University of

Waterloo

&

Optimum Diversity-Multiplexing Tradeoff
in The Multiple Relays Network

Shahab Oveis Gharan, Alireza Bayesteh,

and Amir Keyvan Khandani

Technical Report UW-E&CE#2007-35
November 9 2007
©Shahab Oveis Gharan, Alireza Bayesteh,
and Amir Keyvan Khandani 2007



Optimum Diversity-Multiplexing Tradeoff in
The Multiple Relays Network

Shahab Oveis Gharan, Alireza Bayesteh, and Amir K. Khandani

Coding & Signal Transmission Laboratory
Department of Electrical & Computer Engineering
University of Waterloo
Waterloo, ON, N2L 3G1
shahab, alireza, khandani@cst.uwaterloo.ca

Abstract

This paper studies the setup of a multiple relays network ickv KX half-duplex single-antenna
relays assist the single-antenna transmitter(s) and tigdesantenna receiver. Each pair of nodes are
assumed to be either connected together through a quéisi-stding channels or be disconnected.
However, it is assumed that there is no direct link between ttansmitter(s) and the receiver. We
prove that a modified version of the sequential SAF schem@ pErforms optimal in the sense that it
achieves the optimum diversity-multiplexing tradeoff.wver, for the single relay scenario, it reduces
to the naive amplify-and-forward scheme and can not folleevdptimum diversity-multiplexing tradeoff

curve, while the DDF scheme ( [2]) performs optimum in thisrsario.

I. INTRODUCTION
A. Motivation

In recent years, relay networks has gained more and morstiatieto combat against the
existing wireless networks difficulties such as the faditiggat, the coverage shortage, and
interference coexistence. The main idea is to employ sonra @odes in the network to aid
the transmitter/receiver in sending/receiving the sigo#rom the other end. In this way, the

supplementary nodes act as spatially distributed anteassisting the signal transmission and
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reception. Recently, cooperative diversity techniqueeeen proposed as candidates to exploit
the potential spatial diversity exists in the relay netw@ddk example, see [2]-[5]). A fundamental
measure to evaluate the performance of the existing cotypehversity schemes is the diversity-
multiplexing tradeoff (DMT) introduced by Zheng and Tse wahiwas firstly proposed for the
MIMO point-to-point fading channels ( [6]). Vaguely sayirthe diversity-multiplexing tradeoff
identifies the optimal compromise between transmissiaab#ity and data rate of a system in
high-SNR regime.

However, none of the existing cooperative diversity schésnproved to achieve the DMT
in the relay networks. Yet, the problem is open for the halfldx single relay single source-
destination SISO setup. Indeed, the only existing DMT adhge scheme for the single relay
channel ( [4]) works at the expense of having the CSI (chastak information) of all the
network channels at the relay node.

In this paper, we study a new modified version of the sequeBf& ( slotted amplify-and-
forward) scheme ( [1]), and prove that it achieves the optingiversity-multiplexing tradeoff in

the multiple-access multiple relays network under no ditemsmitter-receiver link assumption.

B. Related Works

The DMT of relay systems was first studied in [3] for half-dewplrelays. In this work, the
authors prove that the DMT of a network consisted of halflexsingle antenna single source-

destination assisted witR™ single antenna relay nodes, is upper-bounded by
d(r)=(K+1)(1—-r)*. Q)

This bound can easily be proved by applying either the meHgzcess or the broadcast cut-set
bound ( [7]) on the achievable rate of the system. This bosnstill the tightest upper-bound
for the DMT of the relay network. The authors in [3] also sugigd two protocols based on
decode-and-forward (DF) and amplify-and-forward (AFastgies respectively, for a single relay
system with single antenna nodes. In both protocols, tlay tedtens to the source during the first
half of the frame, and transmits during the second half. Titldbagainst the spectral efficiency
reduction, the authors propose incremental relaying pobdtm which the receiver sends a 1 bit

feedback to the transmitter and the relay to clarify if it ki@soded the transmitter's message or
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it needs help from the relay side to decode the message. Howene of the proposed schemes
were able to follow the DMT upper-bound.

