]Problem 3.1.1‘

a) Determine the function f(t) whose Fourier transform is shown in figure P-3.1.a.
b) Determine the function f(¢) whose Fourier transform is shown in figure P-3.1.b.

¢) Sketch f(t) and g(t) near t = 0. What effects does the phase has on the symmetry of this
waveform?

|F'(w)} |G(w)]
-w O w ¢ -w 0 w ¢
ef(“’) 6g(w)
w2
—n/2

Figure 9: P-3.1.1

The function f(t) can be obtained from F(w) by doing an inverse Fourier transform,

i.e.,
fO) = F P} = - [ Flw)eta (75)

a)
50 = o [, netas = WL (76)

b)
ft)= % /_OW reI™2eitdu 4 % /OW me I 2eivtdy = W}':(—%,E)%Wi (77)

c) The sketches for the time functions are given in the figures 10, 11. In the first case, the Fourier
transform is real and even resulting in a real, even time function. In the second case, the Fourier

transform is pure imaginary and odd resulting in a real, odd time function.

|Problem 3.1.2| Show that if F(w) = F{f(t)}, then
a)

mm:/mew (78)
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a0 -20 -10 0 10 20 30

Figure 10: The function f(¢) = sin(Wt)/t for W = 1, even symmetry.

r L I L L L
0'-830 -20 -10 0 10 20 30

Figure 11: The function f(t) = [1 — cos(Wt)]/t for W = 1, odd symmetry.
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b)

F@I < [ s (79)
c) 2
<o [ Pl (80)
)
/_ /_ /_ F(t+ 7)e 3% drdwdt = 2n F(0). (81)

a)
F(0) = / T f(t)eitde

— 00

:/OO f(t)e—jodt:/oo f(t)dt; (82)

w=0 J-oo ~00
b) Using the triangle inequality, |A + B| < |A| + |B|, and considering integration as a limit of a

summation, it can be shown that:

‘ /: f(t)e 9t dt

Note that [e 7%t = 1.

)

< [T uolfea= [T s (83)

fld“i?f - 51; /_ Z wzF(w)ej“’tdw‘ < % /_ O:O W? |F(w)| do. (84)
Note that the same inequality used in part b) was used.
d) Note that,
/Oo F(t+ 7)e 3 dr = ™ F(w) (85)

then, we have,

[l nesinsas [ [ regetauai=ae [ s =2mro) @

—00

|Problem 3.2.1J a) Find the Fourier transform for of the raised cosine pulse signal defined by:

f(t):{ 14cosmt if -1<t<l1 (87)

0 elsewhere

Express your answer in terms of Sa(w).
b) Use equation 3.15 (equation 3.15 is as follows: F, = F(nw)/T) to find the exponential Fourier

series coefficients for the following periodic pulse train for the case T = 2.

i f(t - kT) (88)

k=—o00
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c) Sketch the time waveform of the periodic pulse train in part b) and then find the exponential

Fourier series coefficients directly using Euler’s identities.

a)
1 . 1 1 . 1 1 R
Flw) = / eIty 4 - / emilw=mligy 4 * / edletmit gy
-1 2 -1 2 —1
= 2Sa(w)+ Sa(w — 7) + Sa(w + )
Note that,
1
5/ e 7tdt = Sa(w) (89)
-1

b) Recall that F,, = (1/T)F(w) |

above we get,

wenwy® I this case, wg = 2w /T = =, therefore, from part a)

1

F, = 5 {2Sa[n7] 4 Sal[(n — 1)x] + Sa[(n + 1)7]} (90)

Since Sa(kw) = 0 for k # 0 and Sa(kr) = 1 for k = 0, it follows that:

1
FIZF—1:'2—7 (91)
Fo=1, (92)
and,

F,=0 for |n|>1. (93)

¢) Using Euler’s identity, we get directly an expansion of our function in exponential form as
1 . )
f®) =1+cos(mt) =1+ E(e”t + e7I™) (94)

from which it is evident that Fy =1, F_; = F} =1/2 and F,, = 0 for |n| > 1.

|Problem 3.2.2|  a) Find the spectral density of the real-valued function:

aexp(—at t>0

fliy =1 =P (95)
b exp(at) t<0

b) Examine your answer to part a) for the special cases b = a and b = —a, particularly with

respect to the following chart:

ft) Flw) Fw)

even even real

odd odd imaginary
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Figure 12: Raised cosine pulse.

a) The Fourier Transform can be written as:

0 oo ;
o a—jw)t —(a+jw)t _a(b+a)+]w(b_a’)
F(w)_/_oobe( ’)dt—+—/0 e~ (i)t gy — ot (96)
b) From the above expression we obtain the following cases:
2a2 .
Z ot if a=05b
F(w) = (97)
—j2wa
21w if a=-b

These conclusions are consistent with the chart given above, with b = a corresponding to the first

row and & = —a to the second row.

| Problem 3.2.3| A pulse signal described by f(t) = exp (—alt|)rect(¢/T) is repeated periodically
with period T'.
a) Find the exponential Fourier Series beginning with the Fourier transform of exp (—alt|)

and the converting to the series.
b) Compare your answer with problem 2.7.1.
c) Under what conditions can equation 3.15 (equation 3.15 is as follows: F,, = #F(nwp)) be

used to obtain the Fourier series coeflicients ?

a) For one pulse ,
Fw) =

2a
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Using equation 3.15:

%F(w) lomnun = (471'27;%“121) + a? (99)
b) For T' = 2, the result in a) gives:
R Y Fp—— (100)
T ° g% 4 72n?
But, problem 2.7.1 gives:
F = a(l — e"*cosmn) (101)

a? + n?x?
Relationship (100) is indeed the general term of the Fourier series representation of the periodic
function obtained by repeating the function exp (—alt|) while (101) is the general term of the
Fourier series representation of the periodic function obtained by repeating the function f(t) =
exp (—alt|)rect(t/T).

