4 Fourier Transform

A periodic function is obtained by repeating a signal after some fixed period of time T
(refer to Fig. 10). We know that such a periodic signal has a Fourier series representation.
For a given time function f(t), we use the notation fr(¢) to show the periodic function

obtained by repeating f(¢) for the time period T'. This means that,
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Figure 10: Generation of a periodic signal and the corresponding Fourier series coefficients.

We saw in the case of discrete Fourier series that as the period T is made larger, | (i) | the

fundamental frequency (27/T) becomes smaller, | (ii) | the spacing between the frequency

lines (2w /T) decreases, |(iil) | the amplitude of each frequency component decreases,

(vi) | the general shape of the spectrum remains unchanged. We now consider the limiting

case of T' — oo.

Hm7 oo fr(t) = F(£) (110)
fj F, efmot (111)
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where

1 T/2 —jnwgt
F, = T s fr(t)e dt  wy=2n/T (112)
Define:
Wy, = Nwp (113)
F(w,) =TF, (114)
This results in
fT(t) - Z F efnwot — Z T_F(wn)ejwnt (115)
F i Junt g 116
) = t)e 7t dt 1
()= [, Fr(t)e (116)
Spacing between adjacent frequency lines is equal to: Aw = 2r/T. Substituting in (115),
we obtain,
frit)= Y Flwn)et== (117)

NnN=—00

As T tends to infinity, Aw = 27 /T, which is the spacing between the frequency lines, tends
to zero and the frequency spectrum becomes continuous. In this case, the relationships

(116), (117) change into,

Plo)= [ f(t)eidt = F{f(1)} (118)

£(t) = % [ P = FHPW) (119)
We also have,
F,= %F(nwo) (120)

The function F(w) is known as the )spectml densityl function of f(¢). One can think of

the Fourier transform as the representation of a give signal in terms of an infinite sum of
complex exponentials each weighted by F(w)dw. This means that we have infinite number
of terms where the contribution of each term tends to zero. In contrast to this, a period
waveform has all its amplitude components at discrete frequencies where each component
has a definite contribution.

Note that relationship (120) expresses the Fourier series coefficients of a periodic signal

in terms of the samples of the Fourier transform of one period of the same signal.
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It 1s usual to express the Fourier transform in terms of f or w = 27 f. In changing from

f to w, or vice versa, the following relationship is useful,

o(f) = 2nd(w) (121)
Example:
1, lt] < 7/2
rect(t/7) = (122)
0, lt] > 7/2

oo . T2 .
Flw) = / rect(t/T)e ™ dt = /—T/z e It dt

. in(wr/2) 122)
e—ij/Z _ ejwr/2 —iw) = TSHl wT
( M=) = 15

F{rect(t/7)} = mSa(wr/2) (124)

4.1 Parseval’s theorem

B= [ ipwld= [T f0)f(t)t =

— 0

/_Z f(t) [51; /_Oo F(w)ej“tdw]*dt -
/OO f(¢) [%/ F*(w)e ‘j“’tdw] dt = (125)

Ll o=l
o [ @R >dw—% [ 1) P

This means that,

[ isord = o [ IF()Pa (126)

The quantity |F(w)|? is called the l enerqgy spectral densityl (unit of joule per Hz) of f(t).

The quantity |F(w)|?dw is the energy in a small frequency band of dw around w.
Note that in the case of a periodic signal, the parseval relationship computes the average

power of the signal and is of the form,

oo

- / BPdt= Y |Fuf (127)

n——oo

In this case, |F,|? is the power in the frequency nwy = n2n/T.
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4.2 Some Fourier transforms involving impulse functions

FL8()} = / T S(t)e it = 1 (128)
F{o(t —to)} = / §(t — to)e Itdt = e~iwtbo (129)
F H8(wFuw)} = 1 /OO §(w F wy)e’dw = ieij“mt (130)
27 J -0 27
F{etot = 2n6(w F wo) (131)
wo=0 — F{l} =27é(w) (132)
1 jwot 1 —Jjwot
F{coswot} = f{ge’ o+ 7€ I} = 76w — wo) + d(w + wp)] (133)
1 .
F{sinwot} = .7:{ e"”‘)t = 2—je"“’°t} = ?[5((0 — wp) — 0(w + wo)] (134)
1, t>0
t
sgn(t) = Jt—l =10, t—=0 (135)
-1, t<0
F{sgn(t)} = f{lima_m tlsgn (¢ } = (136)
lima_>0 {/Oo [e a|t|sgn( )] JWtdt} (137)
0
lima_,o{— [ el / (ot tdt} (138)
1
lim s {— Loy L } = (139)
a—Jjw a+Jjw
) —2jw 2 14
F{sgn(t)} = limao {m} = j*w (140)
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1 1

u(t) = 3 + §sgn(t) (141)
Flu(t)} = %J—“{l} + %]—'{sgn(t)} (142)
Flu(t)} = nd(w) + 1/jw (143)

The spectral density function of the unit step contains an impulse at w = 0 corresponding
to the average value of 1/2 in the step function. It also has all the high frequency
components of the sgn() function reduced by one-half.