The non-orthogonal amplify-and-forward (NAF) scheme tlifreroposed in [8], was studied
by [2]. Apart from analyzing the DMT of the NAF scheme, [2] sexdl that NAF scheme is
the best scheme in the class of AF strategy for the singlenaatsingle relay system. The
dynamic decode-and-forward (DDF) scheme was also proposkgendently in [2], [9], [10]
based on the DF strategy. In DDF, the relay node listens tséneler until it can decodes the
message and ,following that, it re-encodes the messageeau$ & in the remaining time. [2]
analyzed the DMT of DDF scheme and showed that the DDF scheroptimal for low rates
in the sense that it achieves (1) for the multiplexing gairs 0.5. However, for high rates, the
relay needs to listen to the transmitter for most of the tiarg] it can not assists the transmitter
for most portion of the frame. Hence, the scheme is unableltow the upper-bound for high
multiplexing gain rates. More importantly, the generdiimas of NAF and DDF for thek relay
system achieve far from (1), especially for high multiptexigain rates.

[4] applied compress-and-forward (CF) strategy and prakat CF achieves the DMT for the
multiple-antennas half-duplex single relay system. Havein the proposed scheme, the relay
node needs to know the CSI of all the channels in the netwdnks assumption is impractical
in real situations in which sending CSI's back to the netwookles not only costs in terms of
bandwidth and power, but suffers from the problem of chamggéhg.

Recently, [1] proposed a class of AF relaying called slo#eblify-and-forward (SAF) scheme
for the multiple half-duplex relaysi > 1) single source-transmitter setup. In SAF, the frame
of transmission is divided intd/ equal length slots. In each slot, each relay transmits aidine
combination of the previous slots. [1] found an upper-botordthe DMT of SAF and showed
that it is impossible to achieve the MISO upper-bound fortdéinialues ofM, even with the
assumption of full-duplex relaying. However, a$ goes to infinity, the upper-bound meets the
MISO upper-bound. Motivated by the upper-bound, the asthior[1] proposed a half-duplex
sequential SAF scheme. In sequential SAF scheme, follothiedirst slot, in each slot, one and
only one of the relays is permitted to transmit an amplifiecsia® of the signal it received in
the last slot. In this way, the different parts of the trartsadi signal go through different paths
by different relays, protected by some kind of spatial diitgrbetween the relays. However,

[1] could only show that the sequential SAF achieves the Ml§per-bound for the setup of
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no-interfering relays, in which the consecutive relays t(@nsmission ordering) do not make

interference on the input of each other.

C. Contributions

In this paper, we consider the multiple-access multiplay®lnetwork. The network consists
of M transmitters aided by half-duplex relays. Each relay is just permitted to know @&
of its corresponding backward channel (the channel betweetransmitter and the relay), and
the receiver is supposed to know the equivalent channelfgaimthe transmitter to the receiver.
Furthermore, we assume that there is no direct link betwkertransmitters and the receiver.
This assumption is reasonable when the transmitters araway from the receiver and the
relays are designed to connect the transmitters to theviescélowever, the graph of interfering
relay pairs can have any topology, i.e. any two relays care haterference on each other or
not. We prove that a modified version of the sequential SAfemehachieves the DMT for the
multiple-access multiple relays setup. However, for thétiple-access single relay scenario, we
show that the proposed scheme is unable to follow the optimunersity-multiplexing tradeoff
curve, while the DDF scheme achieves the curve.

The rest of the paper is organized as follows. In sectiorh#,dystem model is introduced. In
section lll, the sequential SAF scheme and the modified @ersf sequential SAF is described.
Section IV is dedicated to the DMT analysis of the modifiedusggial SAF scheme. Finally,
section V concludes the paper.

1. SYSTEM MODEL

The system , as in [3], [2], [1], and [4], consists Af relays assisting the transmitter and
the receiver in the half-duplex mode, i.e. in each time, #lays can either transmit or receive.
Each two node is assumed to either be connected by a quasifEthRayleigh-fading, i.e. the
channel gains remain constant during a block of transmmsaia changes independently from
one block to another, or be disconnected, i.e. there is recdimk between them. However,
throughout the paper, we assume that there is no direct letwden the transmitter and the
receiver. This assumption is reasonable when the traresmaittd the receiver are far from each
other and the relay nodes are employed to assist the end modesking the connection. As in

[2] and [1], each relay is assumed to know the state of its wauntk channel and, moreover, the
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receiver is supposed to know the equivalent channel gam fite transmitter to the receiver.
Hence, against the CF scheme in [4], no CSI feedback is naadéé network. All nodes have
the same power constraint. Also, we assume that a capadiigvétog gaussian random codebook
can be generated at each node of the network. Hence, the esdmgroblem is not considered
in this paper. Figure (1) shows a realization of the multitays single transmitter-receiver
scenario in which the relay sét, 2} is disconnected from the relay sgt.4}. Here, we denote
the output vector at the transmitter msthe input and output vector at theth relay asr, and

t, respectively, and the input at the receiveryasAs an example, for the scenario shown in

figure (1), we have
r3 = hsx+is3ts + ng,
Y = gity + gota + g3ts + gaty + 2,

whereh,, is the channel gain between the transmitter andkttierelay, g, is the channel gain
between the:’'th relay and the receivei, is the channel gain between thih and b'th relay

nodesn; is the noise at thé’th relay, andz is the noise at the receiver side.
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Fig. 1. An example of a multiple relays network ystem modeldsingle transmitter-receiver pair are assisted with #dgblex

relays, relay sef1, 2} are disconnected from relay sg,4}.

