5.5.4 Average value

Assume that:

(269)
g(t) = y(t) + ms
where the average values of z(t) and y(t) is zero. We have:
Ryglr) = limp o / “(8) + mully(t + 1) + ma]dt (270)
As the average value of z(t) and y(¢) is zero, we obtain,
T/2
Ryy(7) = limzyoo = /' Yy(t + 7)dt + mam, (271)
T T/2
This means that the average value of the cross correlation function is,
T/2 T/2
ng( )= hmT_on /T/Z [ T—*OOT/ y(t + 7)dt + mlmg} dr (272)
T/2

T/2
ng( T) = hmT_moT/ z*(t) [hmT_)ooT/ y(t + 'r)dr} dt + mims (273)

In this case, as the average value of y(t + 7) is equal to zero, i.e.,

imyr_o(1/T) qu/wz;zy(t + 7)dr = 0, then we obtain,

T/2

Ryg(7) = mam, (274)
The average alue of the cross-correlation of two functions is equal to the product of their

average values.

5.5.5 Maximum value

We want to show that,

2

T/2
< hmT_mT / f(t)|2dt x hmT_on / t 4 7)|2dt

’mmqufwz (6)f(t+ 7)dt

< Ry (0)R4(0)
(275)
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We know that for any two vectors x,y, we have,
xy[* = (Ixlly] cos8)* < |x[*|y/? (276)

In an analogy to vector spaces, if we consider the left-hand side of (275) as the inner
product of the two functions f(¢t+7) and f(t), relationship (275) turns out to be equivalent
to (276).
Relationship (275) results in,

Rs(r) < Ry(0) (277)

5.5.6 Additivity

Assume that z(t) = z(t) + y(¢), we have,

T/2

Rufr) =tz s [ (0 4y Olfnlt+ ) +y(e 4 Dl (279)

Multiplying the two brackets under the integral and computing the integral over each of

the resulting fours terms, we obtain,
Re(7) = Ra(7) + By(7) 4 Bay(7) + Ryo(T) (279)
For R,,(7) =0, R,.(7) = 0, we obtain,
R.(7) = Ro(7) + Ry(7) (280)

If R,,(7) = 0, we say that z and y are uncorrelated.

It can be shown that Ry,(7) = R} (—7), so that if R, (7) = 0, then Ryz(7) = 0. One
conclusion is that if two signals are uncorrelated then their power spectral densities are
additive. Note that power spectral density is the Fourier transform of the autocorrelation
function and as for uncorrelated signals autocorrelation function is additive, then the
power spectral density is also additive.

The concept of correlation can be extended to finite energy signals. Assuming f(t), g(t)

are of finite energy, we define,
()= [ FOft+r)d (281)
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Tig(T / fr(t)g(t+r)dt (282)
We have:
Flry(r)} = / [ / () f(t+r)dt] e dr (283)

Flry(r)} = / () [ f(t+myetrdrat (284)
Flrn} = [ p®retar [~ (e +r)estdr (285)
Firs(r)} = F (@)F(w) = |[F(w)]’ (286)

5.6 Band-limited white noise

White Noise has a flat power spectrum:
Sn(w) = 1n/2 (287)
This can not exist in reality because the total power is infinity:

n2(t) = %/_Z(n/z)dw SN (288)

In practical cases, we deal with band-limited white noise. In other words, if the power
spectral density of noise is flat over the bandwidth of the system under consideration
(bandwidth of interest), the noise appears to be white. For a bandwidth [-B, B], the

noise power is:

o /27’3 (n/2)dw =B W. (289)

2m J_2xB

If this noise is developed across a resistor R, the mean-square noise voltage is:
RP,=nRB V? (290)
and the mean-square noise current is,

P,/R=nB/R=nBG amp’ (291)

Effect of linear systems on noisel
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Assume that n;(t) and n,(t) are the noise at input and output of a linear system H(w).

We have:

Sna() = S (@I H(w)P = Z|H ()P (292)
P = 5 [ Sun(@)do = o [ Su(w) [ Hw)Pdo (203)
0P = o [ DH) P = L [T AP (294)

5.6.1 Thermal Noise

Thermal noise is produced as a result of the thermaly excited random motion of free
electrons in a conducting medium such as a resistor.

