Si(t) 4+ ni(t) = [A+ F(t)] cos wet + ne(t) coswet — ny(t) sinwet (399)

The envelop of this signal is

r(t) = {4+ FO]+ne(0)}? + {na(t)} (400)
For high input signal-to-noise this can be approximated by use of binomial expansion to

give

r(t) = A+ f(t) + ne(t) (401)
The detector output gives
S = F2(t) (402)
N, = n2(t) = ni(t) = N; (403)
also
S = AT F@)cos ot} = %A? + %’fz‘(ﬂ (404)

Combining Eqs. 402, 403 and 404, we get

S, 2f2(t) S; : : :
N Z;—if——_*—;—z%jﬁz for AM, large signal-to-noise ratio (405)

Note that Eq. 405 is identical to a previous result using synchronous detection.

In the particular case of sinusoidal modulation, f(t) = mA coswy,t and Eq. 405 can be

written as

S, 2m? S;

N -3 mEN for AM, large signal-to-noise ratio, sinusoidal modulation  (406)

2

The maximum improvement in the signal-to-noise ratio is 2 at 100% modulation.
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7 Angle Modulation

Consider a sinusoid of the form,
B(t) = a(t) cosluwst + 1(2)] (407)

In the case of the amplitude modulation, we kept y(¢) constant and changed a(t). In the
case of the angle modulation, a(t) is constant and +(¢) is changed in proportion to the
input signal f(t).

Consider a sinusoid A = cos 0(t).

il

T>
o~~~

[
—

Instantaneous Phase:

o (408)

T dt

Instantaneous Frequency: = w;(t)

Phase Modulation (PM): instantaneous phase is proportional to f(t), i.e., (t) = w.t +
ko f(t) + 6o resulting in: w; = df/dt = w. + kydf /dt.

Frequency Modulation (FM): instaneous frequency is proportional to f(t), ie., w; =
df/dt = w. + ky f(t) resulting in:

B(t) = /Ot wi(r)dr = wit + /Ot ks f(r)dr + 0o (409)

Note that a PM modulator can be used to generate an FM signal if we replace f(t) by
fs f(r)dr. Similarly, an FM modulator can be used to generate a PM signal if we replace

£(t) by df(2)/dt.

As amplitude modulation is a simple multiplication, it has linearity property, i.e., if
g(t) = fi(t) + f2(t), then g(t) cos wet = f1(t) cos wet + fa(t) cos w.t. However, this property
does not hold in the case of the angle modulation (PM and FM).

7.1 Narrowband FM

Consider the modulation of a sinusoid signal,

f(t) = acoswpyt (410)
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For an FM signal, we have,
w; = w, + ki f(t) = we. + aky coswpt = we + Aw cos wit (411)

where Aw = aky is the peak frequency deviation.

The phase of this signal is equal to,
Aw .
6(t) = wet + — sinwt = w,t + B sinwnt (412)
Wiy

where 8 = Aw/w,,. The resulting FM signal is equal to:

drm(t) = Acos(wt + Fsinwpnt)

(413)
= A cos w,t cos( sin w,t) — A sin wet sin(F sin wp,t)
For small values of 3, we obtain,
cos(f sinwy,t) ~ 1
(414)

sin(Q sin wy,t) =~ G sin wy,t

This is called narrowband FM (NBFM). Parameter § (8 = Aw/wy,) is called the modu-
lation indez of the FM signal. In practice, # < 0.2 is enough for NBFM.

Note that NBFM has some similarities with an AM signal. The main difference is that
in AM the modulation is added in phase with the carrier while in FM this addition is
achieved in quadrature phase. This means that NBFM and NBPM are closer to linear as
compared to FM and PM.

The advantages of NBFM over AM is the following: (i) NBFM is more immune to additive
noise. (ii) the response of NBFM extends up to zero frequency. This means that with
NBFM, one can transmit signals with very low frequency components as well.

In NBFM and NBPM, the resulting bandwidth in modulating a signal of bandwidth w,
is equal to W = 2w,,.

The NBFM results in phase variation with very little amplitude changes while the AM
signal results in amplitude changes with no phase deviation.

The addition of the modulated signal in quadrature with the carrier in NBFM suggests
the configurations shown in Fig. 46 for the generation of NBFM and NBPM.
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Figure 46: Generation of AM, NBFM and NBPM.

7.2 Wideband FM

For large values of 3, the fourier transform of the FM/PM signal can not be directly
computed. In this case, as the exact computation is usually impossible, one relies on

some bounds on the performance.

Peak Frequency Deviation = maximum amount that the instantaneous fre-

quency deviates from the carrier.

In general, the spectrum of an FM signal is affected by the following two mechanism:
(i) changes in the modulating signal, (i) the fact that the instantaneous frequency of the
FM signal changes in proportion to the amplitude of the modulating signal. Note that
due to the second effect, modulation of a single frequency sine wave results in a band of
frequencies. In NBFM approximation, (small value of 8, Aw < wy,), the second effect
was neglected in the favor of the first one. On the opposite, for large values of 3, the
amplitude-to-frequency conversion predominates and the bandwidth is on the order of

2Aw.
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7.3 General approximation for the spectral density of WBFM

From the concept of a spectral density, we expect that the spectral magnitude

to be in proportion to the fractional time spent at each frequency.
Assume a sinusoid modulating signal. For a large value of 3, the frequency deviation

about the carrier frequency (w) = w; — w,) is equal to:

w; = Aw cos Wyt (415)
or,
b= Leost (“L) for <A 416
= cos Ao or |w;| < Aw (416)
The fractional amount of time per unit of frequency 1s:
1| dt 1/(2
== /(2m) for |w)] < Aw (417)
T ldwi]  Awy/1 — (w}/Dw)?

