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Abstract

In this paper 1, we address the application of Adaptive Modulation and Coding (AMC) for 3rd-

Generation (3G) wireless systems. We propose a new method for selecting the appropriate Modulation

and Coding Scheme (MCS) according to the estimated channel condition. In this method, we take a

statistical decision making approach to maximize the average throughput while maintaining an accept-

able Frame Error Rate (FER). We use a first-order finite-state Markov model to represent the average

channel Signal-to-Noise Ratio (SNR) in subsequent frames. The MCS is selected in each state of this

Markov model (among the choices proposed in the 3G standards) to maximize the statistical average of

the throughput in that state. Using this decision-making approach, we also propose a simplified Markov

model with fewer parameters, which is suitable in systems where changes in the fading characteristics

need to be accounted for in an adaptive fashion. Numerical results are presented showing that both of

our models substantially outperform the conventional techniques that use a threshold-based decision

making.
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I. INTRODUCTION

The use of Adaptive Modulation and Coding (AMC) is one of the key enabling techniques

in the standards for 3rd-Generation (3G) wireless systems that have been developed to achieve

high spectral efficiency on fading channels [1]– [4]. The core idea of AMC is to dynamically

change the Modulation and Coding Scheme (MCS) in subsequent frames with the objective of

adapting the overall spectral efficiency to the channel condition. The decision about selecting the

appropriate MCS is performed at the receiver side according to the observed channel condition

with the information fed back to the transmitter in each frame. Many AMC techniques have

been presented in the literature. In the following, we provide a brief description of some of

these papers that are more relevant to this current article. Readers are referred to [5] for a more

detailed list of references on this topic.

In [6] and [7], various rate and power adaptation schemes are investigated. The power adapta-

tion policy found is essentially a water-filling formula in time. In [7], a variable-power variable-

rate modulation scheme using M-ary Quadrature Amplitude Modulation (MQAM) is proposed.

The presented results show that the proposed technique provides a � – ��� dB gain over variable-

rate fixed-power modulation using channel inversion and truncated channel inversion (where the

received power is maintained constant), and up to 	
� dB gain over the nonadaptive modulation.

In [8], the channel capacity of various adaptive transmission techniques is examined. The per-

formance of these techniques employed with space diversity are also investigated. It is shown

that the spectral efficiency for a fading channel can be improved by adaptive transmission tech-

niques in conjunction with space diversity. It is also found that when the transmission rate is

varied continuously according to the channel condition, varying the transmit power at the same

time has minimal impact.

In [9], the adaptation technique from [6] and [7] is modified to take into account the effect of

constrained peak power. Simulation results show that with a reasonable peak power constraint,

there is a small loss in spectral efficiency as compared to the unconstrained case.

In [10], an AMC scheme is proposed based on the variable-power variable-rate technique

from [6] and [7]. This technique superimposes a trellis code on top of the uncoded modulation.

Simulation results show that with a simple four-state trellis code, an effective coding gain of �
dB can be realized.



3

In [11], a variable rate adaptive trellis-coded QAM is discussed, offering lower average Bit

Error Rate (BER) as compared to fixed rate schemes.

In [12], another AMC technique is proposed using M-ary Phase-Shift Keying (MPSK) mod-

ulation, which offers � – 	
� dB gain in BER performance.

In [13], another AMC scheme is proposed which utilizes a set of trellis-codes originally de-

signed for Additive White Gaussian Noise (AWGN) channels. This scheme is applied to a model

of fully loaded microcellular network for spectral efficiency comparisons against nonadaptive

coded modulation. The obtained results show that the AMC schemes provide significant advan-

tages over a traditional nonadaptive coded modulation scheme in terms of the average spectral

efficiency and decoding delay.

Turbo Codes [14], which can achieve near-capacity performance on AWGN channels, have

also been proposed in adaptive transmission systems to further improve performance [15]. Re-

sults show that a gain of about � dB can be obtained over an AMC scheme using trellis coded

modulation.

For packet data in the 3G standards, Turbo Codes are specified as the channel coding tech-

nique; throughout this paper, we follow the guidelines provided in the standards. The MCS’s

considered include 16QAM with Turbo Code rate ��
�������	 , 8PSK with ��
�������	 , and BPSK

with ��
�������� , where all of these MCS’s have equal average symbol energy, ��� . Data is trans-

mitted in successive frames. Each frame of bits has a constant duration of � ms, and consists

of �
��� coded symbols. This provides a constant data rate of �� "!#� ksymbols/s regardless of the

choice of MCS [1]–[4].