c) For a give function f(t), the formula F,, = % F(nwo) gives the Fourier coefficients of the
periodic signal 72 f(t — kT'). These are equal to the Fourier coefficients of f(¢) as long as
f(t) is zero outside of the time interval T'. In this case, the replica of the original signal, namely
f(t—kT), do not have overlap and the resulting periodic signal, namely > 72 _  f(t—kT), is equal

-

to the original signal f(t) over the time interval T

|Problem 3.2.4| The time function f(t) = (1/ov/2m)e=t*/27" (o= constant) is known as the

Gaussian function. This function has finite energy and thus is Fourier transformable. Find its

Fourier transform. In carrying out your solution it will be helpful to combine exponents, complete
the square in the exponent, and then use the finite integral [ e~* du = /7. Note that f(t) and

F(w) have the same mathematical form; i.e., the Gaussian function is its own Fourier transform.

F ) — * 1 —t? /207 —Jwt gy — 1 * —[(t2+j20'2wt—0'4w2+0'4w2)/20'2]dt (102)
(w —o0 O 27re ‘ o2 Jooo ¢ .
Let u = (t + jo’w)/+/2; then,
F(w) = —l—e_(”2w2/2)/ e du=e"Y2 (103)
™ —o0

[Problem 3.4.2 I Show that a more general statement of Parseval’s theorem for for energy signals
than Eq. (3.21) is

[~ swe i = - / Z F(w) G (w)dw. (104)

-0
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/ ® H)g ()t = / ” [51; /_ Z F(w)ej‘”tdw] [% /_ O:O G (2)e " da | dt. (105)

— o0 -0

Allowing an interchange in the order of integration, this becomes:

/ f(t)g*(t)dt = EE / / w)G*() / e i@t g dedt. (106)
Using Eq. (3.25) of the main text, this becomes:
/_oo F(t)g" 27r/ / )6(w — 2)dedw = —/ F(w)G (w)dw.  (107)

] Problem 3.4.3 ] Evaluate the following definite integrals using Parseval’s theorem:

a) / [sin z/z)*dz,
b) [ da/(a+2?),
c) / de/(a® + 2%)2.
We know that,
a)
rect(t/2) <= 28a(w) (108)
then,
1 1 oo
/ 1dt = —/ 2%[sin w/w]?*dw (109)
-1 2m —00
resulting in, -
/ [sin w/w)dw =7 (110)
b)
1
—at t
e "u(t) <= it e (111)
* 1P * t2
- dw:27r/ e ™dt =n/a, a>0. 112
[ = [ (eypat =/ (12)
c)
—a 2a
M= 2 (113)
1 had 2a 2 2w [ 4 T
el - - 27 -—alt! 2 —2at - .
4q? /_OO (az +w2) dw 4q? /_oo( ) dt = 4q? / dt 2a3’ a>0 (114)

l Problem 3.4.4 | Use the result of problem 3.4.2 to evaluate the following integrals, for a > 0,5 > 0:
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oo de
I (2% + a?)(2? + b7)’

b) f Sa(b:c
22 + a2

a)
2a
—alt]
= o (115)

o dw © 1 1 T o0 T
= J— _altl_ “bltl —_ —(a+b)t —
/_oo (w? + a?)(w? + b?) am /_oo 2a°  26° dt ab /0 € dt ab(a+b)° (116)

L rect(t/r) < Sa(wr/2) (117)

J
et Sa‘ bw) —alt| 3, _ T b —at g, T —ab
/oow2+a2d w = 2m / —rect( > —e dt = ab/o e dt_m(l—e ). (118)

IProblem 3.5.1| Use Eq. (3.25) and an interchange in the order of integration to show that:
a) F-HF{fO)}} = f(8),
b) F{F{f(®)}}= f(-1).

)
FFEson =5 [ | smeirar] et (119)

FHFUON =5 [ 1) [ e Ddwdr = [~ pnjee - nar = ). (120

-0

b)

FIF{F(O})} = /_ ” [ / ” f(T)e—J'WdT] ety = / * fm) [ /_ 0; e‘j‘”(t"'")dw] ir,  (121)

FIFSON = [ 108+ 7)dr = (-0, (122)

IProblem 3.6.1 \
a) Find F(w) for the f(t) shown in Fig. P-3.6.1 (a), (b).
b) Sketch |F(w)| for 7 < T for both cases, and compare.

a)
Fi(v) = Are “TSa(wr/2), (123)
Fy(w) = Are’TSa(wr/2)+ Are 7TSa(wr/2) = 2A cos (wT) Sa(wT/2). (124)
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fi(t) f2(t)

o~

0 T -T 0 T

Figure 13: P-3.6.1

b) Graphs for |Fj(w)| and |F5(w)| are shown if Figures (14) and (15), respectively.
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-20 -15 -10 -5 0 5 10 15 20

Figure 14: The function ASa(wt/2) for A=1,7=1.

| Problem 3.6.2|
Use the modulation property to find the function f(t) whose Fourier transform is shown in Fig.
P-3.6.2 for the conditions:
a) B = A;
b) B = —A.

a) For A = B, we have,
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-1.51

%0 5 0 5 o 5 0 15 20
Figure 15: The function 24 cos(wT)Sa(wr/2) for A=1,7=1,T =2.