This results in the following envelope for the spectral density (in a frequency band of 2Aw

around w,):

1/(2m) for || < Aw 418
Awy/1 — ()] Aw)? sl = (418)

This is shown in Fig. 47.

7.4 Fourier analysis of FM with sinusoid modulating signal

Modulating signal: f(¢) = acoswy,t.
Instantaneous Frequency: w;(t) = w. + aky cos wnt = w, + Aw cos wy,t
Instantaneous Phase:

t Aw . .
/ wi(T)dT = Wt + — sinwyt = wet + Bsin wpt (419)
0

m

Using complex notation:

QbFM(t) — R{Aejwctejﬁsinwmt} (420)
Using Fourier series, we obtain,

ejﬁsinwmt: Z Ezejnwmt (421)

n—=—0oo
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Figure 47: Approximation to the magnitude FM spectral density as § — oo, sinusoidal

case.

where

n Jﬁsmwmt —-]nwmtdt 429
T/T/2 (422)

Assuming ¥ = w,,t = (2n/T)t, we obtain,

1
Fn / F(Bsiny—n) d 4
L y (423)

The integral in (423) is known as the bessel function of the first kind, of order n and
argument 3, and is denoted by J,(3).
We know that:

1. J.(B) are real valued
2. Ja(B) = J_n(B), for n even

3. J.(B) = =J_n(B), for n odd

4 Y 2B =

n=-—oo

Combining (421), (423) we obtain,

,6 sin wmt _ Z ,] anmt (424)

nN=—00
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resulting in:

Figure 48 shows a plot of different J, (7).

¢FM(t):R{AeW fj Jn(,B)ej”“’"'t} (425)

n=—=-—oo

oru(t) = A i Jn(B) cos(w, + nwp, )t (426)

nN=—00

Figure 49 shows the corresponding spectral

density for different values of 3.
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Figure 48: Plot of Bessel function of the first kind, J.(8).

Referring to (426), we see that an FM signal has an infinite number of sidebands, how-

ever the magnitudes of the spectral components of the higher-order sidebands become

negligible. As a common rule, a sideband is realized to be significant if |J,(8)| > 0.01.

For large values of 3, the bandwidth is in the order of 2Aw. For small values of 3, the

bandwidth is in the order of 2w,,.

The following rule (proposed by J. R. Carson) is used for the intermediate cases:

W ~ 2(Aw + wp) = 2w (1 + B) (427)
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Figure 49: Magnitude line spectra for FM waveforms with sinusoidal modulation: (a) for

constant w,,; (b) for constant Aw.
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7.5 Average power in angle modulation

For modulation of a sinusoid, we have,
drar(t) = Acos(wet + B sin wpt) (428)
resulting in an average power (mean-square value) of,
—_— 1,
Foae(l) = 5A (129)

This means the the average power is constant regardless of the value of the modulation
index. This is in contrast to AM where the total average power was proportional to the
modulation index.
Relationship (429) can be also derived using the series expansion of the FM signal. We
known that,

drm(t) = A Z Jn(B) cos(we + nwy, )t (430)

N=—00

Considering the orthogonality of the cosine terms, the mean-square value of the summa-

tion is equal to the summation of the mean square values, i.e.,

G (1) —A2 Z JA (B (431)

n=—oo

Replacing °°° __ J2(8) = 1 in (431), we obtain (429).

7.6 Phase Modulation

The FM and PM modulations are very similar.

For the FM modulation of f(t) = acos wy,t, we have:
1. Instantaneous frequency: w;(t) = w. + aky cos wmt = w, + Aw cos wnt where

e k;: Frequency-modulator constant in radian per second per volt

e Aw: Peak frequency deviation (in radian per second)

2. Modulation index: 8 = Aw/w,, is a dimensionless number determining the behavior

of the carrier and sidebands.
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For the PM modulation of f(t) = acoswnt, we have:

1. Instantaneous phase: 8(t) = w.t + ak, coswy,t + b = wet + Af cos wnt + 6y where

e k,: Phase-modulator constant in radian per volt

e A#: Peak phase deviation (in radian)
Instantaneous frequency: w;(t) = df/dt = w, — akywy, sin Wt = w, — Aw sin w,,t

2. Modulation index: same as in FM. We can compute Aw = akywn, = w,Af and

then compute the frequency spectrum as in FM.

The peak frequency deviation in PM is proportional not only to the amplitude of the
modulating waveform but also to its frequency. This make PM less desirable when Aw is

fixed (as in commercial FM). However, as we will sce later, there are some advantages in

the demodulation of PM.

7.7 Generation of Wideband FM signals
7.7.1 Indirect method

This is based on generating a narrowband FM and then using a frequency multiplier to
increase the modulation index.

Input-output characteristics of a square-law device: eo(t) = aef(t)

Input an FM signal: e;(t) = A cos(w.t + § sin wpt)

Output:
eo(t) = a A% cos?(wet + Bsinwpt) = (1/2)aA’[1 + cos(2wct + 20 sin wrt)] (432)

We can remove the de-value by a filter. It is seen that both the carrier frequency and the
modulation index are doubled in this process. Similarly, an nth order devise results in
increasing the carrier frequency and the modulation index by a factor of n. In practice,
an increase by a factor of 1000 is achievable. If the resulting carrier frequency is too high
for our purpose, we can use a frequency converter (as in AM) to translate the spectrum to
lower frequencies (refer to Fig. 50). Note that the frequency conversion does not change

the spectral contents of the signal.
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