A key factor determining the performance of an AMC scheme is the method used at the

receiver to estimate the channel condition and thereby deciding for the appropriate MCS to be

used in the next frame. The performance of Turbo Code in AMC systems depends heavily on

the accurate prediction of the channel condition, which is usually a difficult task given the time-

varying nature of the mobile environment. This is due to the fact that Turbo Codes operate

close to the channel capacity and thus have steep performance curves. The sensitivity of Turbo

Codes to prediction errors may cause the system to produce much less favorable results than

expected. With much of the industry interest in 3G development, it is essential to overcome this

shortcoming and find methods for using Turbo Codes in AMC systems under a more realistic

environment, where prediction errors can often occur.
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In the literature, many articles present AMC schemes without considering the effect of pre-

diction errors in decision making. However, some of these references study the effect of such

errors on resulting performance. This is the case with [7], where the effect of channel estimation

errors is addressed for the first time. In some other articles, authors have employed more sophis-

ticated predictors to improve the prediction accuracy. An example is reference [11], where the

proposed scheme uses pilot symbols to estimate channel state at the receiver, and utilizes both

an interpolation filter and a linear prediction filter to interpolate and predict channel conditions,

respectively.

In some other references, authors have included the effect of prediction errors in the decision

making. For example, in [16], the effect of fading channel variations is formally addressed,

where the definition of strongly robust signaling is introduced. This is based on the idea of de-

signing an adaptive signaling scheme such that it meets the BER requirements for a set of fading

autocorrelation functions. This idea is applied to both uncoded modulation as well as trellis-

coded modulation. Results show that the proposed schemes provide significant improvement in

BER and rate in bits per symbol over the scheme that assumes a static channel.

In most works [6]– [13], [15], [16], the decision of which MCS to use for the next frame is

based on the basic idea of partitioning the estimated channel Signal-to-Noise Ratio (SNR) into

regions using a set of threshold values. Each such region is associated with a particular MCS

while the threshold values are optimized to maximize the overall throughput. In this paper,

we propose a new method for selecting MCS with the objective of maximizing the statistical

average of the channel throughput when there may exist an error in predicting the channel SNR.

A simplified model with fewer parameters is also proposed, which can be used to account for the

changes in the fading characteristics by updating the model parameters in an adaptive manner.

Numerical results show that our method outperforms the conventional threshold method.

The remainder of this paper is organized as follows. In the next section, we describe our

system setup and channel model. In Section III, we discuss the conventional threshold method

and its shortcomings. Our proposed method is presented in Section IV. Numerical results are

presented in Section V, including throughput comparisons between the threshold method and

our proposed method, as well as results obtained from some studies on the robustness of our

proposed model. Finally, we conclude in Section VI.
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II. SYSTEM SETUP AND CHANNEL MODEL

For our channel model, we consider a fading channel with time-varying lognormal-distributed

complex gain, $&% , and additive white Gaussian noise. This is similar to the model used in

several other related papers including [7] and [10]. The lognormal complex gain represents the

lognormal shadowing effect in the channel and is implemented by the following autoregressive

model [17]

�('*),+-�/.�02143 5�3 687�9 (1)

where : is the speed of the vehicle, ) is the sampling period, and ; is the effective decorrelation

distance. This distance is in the order of ��� – �<�=� m as reported in [18].

Using (1), the lognormal values can be generated by low-pass filtering of a discrete white

Gaussian random process. With this model, we have [17]

$?>A@,B��DC
$">�E�'F��GHC
+JI<>29 (2)

where $&% is the mean fading level (in dB) that is experienced at location K , C is a parameter

that controls the spatial correlation of the lognormal shadowing, and I > is a zero-mean Gaussian

random variable, which is independent of $L% .
The variance of I > , MONP , is related to the variance of the lognormal shadowing, M�NQ , and the

parameter, C , through [17]

M NQ � ��GHC�RESC M NP ! (3)

By selecting appropriate values for MTNQ and C , lognormal shadowing with any desired standard

deviation and spatial correlation can be generated. In our simulations, we have chosen values for

these parameters such that the correlation between subsequent fading values follow the results

reported in [18] for reasonable values of vehicle speed. Note that a different fading value is gen-

erated for each symbol of duration ����U s (a frame of 384 symbols corresponds to � ms resulting

in a symbol duration of �<��U s).