F(w)

2A

2w

- wy wo

Figure 16: P-3.6.2

F(w) = 2Arect[w/2W] + Arect[(w — wp)/2W] + Arect[(w + wo)/2W] (125)
Using Table 3.1 and the modulation property of the Fourier transform,
f(t) = 2A—I;_KSa(Wt) + A—I;Kejwotsa(Wt) + A-V;-e—j“’otSa(Wt) (126)
= 2A—V7—I:—[1 + cos wot]Sa(Wt). (127)
b) Similarly, for A = —B, we have,
F(w) = 2A rect[w/2W] — Arect[(w — wp)/2W] — Arect[(w + wo)/2W] (128)
and
fy = 24%sa(me) - AT esotsa( W) AK:—e—iwotsa(Wt) (129)
= 2A—VWK[1 — cos wpt|Sa(Wt). (130)
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|Problem 3.6.4!
If f(t) < F(w), determine the Fourier transform of

a) f(2-1),
b) f[(¢/2) - 1],
c) f(t)cos w(t —1),

a) 2 1scan)

a) Assuming § = 2 — £, we obtain,

/Oo f(2- t)e_j“’tdt — /00 f(g)e—jw(Z—ﬁ)df = e—ijF(_w).
b) Assuming £ = (¢/2) — 1, we obtain,
/ Y H(2/2) - 1)etdt = 2 / T F(€)e D) g = 2¢39? F(2w).

c) Substituting, cos(rt — ) = [e/("~™) 4 e=3(™=™)] /2 we obtain,

1
2

- 00

Note that e/™ = e™9™ = —1.

d) We have,
= [ Rt
fety = /_ O:OF(S)ejzétdﬁ
Lueo) = [ GrEe

Assuming w = 2, we obtain,

LU0 = [ jwP/2e s

This results in, p
St = (/D F(w/2)

[Problem 3.6.@

oo . 1 . oo .
Lg-ir / F)e i dt 4 e / f(e)eirmtgy — ——;—[F(w —n) + Plw+)].

(131)

(132)

(133)

(134)

(135)

(136)

Find the Fourier transform of the pulse waveform f(t) shown in Fig. P-3.6.5 by differentiating

to obtain impulse functions, then writing the transform using the delay and integration properties.

[Hint: Consider use of superposition.]
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S N

Figure 17: P-3.6.5

Taking two derivatives of f(t), we obtain f”(t) = (—A/7)é(t + 7) + (A/7)6(t — T) + 2A8'(¢).

Therefore, we can write,

o= [ [ (amscn +amic-macds + [ aasea ()

which has a Fourier transform

Flw) = (—A/T)e“T + (A/T)e 3T n 2_4 _ 24

[1 - Sa(wT)]. (138)

(jw)? jw  jw

|Problem 3.6.8

Two functions of time, f(t) and g(t), are known to satisfy the following integral equation:

90 = [ g(r)f(t-r)dr + 5(0). (159)

— 00

a) If f(t) = exp(—at)u(t), find g(t).
b) If f(t) = exp(—alt|), find g(t).

Computing the Fourier transform of the two sides of our main relationship, we obtain,

Gw)=Gw)F(w)+1 (140)
Gw) = 1 (141)
- A-F)]
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a) From Table 3.1, for f(t) = exp(—at)u(t), we have F(w) = 1/(a + jw) and,

Jjw+a 1
= ——————— T 1 U —
G(w) ota-i- T ioract (142)
g(t) = 8(t) +e e Vh(t), a> 1. (143)
b) From Table 3.1, for f(t) = exp(—alt]), we have,
2a
Fw) = = (144)
w? + a? 2a
Glw) = w2+a2—2a_—1+w2+a2-2a’ (145)
1
t) = &(t) + ———=eVala2ltl 2. 14
g( ) ( )+ \/me y a> ( 6)
‘ Problem 3.7.1 !
Consider the following (volume) integral:
/ / F(w)h(0)8]t — (u+ v)]dudv. (147)

a) Show that this integral describes the convolution integral, f(t) % h(t).

b) Using this integral and the result of (a), show that f(t) * h(t) = h(t) * f(¢).

c) Use this integral to show that the area under the convolution result of two given functions
is equal to the product of the areas under the two functions.

d) Repeat part (c) using the inverse Fourier transform of one function in f(¢) * h(¢) and then

interchanging the order of integration.

a) Noting that the impulse function is at v = £ — u, the integration over v yields:

f " F(u)h(t — w)du = f(t) * h(8). (148)

— 00

b) We could just as well have chosen the integration in (a) over u =t — v to give:

/_ o:o F(t — v)h(v)du = h(t) * F(2). (149)
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/oo /oo /_o:o F(u)h(v)d[t — (v + v)]dudvdt = (150)

/_m/_wf(uh / 5t — (u+v)|dtdudv = (151)
/ / v)dudv = (152)
| fwdu / F(w)dv (153)

d) We have,

[ synwae= [T [ ome-nyarae= [T [ [T p)endo(e-r) drde (150)

Assuming £ =t — T, we obtain,

/oo / / el dwh(t — Ty drdt = (155)

o / / ~ F) o:oh et dg] et dwdt = (156)
/_ F(w)H (w {% /oo et dt] dw = (157)
| P@Hw)w) do= FOH(©) (158)

’Problem 3.7.3]

Use frequency convolution to prove the following trigonometric identities (also see Fig. 3.3):

a) 2 cos®wgt = 1+ cos 2wpt,
b) 2sin® wot = 1 — cos 2wpt,

¢) 2coswit coswat = cos(wy + wz)t + cos(wy — we)t.

a) We know that cos(wot) <= 7[6(w — wo) + §(w + wo)], and, f(t)g(t) <= [F(w) * G(w)]/27,
then,