Power spectral density of thermal noise:

hjw|
= t
Sn(w) rToxp(hlw] 2k T) — 1 Watts per Hz (295)
Sp(w) ~ 2T for |w| < 27xkT/h (296)

where

T = temperature of the conducting medium in Kelvin (K)
k = Boltzman’s constant = 1.38 x 10~% joule/K, (297)

h = Planck’s constant = 6.625 x 10~3* joul-sec

For very high frequencies, thermal noise is not really white however these frequencies are
so high that we can essentially assume that it is white.

The mean-square (open-circuit) voltage generated by a resistor R in a bandwidth [—-B, B]
is equal to:

1 2rB

v2(i) = RP, = — f KT Rdw = 4kTRB,  V? (208)
27 J-2xB

Similarly, the mean-square (short-circuit) current is:

1 2w B
2(t) = P,/R = 2~/  2kT/Rdw = 4KTB/R = 4kTGB,  V* (299)
T J=-27

The equivalent circuit models for the thermal noise are shown in Fig. 21.

Effect of linear systems on thermal noise'
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Figure 21: Equivalent circuit models for the thermal noise. (a) Voltage model, (b) Current

model.
I— ———————————— 1
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Linear | R
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Figure 22: Transmission of thermal noise through a linear system.
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For the system in Fig. 22, we have,

Sy (w) = 2kTR (300)
Svo(w) = Su,(w)| H(w)[? (301)
The mean-square output voltage is:
200 = i/m S, ()| H (w)[*dw (302)
° 27 J - v

[Eﬁ"ective Noise resistance |

Assume that the complex impedance at the input terminal of a circuit is equal to: Z(w).

Then, the effective noise resistance referred to those terminals is equal to:

Req(w) = R{Z(w)} (303)
resulting in a noise voltage of spectral density:

Sv(w) = 2ET Rey(w) (304)

Note that in general R,, is a function of frequency and the noise is not white.

5.7 Equivalent noise bandwidth

Assume that a white noise of power spectral density 1/2 is passed through a linear system

H(w). The mean-square output voltage (across a one-ohm resistance) is,

2 - o 2 —
A0 =5 [ FH@) do = -

e 2 /_O:O |H(w)|*dw = ifooo |H(w)|?dw (305)

27

Assume that the mid-band frequency of the system is equal to wo (for a low pass filter
we have wy=0). The equivalent noise bandwidth, By, is defined as the bandwidth of
an ideal filter with the mid-band gain of H(wo) and with the same noise power as the
actual system. This definition of equivalent noise bandwidth allows us to discuss the noise
behavior of the practical linear systems by using their idealized equivalents. For the case

of the hypothetical ideal filter, we have,

Ty L [Py 25 _ 2
vg(t) = |H(wo)|*dw = n|H(wo)|” Bn (306)
27 J-2xBy 2
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Figure 23: A graphic interpretation of noise equivalent band-width.
Comparing (305) and (306), we obtain,

__1_/0‘” |H(w)|*dw

By =
N = H (el (307)
A graphic interpretation of noise equivalent band-width is shown in Fig. 23.
5.8 Available power and noise temperature
We know that the thermal noise power in a resistor R is,
P, =4kTB (308)

Question: How much of this power can be extracted?
Using a matched resistor R (noise free), we can transfer one-half of the voltage resulting

in one-fourth of the power. This means that the maximum available power, P,, is,
P,=kTB (309)

The noise behavior of practical systems is specified in terms of their (i) equivalent noise
bandwidth, (ii) output resistance and (iil) noise temperature. A system with the equivalent
noise bandwidth By, output resistance R and the noise temperature T results in a noise
power of kT By into a matched resistance (of value R). Note that in general the noise

temperature may be less or greater than the ambient temperature.
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5.9 Noise figure

The noise performance of systems is measure by the factor Noise Figure. This is a
dimensionless quantity which can be used to compare the noise performance of different
systems with each other.