In this paper, we follow the guidelines provided in the 3G standards in terms of modulation

schemes, code rates, and frame structure as outlined in the last section. Each coded symbol in
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a frame has a different lognormal gain, $ > , generated by (2), and the channel SNR of a coded

symbol is defined, in decibel scale, asV �/$ > EW����XZY=[ \ �]�^`_
a 9 (4)

where
^ _

is the one-sided noise spectral density, � � is the average symbol energy, and $b> is as

defined in (3). The per frame average channel SNR, which is the basis of the MCS selection

criterion for the subsequent frame, is the average of the channel SNR of all the coded symbols

in the frame.

It is assumed that the average channel SNR is accurately estimated at the receiver and that no

delay or transmission errors can occur in the feedback channel, so any discrepancy between the

predicted and the actual SNR of the next frame can only result from channel SNR prediction

errors caused by the time-varying nature of the channel.

The performance criterion used for evaluation of the threshold method and our proposed

method is the statistical average of throughput per transmitted frame. This is determined by

the corresponding probability of Frame Error Rate (FER) and the spectral efficiency of the MCS

selected in the frame. The use of FER for determining throughput instead of BER is due the

fact that if errors are detected in a frame after decoding, the entire frame is retransmitted and

thus any correctly decoded bits in that frame should not be included in the average throughput

calculation.

III. THRESHOLD METHOD

Conventionally, in what we call the threshold method, the AMC system has a set c2d�e , !�!<! ,dgf 0 B4h of i MCS’s. This MCS set has a corresponding throughput versus average channel SNR,

denoted by c=jlk*' V +m9�n
�o� , !<!�! , ipGq��h , where V is the per-frame average channel SNR as defined

earlier. These throughput values can be graphically represented, where the curves intersect with

each other. The average channel SNR values corresponding to the intersection points are chosen

as the threshold values, denoted by c V e,�rGts , V B , !<!<! , V f 0 B , V f �usWh . These threshold points

partition the range of SNR into i regions, denoted by [ V k , V k @,B ) for n
�v� , !<!<! , i�Gw� . The x th MCS,

namely d > , is assigned to the region [ V k , V k @�B ) if the following condition is satisfied

j > ' V +TyHjLz�' V +A9 {}|�~�ox�9�{ Vr����V k89 V k @,B +m! (5)
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With this correspondence between the MCS’s and the channel SNR, d > is selected for the

next frame if the average channel SNR in the current frame lies in the region [ V k , V k @�B ).
Since it is assumed in the threshold method that the fading is slow enough such that the aver-

age channel SNR remains in the same region from the current frame to the next, the estimated

channel SNR of the current frame is simply taken as the predicted channel SNR for the next

frame. This simplifying assumption, however, is often not true in a mobile environment. In such

a case, an error in the estimation of average channel SNR can cause inappropriate selection of

MCS, resulting in a degradation in FER performance.

As mentioned, Turbo Codes are specified as the channel coding technique for packet data in

the 3G standards. One of the main characteristics of Turbo Codes is that they operate close to

the channel capacity and the corresponding FER vs. SNR curves have a steep slope (Figure 1).

This means that even a small prediction error in channel SNR can result in a large degradation in

FER. Therefore, it is essential to take into account the possible prediction errors when designing

an AMC system where Turbo Codes are employed.
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Fig. 1. FER vs. SNR for Turbo Coded modulation schemes

IV. MARKOV MODEL

We consider a first-order finite-state Markov model to represent the time variations in the

average channel SNR. The states in this model represent the average channel SNR of a frame

uniformly quantized in dB scale with a given step size � , and they form a set c2� e , !<!<! , ��� 0 B�h
of � states.
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As in the threshold method, assume that there are i MCS’s. We denote
^ k as the number of

information bits in a frame of �
��� coded symbols that uses the n th MCS, namely d�k . Table I

shows the values of
^ k for the three MCS’s used in this paper as specified in the 3G standards.

We also define ��k�z as the FER of d�k in state | , and jlk�z as the expected throughput of d�k in

state | .

TABLE I

VALUES OF �T� FOR THE THREE MCS’S USED IN THE 3G STANDARDS

Modulation

Scheme,� �����8�-���8���*� Turbo Code

Rate, ��� Number of in-

formation bits,� �
16QAM �J��� 768
8PSK �J��� 576
BPSK �J��� 128

In the following, we propose a method for selecting the appropriate MCS based on the states

of a first-order Markov model, and evaluate its expected throughput. The basic strategy is to

assign an MCS to each state such that the expected throughput is maximized in that state.