2 cos® wot <= 2—1—{71'[ §(w — wo) + 8(w+ wo)] * w[d(w — wo) + 8(w + wp)]} = (159)
227r / w[8(w — wo) + 8(u + wo)|7[6(w — u — wo) + 6(w —ut+wo)ldu =  (160)
m8(w — 2wp) + wé(w) + wé(w) + w6 (w + 2wp) <= 1 + cos 2wt (161)

b) We know that sin(wgt) <= —jn[6(w — wo) — §(w + wp)], then,

2 sin® wot <= 2 51;_— {=j7[6(w —wp) — §(w +wo)] * —j7[6(w — wg) — 6(w+wo)]} = (162)

37



2

2T J o

~mé(w — 2wg) + wé(w) + 6 (w) — Té(w + 2wg) <= 1 — cos 2wpt

2 coswyt cos wot < 2 2—171_— {7[d(w —w1) + d(w+ w1)] * m[6{w — w2) + §(w + w2)]}

2 oo

27 /oo

To(w — w1 —wz) + T (w + w1 — w2)+|Té(w — w1 + w2) + T (w + w1 + wa)

&= cos(w; + w2 )t + cos(wy — wa)t.

IProblem 3.8.1 |

——/oo —7m[d(u — wp) — 6(u + wo)|7[d(w — u — wp) — §(w — v+ wp)]du =

m[é(u —wy) +6(u+ w)]7[d(w — u — wy) + 6w — v+ w2)]du

(163)
(164)

(165)

(166)
(167)
(168)

Sketch the results of the following convolution operations (where to > 0 in all cases). Check your

result by writing a Fourier transform, of each function, multiplying and writing the corresponding

time function.

a) Ad(t) x Bo(t — to);

b) Ad(t + to) * Bé(t — to);

¢) Ab(t — t1) * Bé(t — to);

d) A[6(t + to) + 8(t — to] * B[6(t + to) + &(t — to)];

e) A[6(t+t1) + 8(t — t1] * B[6(t + to) + 6(t — t0)], to > t1;

Recall that convolution of two functions f(t) and g(t) is given by:
fe)x9)= [ frgle - r)dr;

Using this, the convolution of our given functions becomes:
a)
AS(8) % BS(t — to) = / AS()B(t — 7 — to)dr = ABS(t — to);

F{A6(t)} = A; F{Bé(t — to) = Be ",
The product is ABe™7“*  and the inverse Fourier transform of the product is,

F~YABe b} = ABS(t — to).

which agrees with our equation obtained earlier.
b)
A8(t + to) % BE(t — to) = / AS(7 + to) BS(t — T — to)dr = ABG(2);

-0
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F{AS(t+ 1)} = Ae?“to; F{B4(t — ty)} = Be %,
The inverse Fourier transform of their product is given by:
f_l{AethOBe_jwto} — AB(S(t)

Which agrees with our previous result.

c)
AS(t — t1) % BS(t — to) = /°° A§(r — t1)B8(t — 7 — to)dr = ABS(t — to — 1,);

F{A8(t - t;)} = Ae 3" F{BS(t — to)} = Be™i*%;
The inverse Fourier transform of the product is given by:

FH{Ae 1 Bemiwh} = ABS(t —to — t1)

Which agrees with our previous result.

d) The convolution expression given is equal to:

/  AS(r + to) + 8(7 — o) B(t — T+ to) + (¢ — T — to)]dr = AB[S(t + 2t0) + 26(t) + 8(t — 2t0)];

— 00

By evaluating the Fourier transform of the individual terms, multiplying and finding the inverse

Fourier transform, as done in parts a)—c), it can be found that:
F Y A[e?¥t 4 emdwto] Bledto 4 e7Iwh]} = AB[S(t 4 2to) + 258(t) + 8(t — 2t0)]

which agrees with our previous result.

e) The convolution of the given expression is equal to:

/°° AS(r+ 11) + 8(r — )] B[6(t — 7 + to) + 8(t — 7 — to))dr =

-0

AB[S(t+t1 +to) +8(t — t1 +to) +8(t + t1 — to) + 6(t — t1 — to)];
Likewise ,
FHA[ e Bledv e} = AB[5(t411 +10)+8(t+t1 —to) +6(t—t1+t0) +8(t—t1 —to)];

Which also agrees with the above result.

1Problem 3.&2' Evaluate the following convolution integrals; check your result by taking the

Fourier transform of each function , multiplying, and finding the inverse Fourier transform.
a) u(t) * e tu(t);
b) e~tu(t) * e~ tu(t);

c) e~ x coswot
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a)

] t
u(T)e_(t_T)u(t - T7)dr = / e~ (=) dr

0

u(t) * e tult) = /

— O

The integral is zero if t < 0 and is equal to (1 — e *) if ¢ > 0. Then, we have,
u(t) * e tu(t) = (1 — e *)u(t).
The product of their Fourier transforms is given by:

1 méw) 1 1

+ mé(w)

1
— +mé(w ] [ - ] — - = - -
{]w (w) jw+1 jwijw+1)  jw+l jw jw+1
The Inverse Fourier transform of the above expression is given by:

(1 e u(t)

e u(t) x e Ptu(t) = / e~ u(r)e Tyt — )dr
t
:/ €_aT€—b(t_T)dT
0

[ ) “=
T - fa-w]ue) ard

¢) Following the same procedure, it is seen that:
o0
el 4 coswot = / e—alt=l cos(woT)dT
—00

t [o o)
= e_at/ e®” cos(wot)dT + eat/ e %7 cos(woT)dT

—oo t

2a .
= ——— coswpt.
a? + wk

The Product of their Fourier transforms is given as:

