JE(0)= A?/8 = 1W (317)

r= Y EO - pe ey 20

n=-—0c n=1

[Problem 6.5.3] A carrier waveform is phase modulated by a sinusoidal signal f(t). The peak

phase deviation is 1 rad when the peak input amplitude is 0.5V. Find the bandwidth using Carson’s
rule, and the ratio of the average power in the carrier and the first-order sidebands for each of the
following inputs.

a.) f(t) = cos1000mt

b.) f(t) = 1.2 cos 3007t

c.) f(t) =1.9cos200mt

For Phase modulation (PM) the modulation index § is given by:

Aw
p==2
Wm

In this case k, = Af/a = 1 rad/(0.5 volts) = 2 rad/V The bandwidth B is obtained using Carson’s

rule as:

= ak,

B =2fn(1+P)

Let parameter A denote the desired ratio. We have,

L _TRB) +22(8)
T~ J3(B) ~ 277(B)

a.) fm = 500Hz; 8= (1)(2) = 2;
B =2 x (500)(1 + 2)Hz = 3KHz
A = 2.59. From tables of the Bessel functions

b.) fm = 150Hz; 8 = (1.2)(2) = 2.4;

B =2 x (150)(1 + 2.4)Hz = 1.02KHz;
A=118.
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c.) fm = 100Hz; 8 = (1.9)(2) = 3.8;
B =2 x (100)(1 + 3.8)Hz = 0.96KHz;
A =0.19.

IProblem 6.5.4] The testing procedure developed for a certain PM system designed to trans-

mit remote sensing information to an orbiting satellite uses the staircase type periodic modulation
signal vy(t) shown in Fig. P-6.5.4

a.) Derive an expression for the spectral density, referred to the carrier frequency w., for this
modulation as a function of the peak phase deviation . (The comments in problem 6.3.9 may be
helpful here also.)

b.) Sketch the magnitude spectrum for a = 7/3 (60°).

()

—— o

~T/3 2773
-2T/3 0 T/3 T

a.) We can write the PM signal as:
Bpar(t) = R{AcT et}

The function (t) is periodic with period T and can be represented by the Fourier series with

coefficients F,, given by:
1 T3 1 [27/3 , 1 [T .
F — __/ e]ae—-gnwotdt + = eoe—]nwgtdt 4= e—gae—gnwotdt
" T Jo T Jrss T Jazys

= (_;)n Sa(nm/3)[1+ 2cos (a + 2n7/3)]

We can also write ®ppr(t) as :

®pp(t)=A Z F, cos (we + nwo)t

n=—=aoco

where wo = 2m/T.
From this expression the spectral density can be obtained as:

®py(w)=7A i": F,[6(w + we + nwg) + 6(w — we — nwp)]

n=—oo
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b.) Easy.

|Problem 6.8.3|
Suppose that output of the FM discriminator in Fig 6.25 were applied to a lowpass filter with

frequency transfer function H (w), instead of the ideal LPF assumed in equation (6.110). Assuming
sinusoidal modulation at w = w,,, show that Eq. (6.115) can be used except that N, must be
replaced by Ng4:
51;/_2 | H () 2dw
win | H (wm)|®
For a filter with a transfer function H(w), equations (6.109) and (6.110) of the text

can be respectively written as :

Neq = 377

Sno@) = TrlH@)P:
No = 5o [ (n/ %)t H )P

The output signal s,(t) [as in equation (6.100)] for sinusoidal modulation is given by:
So(t) = | H(wn) kg cos (wmt +6)
where § = /H(w,,). Noting that Aw = aky, the output signal power is then :
S0 = |H(wm) P (Aw)*/2

Then the output S/N ratio is then given by:

S _ |Hen) (Aw?/2
Noo Aty [T Wt H )P
(Aw)? A?/2
’ wl  Neg
. 5

eq
where: 1 poo
—2—;/_00 w?| H (w)|*dw

wh | H (wm)[?