A. Full-Scale Model

We simulate a channel with lognormal shadowing according to (1)–(3) where the average SNR

corresponding to each frame is uniformly quantized with a given step size � . We have selected

appropriate values for C and M�NQ in (1)–(3) such that the correlation between subsequent fading

values follow the results reported in [18] for reasonable values of vehicle speed (a different

fading value is generated for each symbol of duration ����U s.) An appropriate offset is added to

the fading values so that they result in an acceptable FER performance.

The calculation of the expected throughput for each MCS in each state of the Markov model

requires the knowledge of the corresponding transitional probabilities. For a given number

of states, � , and a given � , the transitional probabilities can be obtained by simulating the

transmissions of a large number of frames of bits. These transitional probabilities form a setc2  k�z 92��¡¢nF98|�¡¢�£G¢��h , where   k�z is the transitional probability from state n to state | .

The stationary probabilities of the states, denoted by c=¤`z�9"��¡¥|¦¡q�HGq��h , can be computed

using the following well-known system of equations
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¤Rz§� � 0 B¨ kª©?e ¤�k« �k�z�9§��¬­|®¬v�HGq�=9 � 0 B¨ zJ©"e ¤Rz��¯�
! (6)

The expected throughput of d�k in state | , namely jlk�z , is therefore

j�k�z�� � 0 B¨ > ©"e ^ k8 �z > 'F��G°�Ok > +m9 (7)

where
^ k is the number of information bits in a frame of �=��� coded symbols using the n th MCS,  z > is the transitional probability from state | to state x , and '��,Gq� k ><+ is the probability of correct

transmission if the n th MCS is selected when the Markov chain is in state x .

For each state, we assign the MCS that has the highest expected throughput in that state

according to (7) and select this MCS for the next frame if the estimated channel SNR falls in

this state. In other words, d�k is assigned to �Lz , if

j,k�zRy±j > z�9 {²x�~�DnF! (8)

We denote the expected throughput in state | as j z . The expected throughput averaged over

all states is computed using � 0 B¨ zJ©"e ¤Rz jLz�! (9)

B. Simplified Model

A drawback of the full-scale model is that it involves many parameters ( �rN transitional prob-

abilities), and consequently, it is difficult to train the model on the fly to adapt to the changes in

the fading characteristics (for example, caused by the variations in vehicle speed). To accom-

modate such an adaptation, we need a simplified Markov model with fewer parameters, which

allows us to dynamically recalculate the transitional probabilities over a window of past symbols

of a reasonable size.

As in the full-scale model, the set c2�le , !�!<! , � � 0 B h represents the � states in the simplified

model with a step size � between neighboring states. We assume that the connectivities between

states are as shown in Figure 2, where
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1) The maximum number of transitions from a given state is determined by ³O�v	
´mEq� , where³�¬v� .

2) µt�¢¶q·Z¸"c=�£G¢�
98|OE­´8h reflecting the fact that states above �l� 0 B do not exist; transition

probabilities to those states are added to the transition probability to � � 0 B .
3) ¹(�q¶vº�»?c=�"98|�G²´¼h reflecting the fact that states below � e do not exist; transition probabili-

ties to those states are added to the transition probability to ��e .
4) The transitional probabilities are averaged over all states, and consequently are indepen-

dent of the state index.

PSfrag replacements

½ ©"¾O¿�ÀmÁ � 0 B�Â z @?ÃÅÄ 9®Æ ©"¾OÇ�È�Á8e Â z 0 Ã#Ä
ÉAÊÉFÊ8Ë � ÉAÊ�Ì � É4ÍÉ4Î Ï<Ð

Ï �Ï Ë �Ï Î Ë4Ê

Ï Í Ë�Ê

Fig. 2. Simplified Markov Model

The transitional probabilities in the simplified model are specified by Ñ¥�/c2 �Ò
9�GÓ´�¬DÔÕ¬±´8h .
Note that the transitional probabilties exist in pairs, and this allows us to set  �Ò equal to   0 Ò ,
where �Ó¬ÖÔ(¬Ö´ , further reducing the number of parameters in the model. We have obeserved

(through numerical simulations) that in the full-scale model these probabilities are almost equal.

The calculation of expected throughput in each state follows a relation similar to (7), slightly

modified according to the structure of the simplified model shown in Figure 2.