2
[m%} [ré(w — wo) + mé(w + wo]
2
= a—z—fw—z [ré(w — wp) + mé(w + wo))
0

The Inverse Fourier transform of this expression is given as.
2a
2

cos wgt.
a? + wg

This is also consistent with the earlier result.
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| Problem 3.8.3| Evaluate fi(t) * f2(t), fi(t) * f3(¢), and J2(t) * fs(t) for functions defined by

waveforms shown in figure P- 3.8.3.

fi(t) fa(2) Ja(t)
1 1 1
t t /\ t
Y 1 0 1 -1 0 1
_1 -

Figure 18: P-3.8.3

a) We shift f; with respect to f;, this results in,
¢
fi(@) * fot) = /dT:t, 0<t<l,

0
1 t

= d‘r—/dT:3—2t, 1<t<2
t—1 1

2
= - dr = t-3, 2 <t<3.

t—1
b) We shift f; with respect to fs, this results in,

t
(14 7)dr = (t+1)%/2, -1<t<0,

T~

-1

0 ¢
47 / 1-r)dr=-(t"-t-1/2), 0<t<1,
fl(t)*f3(t): /;Il( +T) T+ 0( T) T ( / )
(1—7)dr =12/2 - 2t +2, L<t<o
t—1
0 elsewhere
c) We shift f, with respect to fs, this results in,
t 2
/(1+T)d’r:(t+21)’ icico,
-1

t—1 0 t 3¢2 1
—/ (1—|—T)d7’+/ (1+7‘)d7‘—|—/(1—7‘)d7‘:—7+t+§, 0<t<1
1 t—1 0

0 t—1 1 3t2 7
—/ (1+T)d7’—/ (1 —7)dr + l-—7)dr=—-5t+_-, 1<t<2
t—2 0 t—1 2

2
1 t2 9
—/ l-7)dr=——4+3t--, 2<t<3
t—2 2 2
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IProblem 3.&4| Because the convolution of two impulse functions results in another impulse

function, we can handle the convolution of two piecewise linear waveforms by (1) taking the deriva-
tives until the impulse functions appear,(2) performing the convolution with the impulse functions,
and (3) integrating the result as many times as the total number of differentiations. Use these

methods to perform the convolution indicated in problem 3.8.3.

It can be shown that the following are true:
fi(t) = 8(6) - 8(t - 1),

fot) = 8(2) — 28(t — 1) + 8(t — 2),

£3(8) = 6(t +1) — 25(8) + 8¢ — 1)

The convolution results can therefore be expressed as:

)
0« )= [ [ 16(6) - 366 - 1)+ 386 ~2) - 8¢ - 3)dgar.
b) D e
A0 s = [ [ [ 86r+1) - 350)+ 36y = 1) — 6(y - 2)]dydgar
b)

050 = [ [ [ 150+2) - 456+ 1)+ 650) - 46y - 1) + 8y - Dldvdear

lProblem 3.8.7| Two functions of time, f(t) and g(¢) , are defined by:

e~wit 0<t<T,
o= { 7 05

0 elsewhere
=] " 0st<T
9= 0 elsewhere

Determine and sketch f(t) * g(t) for each of the following conditions:
a) w; = 0;
b) w; = 7 /(2T).

[Solution: | a)

t
/dT:t, 0<t<T
OT

F(t) % g(t) = / dr=2T —t, T<t<?2T
t—T

0 elsewhere



t .
/ e~ 39T (") dr = [sin (wit)]/wi, 0<t<T
0
T . .
f(t) = g(t) = / e~ 3T (t=T) dr = sinwy (2T — t)]/wy, T <t< 2T
t—T
0 elsewhere

|Problem 3.&&\ An averaging, or smoothing, operation used in signal analysis is defined by

the integral operator:
t
o) = [ _w(t=m)f(r)dr
t—T

where t indicates present time, T is the averaging duration, f(¢) is the function being averaged,
and w(t) is a window function.

a) Express the g(t) as the convolution of f(t) with with a second function, A(%), for the special case
in which w(¢) = 1. Plot and dimension h(t). [Hint: Express the limits of integration as in terms of
step functions in the integrand so that the limits of integration can be extended.]

b) Take the Fourier transform of g(t) to investigate the relative effects of of the various factors in

the averaging operations in the Frequency domain. [Hint: Use an interchange in order of operations]

a) If the function is given by h(t) , then:

oo

g(t) = /:T w(t-n)f(r)dr= [~ h(t=m)f(r)ar,
One of the possibility is to have g(t) = [u(t) — u(t — T)] * f(¢) and therefore h(t) = u(t) — u(t — T).
b) g(t) = h(t) * f(t), where h(t) = w(t)[u(t) — u(t — T)]

Taking the Fourier transform we obtain :

Hw) = W(w)e T/?TSa(wT/2)
Gw) = e T TSa(wT/2)W (w)F(w).

It is seen that G(w) gives a good representation of W(w)F(w) if the term e~ WT/2TSa(wT/2) is
approximately equal to 1. This happens when the frequencies of interest are within the restriction
w K 2n/T.

| Problem 4.1.3| The voltage f(t) = 10te*u(t) is developed across a 50-chm resistor.

a.) Calculate the total energy developed in the resistor.

b.) What fraction of this energy is contained within a (low-pass) bandwidth of 1 radian/sec?
c.) What fraction of this energy is contained within a bandwidth of 2 rad/sec, with a center fre-

quency of 4 rad/s?
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a.) Total dissipated energy is given by:

E = [/ |f(t)|2dt] /R = 2/ tre™tu(t)dt = 2/ t?e” %t dt = 0.5J.
—co —co 0
b.) The fourier transform of the signal is given by:

