gle jwmtl
0 wm @
Fleiwe]
0 We @
Fleivgteiwct)
I
a
W, wetwm
FlRele/Wmteiwer]]
I : |
p | -t
-wc‘(«)ml 0 Lwcﬂ‘)m ”
Figure 42: Spectra of SSB in modulating a sinusoid.
The corresponding spectrum are shown in Fig. 42.
Similarly, we have,
hssB—(t) = cOS Wyt COS Wet + SN Wyt SiN W,k (348)

Considering a more complicated signal, say f(t), as the sum of sinusoids, we have,
bssp(t) = F(t) cos wet + f(t) sinwet (349)

where f(t) is the signal obtained by shifting the phase of f(t) by 7/2 at each frequency.
The corresponding block diagram is shown in Fig. 43. In practice, it is very difficult to

design a circuit which results in exactly 7 /2 phase shift for all the frequencies.

6.15 Analytic signals and Hilbert Transform

In general, any real valued signal can be expressed in terms of a complex signal with one
sideband. Such a signal is called an analytic signal. Note that all the analytic signals are
complex valued but the reverse in not necessarily true.

Assume that the real signal f(t) corresponds to the analytic signal

~

2(t) = f(t) + 5f(t) — Z(w) = F(w) + jF () (350)
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Figure 43: Phase shift method of generating SSB.

To delete one of the side bands (negative frequency), we should have,

—jF(w), w>0
Flw) = (351)

jF(w), w<0

or,

F(w) = —jF(w)sgn(w) (352)

This results in,

Z(w) = (353)

Taking the inverse Fourier Transform, we obtain,

F(®) ! /Oo F(w)e™ dw (354)

T

The function f (t) is called the quadrature pair, or the Hilbert Transform, of f(t) because

each frequency component of f (t) is in phase quadrature (7 /2 phase difference) with that
of f(¢).
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We know that: (i) The analytic signal z(¢) has a one-sided spectrum. (ii) The spectrum

of z(t)e?* is the same as the spectrum of z(t) but centered around w,. (iii) Taking the

real part of z(t)e?“< results in a spectrum which is symmetrical with respect to the origin.

This spectrum corresponds to a SSB signal, i.e.,

R{z(t)e™} = R{[f(t) + j f(£)]e™*} = F(t) coswet — f(£) sinw,t

(355)

This relationships is for the upper band case. Using z*(t) instead of z(t) results in lower

band case, i.e., f(t) cos w.t + f(t) sinw,t.

To obtain the Hilbert relationship in the time domain, we have,

J
sgn(w) = por

resulting in,

6.16 Demodulation of SSB signals

Demodulation is achieved using synchronous detection.

dsspx(t) = f(t) cosw.t + f(t) sin w,t

(356)

(357)

(358)

Assume that the demodulation is achieved using the signal ¢q(t) = cos[(w, + Aw)t + 6]

where Aw and 6 are the frequency and the phase error, respectively. This results in,

89



bsspx(t)pa(t) = [f(t) coswet £ f(t) sin wet] cos|(w, + Aw)t + 6] =

%f(t) {cos[(Aw)t + 8] + cos[(2w. + Aw)t + 9]}:[:%]3(75) {sin[(Aw)t + 6] — sin[(2w. + Aw)t + 6]}

(359)
Using a lowpass filter to eliminate the double-carrier frequency terms, we obtain,
1 1. .
eo(t) = §f(t) cos[(Aw)t + 0] F if(t) sin[(Aw)t + 6] (360)
For Aw = 0 and 8 = 0, we obtain,
eo(t) = (1/2) f(¢) (361)
To study the effect of the phase error, for Aw = 0, we obtain,
1 Y
eo(t) = —2-[f(t) cos(8) F f(¢)sin(9)] (362)

Note that for DSB-SC carrier, the demodulator output in the case of the phase error was
equal to: e,(t) = 7 f(t)cos(d). For a constant 6, the effect of the phase error acts just as
a scale factor. However, for SSB-SC, the phase error is not just a scale factor and the

degradation is more serious. To investigate this effect, let us write,
1 A .
colt) = SRALF) = 37 (1)) (363)

while, previously, we had,
colt) = SRAFD F 37 0]} (364)

This means that § acts as a phase distortion. It turns out that the human ear is not very
sensitive to phase distortion.

To study the effect of the frequency error, for § = 0, we obtain,
1 n
eo(t) = §[f(t)cos(Aw)t F f(t) sin(Aw)t] (365)
1 it ifw
¢o(t) = 5 RAF(?) Fif(8)]e’ (366)

The frequency error results in a spectral shift in the demodulate output.
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6.17 Single Sideband Large Carrier, SSB-LC

This is a signal of the form,
$(t) = Acosw.t + f(t) coswet F F(t)sinwet (367)

The corresponding envelope is equal to,

r(t) = VIA+ FO) + ()2 (368)

Assuming that the carrier is much larger than the SSB-SC envelope, we obtain,

2f(t
r(t) >~ Ay/1+ Lfg—) (369)
Using binomial expansion, we obtain,
t
r(t) ~ A [1 + %} — A+ (1) (370)

This means that such a signal can be detected using an envelope detector. However, the
amount of carrier required for the envelope detection is substantially more than the case

of the DSB-LC.