Since the average and approximated probabilities are now used instead of the true probabili-

ties, this model is expected to yield smaller throughput than the full-scale Model. However, as

will be seen in our numerical results, a very good performance can be achieved (at an appropriate

step size) while substantially reducing the number of parameters in the model.

As there are fewer parameters in this simplified model (maximum of � transitional probabili-

ties in Ñ ), it requires a window of past symbols of a much smaller size for on-the-fly adaptation

to the changes in the fading characteristics.

We call this model the simplified model with parameters c=Ñ , ³ , �qh .
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C. Robustness of Simplified Model

Setting  lÒ to equal to   0 Ò and/or using a smaller window size of past frames results in ap-

proximation errors in the computation of the transitional probability set, Ñ . Since the MCS is

selected from a finite set of candidates, a small error in the transitional probability values does

not necessarily result in selecting a sub-optimal MCS. The robustness of the Simplfied Model is,

therefore, determined by how much error in the transitional probability values can be tolerated

before a sub-optimal MCS is selected.

Assuming that  �Ò is set to equal to   0 Ò , then the elements of Ñ is the set c2 ×Ò=9mÔ®�o�?9<!<!�!�9m´8h .
Suppose that the corresponding approximation errors are denoted by c2ØAÒ�9mÔ®�o�?9<!<!�!m9m´¼h . Then, the

approximated Ñ is c2  Ò EÕØ Ò 9mÔ®�o�?9<!�!<!m9m´8h . Note that since c2  Ò EÕØ Ò 9mÔ®�o�?9<!<!�!�9m´8h is a probability

set, the following holds

1) Ù Ò Ø Ò �o� ,
2) ��¬u lÒÚEÕØJÒl¬g� .
Suppose that for the | th state, � z , the two MCS’s that offer the highest expected throughput

based on Ñ are dgk and d > , where j,k�z�Û�j > z , meaning dgk is selected for �Lz . The difference

between these two expected throughput is equal to j k�z Guj�> z . Using c2  Ò EÜØ Ò 9mÔ®�o�?9<!�!<!m9m´8h in

a relation similar to (7) (modified according to the structure of the simplified model), we can

easily find the change in jlk�z=G­j > z due to an error c2Ø�Ò�9mÔ®�o�?9<!<!�!m9m´¼h as followsÝ '8j�k�z=G­j > z4+®� ¨ Ò ØJÒ<Þ¥Ò29 (10)

where Þ¥Ò�� ^ k8'���Gß�×k�z @ Ò<+àG ^ > '���Gß� > z @ Ò<+ , denotes the difference between the expected through-

put of dgk and d > in state |�E²Ô .

Therefore, we can readily identify all the c2Ø�Ò
9mÔ-�v�?9�!<!<!m9m´8h that decreases jlk�z�G`j > z such that it

results in j k�z G­j,> z �v� , beyond which point jl> z Ûqj k�z , meaning a sub-optimal MCS, d�> , will be

selected instead of d�k .
D. Algorithm for Implementation of Simplified Model

The goals of using the simplified model is to take into account the changes in fading charac-

teristics of the mobile channel. Such a model with parameters c=Ñ , ³ , �oh can be implemented

using the following algorithm:
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1) Throughput versus SNR curves are obtained for each MCS (offline). An example of such

curves is shown in Figure 1.

2) Enough number of frames are passed through the channel with the average SNR recorded

for each frame.

3) The average SNR values are uniformly quantized based on a given step size, � , to set up

a first-order finite-state Markov model of � states.

4) The transitional probability set Ñ of the Markov model is computed based on a given ³ .
a) Set  �Ò��(  0 Ò (optional).

b) The transitions which are not allowed are deleted, and the corresponding   Ò ’s are

modified as explained earlier.

5) The expected throughput in each state of the Markov model for each MCS is calculated

using a relation similar to (7), modified according to the structure of the simplified model.

6) MCS’s are assigned to each of the states in the Markov model according to (8).

7) Steps 2)–6) are repeated over an appropriate time interval for the adaptive case.