10

T A

Recall that the Energy of the voltage signal f(t) with Fourier transform F(w) in the frequency

band [w;,ws] when acting on a resistance R is given by:

1

E=o [/: |F(w)|2dw] /R

In this case, the fraction of the total energy in the given bandwidth (frequency range [—1,1]) is

given by:
/ dw /05—l+garctan(1)—8187
2R (1 +w T =o6..87/
Note that,
b o b a
/a (1 + w?)? YEITR 1T a8 + arctan(b) — arctan(a) (169)
c.) Similarly, the fraction of the energy for this case is given by:
10)2 2 14
I:QWR/ } /0.5 = [arctan(5) — arctan(3)] — Gor = 10.68%

|[Problem 4.2.1| A certain signal f(t) has the following power spectral density (assume a 1-

Ohm resistive load):
1
S5(w) = [m +6(w—2)+6(w+2)|.

a.) What is the total mean power in f(t)?

b.) What is the mean power in f(¢) within the bandwidth 0.9 to 1.1 rad/sec?

c.) What is the mean power in f(¢) within the bandwidth 1.9 to 2.1 rad/sec?

d.) Find a signal f(t), in terms of cosines and exponentials, that will satisfy this power spectral

density. Are other solutions possible?

Recall that the power of a signal with Spectral density function S¢(w) in the frequency interval

1 b
5/ S (w)dw.
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a.)

1 [ 1 1
Note that,
b1
/ T dw = arctan(b) — arctan(a), & arctan(oo) = — arctan(—o0) = 7/2. (170)
a w
b.)
2 /1'1 [ L s 2)] dw = Lfarctan(1.1) — arctan(0.9)] = 0.0319W
= — w — == .1) — arctan(0.9)] = 0.
27 Joo L1+ w? Y= n

Note that the delta function is not in the range of the integration.

c.)

2 2.1 1 - 1
o /1.9 [1 T w? +6(w )} dw 71_[E:lsl‘ctan(2 1) — arctan(1.9) + 1] = 0.331W

Note that the delta function is in the range of the integration.

d.) The two impulse functions can be associated with a signal /2/7 cos(2t) (refer to the example
4.21 of the text). The term (w? + 1)~! can be associated with a constant power spectral density
through an RC low-pass filter with RC = 1. In general, because the phase information is not

included, these results are not unique and other solutions are possible.

IProblem 4.2.2| A given voltage is f(t) = 4cos207t + 2 cos 307t across 1Q2. Note that this is

a Fourier series.

a.) Determine and sketch the power spectral density of f(t) and identify the component at the
fundamental frequency.

b.) Calculate the average power, both in the time domain and the frequency domain dissipated by
f(t) across the 1€ resistor.

c.) Determine and sketch the power spectral density of f2(t). (First perform the squaring operation,

then write the result in the form of a Fourier series and from this determine the the power spectral

density.)

a.) We have,
flt) =2 [ejzon + e—jzom} + [ej301rt + e—jsoms]

Using equation 4.20 of the text, we obtain
Sp(w) = 27[6(w + 30m) + (2)26(w + 207) + (2)?6(w — 207) + &(w — 307)]

The component at the fundamental frequency (107) is zero.
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b.)
2 o0
P = E/ [8mé(w — 207) + 278 (w — 307)]dw = 8 + 2 = 10W.
0

The power in the time domain can be computed by computing the integral (1/T) f5|f(t)|*dt over
one period, namely 7' = 2/10 (note that the fundamental frequency is equal to wy = 107).

c.)

F2(t) = (4)? cos® 207t + (2)? cos? 307t + 2(4)(2) cos 20wt cos 307t
£%(t) = 10 + 8 cos 107t + 8 cos 407t + 8 cos 50mt + 2 cos 607t
Sp2(w) = 27[(10)%8(w) + (4)%6(w £ 107) + (4)*6(w =+ 407) + (4)?6(w £ 507) + 6(w + 607)]

\Problem 4.2.3| A symmetric square wave (i.e, zero average value) with a peak amplitude of

1V and period T is applied to the input of an amplifier whose magnitude transfer function is,

K(1+4cosw)/2 |w| < 4n/T,

0 elsewhere

IH(w)IZ{

where K is the voltage gain. Assume that the input and output impedances are resistive and equal
to 1-ohm. The voltage gain K is adjusted so that the amplifier output is equal to 1W.

a.) Determine the value of K.

b.) The square wave is replaced with a symmetric triangular wave (c.f. Table 2.1) with the same
peak amplitude, and period 7;. What is the output power under the above conditions T; = T'7
c.) Repeat part b.) if T} = 2T.

a.) Recall that for the given input waveform, the Fourier Series coefficient are given by,
F, =Sa(nmw/2), n#0

Note that F,, = (1/T)F(w)| and refer to entry 13 of table 3.1, multiplied by two, 7 = T'/2,

zero dc value. You can also use directly table 2.2.

w=nwg

Looking at the frequency response of the given amplifier, it is seen that only the first harmonic
(n = 1) will be passed (note that F = 0 because the signal has zero dc value). We have Fy = 0,
Fy = F_; = 2/n. The output of the amplifier g(¢), can therefore be written as:

K . . 2K
g(t) = = (1 + coswp) [e?** + e770*] = ——(1 + coswg) cos wot
T ™

The rms value of this signal is,

g%(t) = (2K /7)*(1 4 coswp)®cos? wot = 1
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This gives the value of K as:
K= _TV2
1+ coswp’
where wg = 21 /T. (Note that cos?wot = 1/2).
b.) In this case, Fr, = (1/T)F(w)|yepw, = Sa?(nm/2). (Refer to entry 16 of table 3.1, multiplied
by two, 7 = T'/2, zero dc value. You can also use directly table 2.2). We have Fy =0, F; = F_; =
(2/m)2.

g(t) = (4K /m?)(1 + cos wp) coswpt

which, substituting for K, gives the value of g2(t) = (2/)?

c.) In this case, the first, and the third harmonic pass through the filter. Note that the triangular
signal does not have the second harmonic. We have Fy = 0, F; = F_; = (2/m)?, F3 = F_3 =
(2/37)2, resulting in,

4 4
gty =K [F(l + cosw; ) coswyt + 9—7r—2(1 + cos 3w, ) cos 3w1t]

from which we obtain:

) = 4 [1+ cos(wp/2)]? l[l + cos(3wp/2)]?
g w2 | (1 +coswg)? 92 (14 coswp)?