Let s;(t), s0(t) and the input, output signal voltages (or currents) in a system. Similarly,
let n;(t), no(t) be the corresponding input, output noise voltages (or currents). The input
Signal-to-Noise-Ratio (S/N);, is defined as:

3).- 3

&

3

—

The output Signal-to-Noise-Ratio (S/N),, is defined as:

5.-3

Note that the Signal-to-Noise-Ratio is a dimensionless quantity.

The system always adds some noise to the input, so that the output Signal-to-Noise-Ratio
is always higher that the input Signal-to-Noise-Ratio. This degradation is measured by
the noise Figure which is defined as:

(S/N)o

F= Gy

or  Fy;, = 10logo(F) in decibel (312)

Let us apply a signal of power S; and a noise of temperature Tj to the input of an amplifier

with a power gain G, noise temperature T, and noise bandwidth B. We have:

Maximum input noise power within the band-width of the amplifier: N; = kToB
Equivalent input noise power generated by the amplifier : N, = kT. B

Total input noise power: kToB + kT.B

Output noise power: (kToB + kT.B)G,

Output signal power: S, = S;G,

(S/N); = S;/KToB

(S/N)o = 5:G,/(kToB + kT.B)G, = Si/(kToB + kT.B)

This results in,
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6 Modulation:

Modulation is a process in which a property or a parameter of a signal is varied in
proportion to a second signal. For example, in amplitude modulation, the amplitude of a
(high frequency) sine wave, whose frequency and phase are fixed, is varied in proportion to
a given (low frequency) signal. This results in a translation of the frequency components

of the given signal to higher frequencies.

|Some examples for the application of modulation

1. The length of a transmitter antenna is determined by the wavelength of the signal
to be transmitted (usually it is equal to a fraction, say 1/4, of the wavelength).
The wavelength of low frequency signals, and consequently the length of the corre-
sponding antenna, is very large (for example, the wavelength of voice is about 100
Km.). The frequency translating property of modulation can be used to solve this

problem.

2. The frequency translating property of modulation can be used to match a given
signal to the channel available for transmission (for example matching a low-pass

signal to a band-pass channel).

3. Using modulation, a large number of signals can be transmitted at the same time

without interference (frequency multiplexing).

4. Modulation can be used to facilitate the implementation of certain electrical systems.
An example is given in Lab#1 in the design of a spectrum analyzer. More examples

will be give later in the course.
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General form of a modulated signal using a sinusoidal carrier

#(t) = a(t) cos[8(t)] = a(t) cos[w.t + v(t)] (313)
where w, is called the carrier frequency. In general, we assume that a(t) and v(t) are
slowly varying with respect to w.t.

In amplitude modulation, the phase y(¢) in (313) is constant and the amplitude a(t) is
changed in proportion to the given signal.
In angle modulation, the amplitude a(t) in (313) is constant and the phase (t) is changed

in proportion to the given signal.

6.1 Amplitude Modulation

General form:

$(t) = F(t) cos wet (314)
cos wet is called the carrier signal. f(t) is called the modulating signal. The resulting $(t)
is called the modulated signal.

Using the Frequency shifting property of Fourier transform, we obtain,

P(w) = —;—F(w + we) + —;—F(w — We) (315)

This type of amplitude modulation is called suppressed-carrier because it has no identifi-
able carrier in it (although the spectrum is centered at the frequency w. # 0). As both
of the side-bands are present in the modulated signal, this type of modulation is called
double-sideband, suppressed-carrier, DSB-SC, (refer to Fig. 24).

Recovery of the original signal from the DSB-SC requires another translation in frequency

to shift the spectrum to its original position. This operation is called demodulation.

Demodulation:
H(t) cos wet = f(t) cos® wet = %f(t) + %f(t) cos 2w,t (316)
Computing the Fourier transform, we obtain:
F{p(t) coswnt} = LF(w) + 3Pl + %) + (o — 200) (317)

A low-pass filter is required to separate out the unwanted terms at double-frequency (refer

to Fig. 25). For proper recovery, we should have w, > W.
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