6.18 Vestigial-side band (VSB) modulation

The generation of SSB may be quite difficult when the modulating signal bandwidth is
wide or when one can not disregard the low-frequency components of the signal. As an
intermediate solution, VSB modulation is used which provides a compromise between
DSB and SSB. In VSB modulation, one sideband and a portion of the other sideband
is transmitted such that the demodulation process reproduces the original signal. If the

vestigial filter is equal to H,(w), we obtain,

Sysp(w) = %F(w —w) + %F(w + we) | Hy(w) (371)

The output of a synchronous detector is equal to,
eo(t) = [¢pvsp(t) cosw.t]Lp (372)
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Or,

Eo(w) = %F(w)Hv(w +w) + iF(w)Hv(w ) (373)

For a faithful reproduction, we need,
[Hy(w — w.) + Hy(w + we)]zp = constant, || < wy, (374)

Note that (374) is satisfied on a magnitude basis if | H,(w)| is antisymmetric with respect
to w.. Motivated by this observation, we let the constant in (374) to be 2H,(w,), resulting
in,

[Hv(w - wc) - Hv(wc)] = —[Hv(w + wc) - Hv(WC)] (375)

The corresponding spectrums are shown in Fig. 44.

6.19 Noise is Amplitude Modulation
6.19.1 Bandpass noise

Consider a noise, n(t), which has a power spectral density centered around the frequency

wy. We can write,
n(t) = R{[nc(t) + jn,(t)]e”*} = n.(t) cos wot — n,(t) sin wot (376)

where n.(t), n,(t) are low pass noise with a bandwidth equal to one-half of the bandwidth
of n(t).
If we apply the bandpass noise to a synchronous detector (multiplying it by cos wpt), we
obtain,

n(t) cos wot = n.(t) cos® wot — n,(t) sin wot cos wot =

1 1
él—nc(t) + §7zc(t) cos 2wot — —2~ns(t) sin 2wt (377)

Retaining the low pass term, we obtain,

[n(t) cos wot]y, = %nc(t) (378)

Using coswpt = (et + 790} /2. it is easy to show that the power spectral density of

n(t) cos wot is equal to: [Sp(w + wo) + Sy (w — wo)]/4. Substituting in (378), and noting
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Figure 44: Different spectrums in VSB filtering.
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Figure 45: Spectrum of a bandpass noise.
that the power spectral density of n.(t)/2 is equal to, S, (w)/4, we obtain,
Sne(w) = [Sn(w + wo) + Sn(w — wo)lip (379)
Similarly, by multiplying both sides of (376) with sin wyt, we obtain,
Sno(w) = [Su(w + wo) + Sn(w — wo)lip (380)

An example is given in Fig. 45.
Referring to (379) and (380), we conclude that the power in the sine and cosine compo-

nents of the noise are the same, and,

n?(t) = nl(t) = n(t) (381)



or, equivalently,

1 1
n*(t) = gni(t) + 5ni() (382)
6.19.2 DSB-SC
The input signal is f(¢) cos w.t resulting in,
1
Si = [f(t) cosw,t]? = §f2(t) (383)

The useful output signal (after multiplication by cosine and low pass filtering) is equal to
(1/2)f(t) resulting in,

So = [(1/2)f ()P = (1/4)£2(t) = (1/2)S; (384)

Let N; = n?(t) denote the input noise power. The output noise (after multiplication by

cosine and low pass filtering) is equal to (1/2)n.(¢) resulting in the output noise power,

No = n3(t) = (1/4)nl(t) = (1/4)nl(t) = (1/4)ni(t) = (1/4)N; (385)

Combining these relationships, we obtain,

S, S
=% (386)

This means that the detector in DSB-SC improves the S/N by a factor of two. This
improvement results from the fact that the synchronous detector rejects the quadrature

components of the input noise, thereby reducing the noise power by a factor of two.

For the synchronous detection of DSB-LC, one should substitute f(¢) with A+ f(¢). This

results in,

1, 1o
Si =S4+ S P (387)

So = [(1/2)f(1)]? = (1/4)f2(2) (388)
The output noise (after multiplication by cosine and low pass filtering) is equal to (1/2)n.(t)

resulting in the output noise power,

N, = n2(0) = (1/4)nZ(0) = (1/4)02(0) = (1/4)nI(0) = (1/4)N; (389)

and, consequently,

So_ 200 S
NO—A2+F(_t—)XNi (390)
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6.19.3 SSB-SC

For a SSB-SC, we have,

B(t) = f(t) cosw,t + F(t)sin w,t (391)
S =0 = PO + 5 (1) (392)

As ﬁ’(w) has only a phase shift with respect to F(w), we have,
|F(w)]® = |F(w) (393)

which using Parseval Theorem results in,

F2(t) = f2(¢) (394)

and, finally,

S = f*(t) (395)

The useful output is (1/2)f(¢), so that,

So = [(1/2)F ()] = (1/4)F3(t) = (1/4)S; (396)

The output noise (after multiplication by cosine and low pass filtering) is equal to (1/2)n. (%)

resulting in the output noise power,

No = nd(t) = (1/4)nZ(t) = (1/4)n(t) = (1/4)nf(t) = (1/4)N; (397)

Combining these relations, we obtain,

So Sz
oW (398)

Question: Is the noise performance of DSB-SC system superior to that of SSB-SC?
Answer: Not where the noise power is proportional to the bandwidth because the DSB-

SC requires twice the bandwidth of the SSB-SC and therefore has twice the noise power.

DSB-LC: The Envelope Detector

The signal input and the noise can be written as:
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