Note that cos?w;t = cos? 3wt = 1/2, coswitcos 3wt = 0 and w; = wp/2.

|Problem 4.2.4[ A sinusoidal generator produces the waveform v;(t) = A coswot as the input

to the lowpass filter shown in figure P-4.2.4

a.) Using the the methods of ac circuit analysis, find an expression for the output waveform, v,(t).
b.) Find the average power in the v,(t) across Ry from the results of part (a).

c.) Determine the spectral power density of v,(t), and from this find the average power in v,(t)

across Rs.

— A o

Ry —

vi(t) () _c By | ut)

Figure 19: P-4.2.4

a.)
1/R,C

)= &0
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where,

R1R,
R, = A2
P Ri+R,

It is easy to show that the output v,(¢) can be written as
A/(R.C)

= T mor

cos [wot — arctan(w,R,C)]

b.)
v2(t) 1 A%/(R.C)?
Pr, = = 2 2
Rs 2R, wg + 1/(RpC)

Note that cos?(wot + ¢) = 1/2.
c.) Using the method of example 4.2.1 of the text, it can be seen that,

Sui(w) = (mA%/2)[6(w — wo) + 6(w + wo)]

d)

™ A2 RlC’ 2
500 = (3) 70 — ) + 80+ o)

and the power is also given by

[ ) = o AL

Pp, = S =
" orRy oo 2R, wZ + 1/(R,C)?

|Problem 4.3.1| A full wave rectified sinusoid (c.f Table 2.1) has a peak amplitude A and
period T,

a.) Determine its mean square value in time domain.
b.) Find the expression for the spectral power density (assume 1 ohm).

c.) Making use of the above results, show that

o ¢] 1 2

d.) Do you reach the same conclusion as in part c.) when using a half wave rectified sinusoid?

a.) Mean square value = A%/2. This is the same as for the signal A sinwot.
b.) Using table 2.2 of the text, we obtain:

S¢(w) =27 i P(—ibjT)zd(w — nwp)
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c.)

—_— 1 iad 4A? oo nd 44?
2 — _ — — —_ E —_—
() = (271') m n;_m m2(1 — n2)? /_oo O = muwo)d S, w2 (1 —n?)?

Equating the above result and the result of part a.) the desired relationship is proved.

d)

- 1 rT/2 ) A2
F2(t) = 7/, A? sin? wotdt = T
and also, referring to table 2.2, we have,
A\? A2 ad A?
Sf(UJ) =27 <Z> 5(w + wo) + 27 (Z) 5(w - LUO) + 2w n;OO mc?(w — nwo)

n even, n#0

Integrating Sy(w) from —oo to oo and setting the result equal to f%(t) yields the same answer as

the one obtained in part (c).

|Problem 4.3.2] White noise with a two-sided power spectral density of n/2 Watts per Hz

(assume l-ohm source), added to a signal described described by V2 cos 307t is applied to the
input of an RC low-pass filter (c.f. Fig 2.16). The rms value of the signal at the filter output is
10mV, and the ratio of the mean square signal to the mean square noise at the output is 10dB.
a.) Determine the value of 7 in terms of the RC time constant of the filter.

b.) Determine the RC time constant of the filter.

a.) In this case the output noise power is obtained in terms of the output SNR (SNRyp =
10log;, SNR) and the output signal power which is known.

n2(t) = [(10mV)/10? =1 x 107°V2.

Also, we can write (refer to example 4.7.2),

—_ 1 [ 1/(RC)?
) =25, T+ 1j(ROE™

__"
4RC

equating the above two expressions we get n = 4RC x 107°W /Hz.

b.)
1/(RC)

V/(30m)2 + 1/(RC)?

vo(t) = /2 cos [30mt — arctan(30m RC)).

Form this we get

1/(RC)*

t) =

%) = Gomz+1/(RO)
Solving for RC, we get RC = 10/37 = 1.061 sec.

> = (10mV)?
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‘ Problem 4.3.3 | Repeat problem 4.3.2 for the case in which the power spectral density of input
signal is Sj(w) = 1/(1 + w?).

a.) Same as in problem 4.3.2 a.) (no changes at all)

b.) The mean square value of v,(t) is computed in frequency domain as follows.

_— 1> 1 1/RC)2 ., 1
va(t) = F/O T¥w?a? +1/(RCP™ = ARC 1) ~ (10mV)?