Table 1 contains a list of éome important Fourier transform pairs. Figure 11 shows some

of these Fourier transform pairs.

4.3 Periodic signals

For a periodic signal fr(t), we have,

Y F.ef™t  wy=2x/T (144)

nN—=——00

F{fr(t) { > F e”“”“‘} (145)

n=——oo

F{fr(t) _Z F,F{e™™ "} (146)
F{fr(t)} =2x f: Fo.0(w — nwo) (147)

Periodic signal of unit impulses:

= fj 3(t — nT) (148)

Y Fefmt (149)
where
f 7 Styeintay = X (150)
En T T/2 T
== Z gInwot (151)
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f®) F(w) = F{f()}

1. e ®u(r) 1/(a + jw)

2. te *u(r) 1/(a + jw)?

3. e M 2a/(a® + &)

4. e—12/(202) o_me—azmzﬂ

5. sgn(t) 2/(jo)

6. j/(mt) sgn (w)

7. u(t) md(w) + 1/(jw)

8. 8(r) 1

9. 1 2m8(w)
10. ™o 2m8(w F wp)
11. cos wyt 8w — wp) + 8w + wp)]
12.  sin wot —ja[8(w — wy) — 8w + wp)]
13. rect (¢t/7) 7 Sa (wr/2)
14. v Sa (Wt/2) rect (w/W)

2T

15. % Sa (Wr) rect (w/(2W))

16. A(t/7) 7[Sa (w7/2)F

17. K[Sa (wt/2)F Alw/W)

27
18. cos (mt/7) rect (t/71) el Mgl;
w1 — (wr/7)

19. -2-:—2/ l—f%% cos [rw/(2W)] rect [w/(2W)]
20. &;(t) w8 ,(w), where wy, = 2mw/T

Table 1: Some selected Fourier transform pairs.
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Figure 11: Some selected Fourier transform pairs.
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2 [e 0] oC
F{or(t)} = —% Z d(w — nwy) = wy Z d(w — nuwp) (152)
F{0r(t)} = wodu, (w) (153)
Consider the rectangular pulse,
1, t] < 7/2
rect(t/7) = (154)
0, lt] > 7/2

We already saw that,
F{rect(t/T)} = mSa(wr/2) (155)
Now consider a periodic signal obtained by repeating rect(¢/r) over a period of T. Using

(120), the corresponding Fourier series coefficients are equal to,

1 T sin(nwor/2)

Fn = 5 (nwo) = T (nwor/2)

T
which is the same as the result obtained earlier.

(156)

The Fourier transform of this period rectangular signal is equal to,

F{rectr(t)} =2n i Fod(w — nwy)
n=soo (157)

277 sin(nwot /2)

T (nwor/2) O{w = nwo)
These are shown in Fig. 12.
4.4 Properties of Fourier Transform
e | Linearity (superposition)
Flaafi(t) + a2 f2(1)} = ax F{f1(t)} + a:F{fa(t)} (158)
e | Complex conjugatel
FUrwy = [ fwea
- [ / - f(t)ej“"dt]* (159)
- F(-w)
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Figure 12: (a) The rectangular pulse, (b) its Fourier transform. (c) The Fourier series
coefficients of the periodic rectangular signal, (d) The Fourier transform of the periodic

rectangular signal.

Real f(t), then f*(t) = f(t) and F*(—w) = F(w).

Using this result, it is easy to show that for real f(¢), the real/imaginary parts of
F(w) should have even/odd symmetry.
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e | Symmetry |

Any signal can be written as the sum of an even part and an odd part, f(t) =

fo(t) + fo(t). We have,

F{f(t)} = F.(w) and real

F{fo(t)} = Fo(w) and imaginary (160)

To prove, consider an even function f,(t). We have,

FLROY = [ ft)eiar o)

_/ fe(t) cos(wt) dt—]/ ) sin(wt)dt

The first integral involves an even function and is equal to two times the value of
the integral over [0, 0o]. The second integral involves an odd function and is equal

to zero. This results in,
FLLM)} =2 / Fu(t) cos(wt)dt (162)
This is a function of w. Similarly, for an odd function, we have,

FUO} = [ ftyeid .

= /j:o fo(t) cos(wt)dt —j/_o:o fo(t) sin(wt)dt

The first integral involves an odd function and is equal to zero. The second integral
involves an even function and is equal to two times the value of the integral over

[0, 00]. This results in,

FUot)} = =25 [ fult) sin(wt)ds (164)

This is an fimaginary, odd—l function of w. Using these results together, we conclude

(160).
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