V. RESULTS AND DISCUSSIONS

A. Performance of Full-Scale and Simplified Models

The expected throughput per frame computed using (7) and (9) for both the threshold method

and our proposed method based on the full-scale model and the simplified model are shown in

Figures 3–5 for various � , ³ , C (corresponding to different fading characteristics), as well as

different average received symbol to noise ratio, á,âãlä as defined in Section II. The value of �
determines the number of states in the model. A typical value for the number of states is in the

order of �<� – 	
� .
From Figures 3–5, it can be seen that both the full-scale model and the simplified model

outperform the threshold method. These results, therefore, prove that our proposed method

accomplishes the goal of capturing the transitional behavior of the average channel SNR that is

lacking in the threshold method and in doing so it increases the average throughput.

Referring to Figures 3–5, for both the full-scale model and the threshold method, the ex-

pected throughput reaches a saturation point at approximately �£�v�"!#� dB, below which it stays

relatively constant. It is observed that the simplified model also reaches this saturation point
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(corresponding to �å���"!#� dB) when ³®�g� . When ³®æç� , the maximum expected throughput

occurs at step size of � dB, below which the expected throughput decreases as � decreases due

to the fact that when ³�æè� , using a smaller � means a bigger portion of state transitions is ig-

nored. In particular, when ³��o� and ��¡q�?!Å	 dB, the simplified model yields the same throughput

as the threshold method.

It is easy to observe from Figures 3–5 that by setting �é�D� dB and ³��W� in the simplified

model, we can achieve a throughput that is very close to the maximum value while using much

fewer parameters than needed in the full-scale model. Note that the value of � does not affect

the implementation complexity of the model, while the value of ³ determines the window size

of past symbols for on-the-fly adaptation.

Numerical results show that for the case of  OÒ-�H  0 Ò , �¯��� dB and ³p�H� , using a window

of �
�=� past frames (corresponding to 	"!#� s) to recompute the transitional probabilities results

in only �"!#� % loss in the expected throughput as compared to using �<�=�
�=�
� past frames for this

purpose. This shows that the simplified model can be easily adapted to the changes in the fading

characteristics with a reasonable delay.

As an example, Table II shows the expected throughput of the three MCS’s in each state of

the simplified model along with the resultant MCS assignments for each state when CR���"!#ê
ê=ê ,á,âã ä �� ?!ë��� dB, ³p�Ö� and �±�H� dB. It also shows a comparison between the MCS assignments

made by the simplified model and the threshold method. As shown, in some states, the MCS

assignments made by these two methods are the same while in other states they are different.

B. Effects of Approximation Errors on the Robustness of the Simplified Model

In the following, we use a simple example (based on some simplifying assumptions) as an

indication that the proposed scheme has some degree of robustness against possible errors in the

calculation of the transitional probabilities.

Since it is suggested in the last section that the appropriate selection for � and ³ in the sim-

plified model are �ì�è� dB and ³Ü�í� , in the following, we examine the effect of approxima-

tion errors (due to using a smaller window size of past frames for calculating Ñ and/or setting lÒ��u  0 Ò ) on the overall expected throughput for this particular case.

As can be seen in Table II, the difference between the two highest calculated expected through-

put in state 8 is the smallest among all the states (8PSK with �w
?������	 is selected over 16QAM



14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
230

240

250

260

270

280

290

300

310

Step Size (dB)

T
hr

ou
gh

pu
t (

bi
ts

)

Full−Scale
Threshold
Simplified, r=m
Simplified, r=3
Simplified, r=5
Simplified, r=7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
180

200

220

240

260

280

300

Step Size (dB)

T
hr

ou
gh

pu
t (

bi
ts

)

Full−Scale
Threshold
Simplified, r=m
Simplified, r=3
Simplified, r=5
Simplified, r=7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
180

200

220

240

260

280

300

320

Step Size (dB)

T
hr

ou
gh

pu
t (

bi
ts

)

Full−Scale
Threshold
Simplified, r=m
Simplified, r=3
Simplified, r=5
Simplified, r=7

î ©�emï ðJðJð , ñ�òó2ô ©�õmï öJ÷ dB

î ©�emï ðJð�÷ , ñ�òó2ô ©�õmï öJ÷ dB

î ©�emï ðJð , ñ�òó ô ©�õmï öJ÷ dB
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Fig. 5. Throughput vs. Step Size for ø ����ù úFú�ú , ø ���4ù ú�úmû , ø �Ó��ù úFú , and ñ òó2ô ����ù �Fû dB (note that for the simplified modelü2ý"þ� ü Ë ý )
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TABLE II