Neq =3n
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|Problem 6.8.4]

A communication system operates in the presence of white noise with a two sided power spectral
density S,(w) = 0.25 x 10~ W/Hz and with total path losses (including antennas) of 100dB. The
input bandwidth is 10-KHz. Calculate the minimum required carrier power of the transmitter for
a 10-KHz sinusoidal input of and a 40dB output S/N ratio if the modulation is:

a.) AM (DSB-LC), with m=0.707 and m=1.0

b.) FM, with Af = 10KHz and A f = 30KHz.

c.) PM, with Af =1 rad and A = 3rad.

d.) Summarize your findings by marking these points on a graph of power required (in KW) versus
bandwidth (in KHz).

9
N, = 2(0.25 x 10~ )W /Hz(2 x 10%)Hz = 10-1°W
Using equation (5.90) from your book (Stremler),

s [(5) ] =10

The required transmitter power is then obtained (after taking into account the 100dB losses as):

20KW m = 0.707

P, = 10'1°(107%/m?) = 10*/m? =
t (107%/m’) / 10KW m=1

b.) For Ay = 10KHz, f = Af/fn = 1; N, = 107'°W from part (a).
Using equation (6.115) from your book (note that S,/N, = 10%), we obtain,

NS, 1071
~ 332N,  3(1)?
From which we obtain the transmitter power as P; = 10!°S, = 3.33KW

For Ay = 30KHz: 8 =3 and P, =370W
c.) Using the results of Example 6.8.1,

() (),

NS,

for A = 3, P, =10 x 10%/(3)? = 1.11KW.

S, (10*) = 3.33 x 1077

d.) Easy.
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lProblem 6.&6] A frequency -division multiplexing system uses SSB-SC subcarrier modula-

tion and FM main carrier modulation. There are 20 equal-amplitude voice-input channels, each
bandlimited to 3.3KHz. A 0.7-KHz guard band is allowed between channels and below the first
channel.

a.) Determine the final transmission bandwidth if the peak frequency deviation is 400KHz.

b.) Compute the degradation in signal-to-noise of input No.20 when compared with input No.1.
(Assume a white input noise spectral density to the discriminator and no De-emphasis.)

c.) Repeat part (b) if PM were used.

a.) Each channel requires (0.7 +3.3) = 4.0 KHz

fmaz = (20)(4.0) = 80KHz; Ay = 400KHz; Bgq = 5.

The final bandwidth is obtained using Carson’s rule as:

B = 2(80KHz)(1 + 5) = 960KHz.

b.)
Channel 1: 0.7 -4.0KHz
Channel 20 : 76.7-80KHz.

The FM discriminator noise output varies parabolically with frequency:

Pro [ g [[* prag] = G812 o
P [ 76.7f df] [/0.7f df] T T@F—(07)3 954.8 ~ 29.8dB

c.) For PM, white input spectral noise density gives white output noise. (see example 6.8.1 of your

book). Therefore Pyo/P; =1 and all channels are treated equally in terms of the noise.

|Problem 6.10.1 |A 10-KHz sinusoidal signal is to be transmitted using FM in the presence of

additive white Gaussian Noise. If the S/N improvement at the demodulator output is required to
to be 20dB, determine the required peak frequency deviation if a.) no pre-emphasis/de-emphasis
is used; and b.) the standard pre-emphasis/de-emphasis is used (cf Fig.6.33) c.) Make a plot of
the required peak frequency deviation versus f, for the conditions in part (b) over the frequency
range 5KHz < f,,, < 15KHz.

a.) The input and output signal to noise ratio of an an FM discriminator are related
by the equation:

in this case this relation translates into:
38% =100, or 8 =5.77; Af=Bfm = (5.77)(10*) = 57.7KHz

Q7



b.) With standard preemphasis/deemphasis the signal to noise improvement is governed by the
relationship:
So _ 352r§£- or f°T =33.333
N, N’
Where T is the S/N improvement due to preemphasis/deemphasis. Assuming f; = 2.1, in equa-
tion (6.124) of the book (Stremler), we obtain, I'(f, = 10, fi = 2.1) = 10.59, so that B? =
33.333/10.59 = 3.147 and finally Af = Bf,, = 17.74KHz
c.) Combining the steps in b.) into a more general solution, we get:
100/3
Af = fm T
where T is given in equation (6.124) of the text. A graph of this result can be easily drawn.
Note that in this case the Af is controlled by the highest modulating frequency (assuming equal

weighting across the input bandwidth), in contrast to the conditions of (a) in which A f is constant.
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