Solving; we get RC = 5 x 10%sec.

|Problem 4.5.2] A white noise source, /2 V2/Hz, is connected to the input of the RC filter
shown in figure P-4.2.4

a.) Determine the spectral density of the output.

b.) Determine the autocorrelation function of the output.

c.) Determine the rms value of the output using each of the two preceding results, and compare.
d.) What happens as C — 07

> 1/(R,0)

) = T ®,0)
where R, = (R1R3)/(R1+ Rs)
Using the relationship between the input and output power spectral densities of a linear system we

get the result:
_ Q 1/(R10)2
S0 (@) = 3 T 1 (R,CP2

b.) Using table of Fourier transforms, we get,

_ M /(R0
v lT) = —=5=¢€
(7) 4R3C

c.) The rms value of the output is given by:

R
B0 = R (0) = gt

1 R
,Ug TICP

t) = —
) =3g;
Integrating S, (w) results in the same value.

d.) As C — 0, H(w) becomes a resistive divider and because the input source is assumed to be

white, the mean square output — oo.
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‘ Problem 4.4.1 | a.) Determine the power spectral density of F exp (jwot) by first finding the

autocorrelation function, then taking the Fourier Transform of the autocorrelation function.
b.) Repeat part a.) for [Fy exp (jwot) + Fz exp (j2wot)).

c.) Extend your result in part (b) to 300 _  F,efm«ot,

a.)
1 T/ *x _—jwot Jwo (t+71) 2 _jwoT
Ry(1) = f/—T/zFle 0t Fy ™0 dt = |Fy|*e?™7,;

S(w) = F{R¢(1)} = 27| F1|*6(w — wo)

1 rT/2 ) ) ) )
Rf(’r) — T /_T/Z[Fl*e—ont + F;e—ﬂwot][Flero(H"') + erjzwo(t+"')]dt

— ‘F1|26jw07'+ !F2|26j2w0'r

(From this we get:
Ss(w) = 27| F1|?8(w — wo) + 2| Fy|?8(w — 2wp)

c.) The cross-terms integrate to zero and we get: Ry(1) = 300 _ | Fy,|2einwo”
The power spectral density is then found to be given by:
xO
Stw)=2m > |F,[*6(w — nwo).
nN=—oo

]Problem 4.4.2| The complex pulse signal

edwet 0 <t <t
ﬂﬂz{ =

0 t1<t<T

is represented periodically with period T, T > 2¢;.
a.) Find the autocorrelation function R(7), and sketch the real part.
b.) Find and sketch the power spectral density Ss(w).

a.) We want to compute the integral,

1
R() =7 [ F@fe+ma
T
We select the range of the integration as [0, T']. We have,

e Jwet 0<t<ty
0 t, <t<T

ro-{
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Note that for 7 < 0, the function f(t + 7) is obtained by shifting f(t) towards positive ¢ axis and

vice versa. For —t; < 7 < 0, we have,

0 0<t< —r
fit4+7)={ et _r<t<ty—1
0 tl—T§t<T

1 : ot T
R i —Jwet ch(t+‘r)dt _ Jwer Y1 (1 _)
#(7) 7). e e e T + 5

Note that the lower limit of the integral is determined by f(t+ 7), because f(t+7)=0fort < —7,
and the upper limit by f(t), because f(t) =0 for ¢t > ¢;.

Similarly, for 0 < 7 < ¢;, we have,

edwettt) 0<t <ty —7
0 ti—T<t<T

.

and,

1 ty—7 . . . t T
— — —Jwet JWC(H'T)dt — chf_l (1 _ ___)
Ri(r) = 7 /0 e e e -

Combining the results and taking the real part,

T

R{R¢(7)} = %A (—t-l—) COSW,T

Note that in general, in computing autocorrelation function, as we know R(7) = R*(—7), we can
consider only positive (or negative) 7 and use the above symmetry to compute the rest.

b.) Using tables of Fourier transforms and properties, we get:

S4(w) = A8a*[(w — we)t1/2]

| Problem 4.5.3 |

A sinusoidal signal is transmitted; on reception, the signal is present together with additive noise.

Assume that the signal and noise are uncorrelated. The autocorrelation function of observable
quantity at the receiver input is R(7) = a cos woT + b exp(—c|7|). The receiver input contains a
bandpass filter (BPF-assume ideal) with bandwidth B Hz, centered at +wq. Find an expression
for the S/N ratio at the output of the BPF.

First of all, referring to example 4.4.2 of the text, it is easy to show that the autocorrelation
function for for the signal f(t) = Acos(wot + 6) is equal to, R(r) = (A?/2)coswor. Since the
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signal and noise are uncorrelated, R(7) = R,(7) + R,(7) in which R,(7) = a cos wpT and R,(7) =
b exp(—c|7|). Then

S; = R,0)=a, (171)
Ni = R.(0)=b, (172)

This means that, Sy(w) = F1{Rs(7)} = (a/2)(27)[6(w—wo)+6(w+wp)], and S, (w) = FH{R,(7)} =

2bc/(w? + ¢?). The output signal and noise powers are equal to,

2 wo+wB
So = 5;/‘”0_”3 and(w — wp)dw = a. (173)
2 f(wotmB  92p¢ 2b 1 .
Noo= oo | orrat= {tan™"[(wo + 7B)/c] - tan"[(wo — ®B)/c]}. (174)
Note that,
c i fw
/ i g dw = tan (—c—) . (175)
The desired ratio is:
S
0 pd (176)

No ~ 2btan 1[(wo + 7B)/c] — tan— [(wo — 7B)/c]’

| Problem 4.6.1 |

Determine the autocorrelation function of each of the following pulse waveforms by first tak-

ing a Fourier transform, next taking the magnitude squared, and then taking an inverse Fourier
transform.

a) e %u(t),

b) rect(t/t1),

c) Sa(Wt).

a)

e~ u(t) < jw1+ - = — Jlr — = 2—1(l-e-alfl. (177)

b)
rect(t/t1) <= tiSa(wt1/2) = tiSa’(wt1/2) &= t1A(T/t1). (178)

)
Sa(Wt) <> -V-’;,—rect[w/(zvv)] — (eri)zrect[w/@W)] = V—’[’,-sa(wf). (179)
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