MCS ASSIGNMENT FOR ø �¥��ù úFú�ú , ñ òóàô � 6.75 dB USING SIMPLIFIED MODEL AND THRESHOLD METHOD

States, � Ê Expected Throughput, � � Ê (bits) MCS Assignment
BPSK� � ���J�J� 8PSK� � �q�Å�F� 16QAM� � �R�¼�F� Simplified

Model

Threshold

Method

0 128 0 0 BPSK BPSK
1 128 0 0 BPSK BPSK
2 128 4.1 0 BPSK BPSK
3 128 33.3 0.02 BPSK BPSK
4 128 107.8 11.8 BPSK BPSK
5 128 236.4 63.7 8PSK BPSK
6 128 383.2 182.0 8PSK 8PSK
7 128 496.6 363.6 8PSK 8PSK
8 128 555.7 551.6 8PSK 16QAM
9 128 575.2 685.1 16QAM 16QAM
10 128 576 749.6 16QAM 16QAM
11 128 576 767.7 16QAM 16QAM
12 128 576 768 16QAM 16QAM
13 128 576 768 16QAM 16QAM
14 128 576 768 16QAM 16QAM

with ��
2�g����	 for a difference of �&! � bits, i.e., jlk�z�G`j > z"�¢�&!Z� bits), and therefore this state has the

lowest error tolerance level, and thus determines the robustness of the simplified model.

If   Ò �Ö  0 Ò , then the corresponding errors for Ñ are c2Ø Ò 9mÔ®�o�?9<�=9m	?9A�Úh . To simplify calcula-

tion, we assume that the magnitude of Ø�Ò is constant for Ô®�o�?9<�=9m	?9m� , say
� Ø�Ò � �uØJe , Ô®�o�?9<�=9m	?9A� .

To find the maximum value for Ø�Ò (denoted by Ø � Ò�� ) such that the optimal MCS is still selected,

we solve the following equation for Ø�Ò
'8j�k�z2G²j > z4+OE Ý '8j�k�z=G­j > zm+2�o�?! (11)

To find Ø � Ò�� , we compute Þ¥Ò ’s and arrange them in decreasing order. Then, noting that (10)

is a linear function of c2Ø Ò 9AÔ®�v�"9<�
9m	"9m�Úh , we simply associate Ø�� Ò�� with the two smaller values,

and GtØ � Ò�� with the two larger values. This selection results in the most negative value forÝ '*j,k�z=G²j > z4+2� Ù Ò ØJÒ<Þ¥Ò while maintaining the condition that Ù Ò ØJÒ,�o� . Then, we substitute the

results in (11) and solve for Ø � Ò�� .

We find that there are  cases to consider. The results are tabulated in Table III for all  cases.

Note that ‘-’ denotes the case where the particular error type can not result in jOk�zlGvj > zw� � ,
and consequently does not result in selection of a sub-optimal MCS; the last row in the table
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represents the worst case scenario in this state for the system as described earlier.

By assuming that all errors have the same magnitude, this approach finds the worst case

scenario for the errors such that (10) is reduced to zero with the least value of magnitude of ØmÒ .
TABLE III

MAXIMUM ERRORS ALLOWED FOR ERROR TYPES IN STATE 8

Error Types 	�


Ð � 
 � � 

� � 

��� 
�� ý��
	���


Ð � ��
 Ð � 
 Ð � 
 Ð � 0.0072
	���


Ð � 
 Ð � 
 Ð � ��
 Ð � -
	���


Ð � 
 Ð � ��
 Ð � 
 Ð � -
	�


Ð � 
 Ð � ��
 Ð � ��
 Ð � -
	�


Ð � ��
 Ð � 
 Ð � ��
 Ð � -
	�


Ð � ��
 Ð � ��
 Ð � 
 Ð � 0.0046

VI. CONCLUSION

In this paper, we evaluated the performance of Turbo Code based Adaptive Modulation and

Coding in 3G wireless systems. We proposed a new method for selecting the appropriate Mod-

ulation and Coding Scheme according to the estimated channel condition where we use a first-

order finite-state Markov model to represent the average channel SNR. We take a statistical

decision making approach to address the potential problems caused by the sensitivity of Turbo

Code to the errors in predicting the channel SNR. Numerical results are presented showing that

our method substantially outperforms the conventional techniques that use a threshold-based

decision making approach. We also propose a simplified model with fewer parameters which

is suitable in systems where changes in the fading characteristics need to be accounted for in

an adaptive manner. It is shown that the inherent approximation errors in the simplified model

result in a negligible loss in the expected throughput.
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