lll. PROPOSEDK -SLOT SWITCHING N-SUB-BLOCK MARKOVIAN SCHEME (SM)

In the proposed scheme, the entire block of transmissioivided! into N sub-blocks. Each

sub-block consists of< slots. Each slot ha%” symbols. Hence, the entire block consists of
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T = NKT'" symbols. In order to transmit a messagethe transmitter selects the corresponding
codeword of a gaussian random codebook consistingéf"" codewords of Iength%T
and transmits the codeword during the filsi — 1 slots. In each sub-block, each relay receives
the signal in one of the slots and transmits the receivedatignthe next slot. So, each relay
is off in % of time. More precisely, in thé’th slot of then’the sub-block { <n < N,1 <

k < K,nk # NK), the k'th relay receives the signals the transmitter is sending, amplifies
and forwards it to the receiver in the next slot. The recestarts receiving the signal from the
second slot. After receiving the last slat {{'th slot) signal, the receiver decodes the transmitted
message by using the signal 8fK — 1 slot received fromK relays. It will be shown in the
next section that the equivalent point-to-point channeinfithe transmitter to the receiver would

act as a lower-triangular MIMO channel.

V. DIVERSITY-MULTIPLEXING TRADEOFF

In this section, we show that the proposed method achieeesgtimum achievable diversity-
multiplexing curve. First, according to the cut-set bouineldrem [7], the point-to-point capacity
of the uplink channel (the channel from the transmitter ® riblays) is an upper-bound for the
capacity of this system. Accordingly, the diversity-mpiiéixing curve of al x K SIMO system
which is a straight line from multiplexing gaihto the diversity gaink is an upper-bound for
the diversity-multiplexing curve of our system. In this sex, we prove that the tradeoff curve
of the proposed method achieves the upper-bound and thigspfttimum. First, we prove the
statement for the case that there is no link between thegeldgxt, we prove the statement for

the general case.

A. No Interfering Relays

Assume, the link gain between tléh relay and the transmitter and tleth relay and the
receiver aréy, andg;, respectively. Furthermore, assume that there is no libkden the relays.

Accordingly, at thek’'th relay we have

Ty = th + Ny, (2)
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wherer,, is the received signal vector of theth relay, x is the transmitter signal vector and

n; ~ N(0,1I7) is the noise vector of the channel. At the receiver side, we ha

K
y = ngtk + 2, 3)
k=1

wheret,, is the transmitted signal vector of tléh relay, y is the received signal vector at the
receiver side and ~ A(0,1I7) is the noise vector of the downlink channel. The output power
constraintE {||x|*} ,E {||ts]|*} < 7P holds at the transmitter and relays side. To obtain the
DM tradeoff curve of the proposed scheme, we are looking lier énd-to-end probability of

outage from the ratelog (P), as P goes to infinity.
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Fig. 2. DM Tradeoff for the proposed Switching Markovian 8ete and various values of (K,N), No interfering relays case

Theorem 1 Assume a half-duplex parallel relay scenario with K no interfering relays. The

proposed SM scheme achieves the diversity gain

dsawi(r) = max {o, K(l—r)— % K(1—r)— NKfl } , @)

which achieves the optimum achievable DM tradeoff curve d,,:(r) = K(1 —r) as N — oo.
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Proof: Let us definex,, i, n, x, T'n i, tn i, Znk, Yo i @S the signal/noise transmitted/received
by the transmitter/relay/receiver to tké&h relay/receiver in thé’'th slot of then’th sub-block.
Also, let us defingk) =k —2 mod K +1 and(n) =n— [%]. Thus, we have

Yok = Gkbtnk+ Znk
= gy (R Xy, (k) + D)) + Znk,s (5)

where o, = is the amplification coefficient performed in tiéh relay. Defining the

P
[hy |2 P+1
eventE, as the event of outage from the rateyg(P) in the k’th sub-channel consisting of the

transmitter, thet’'th relay, and the receiver, we have

P{&}

P {log [1 + P|gi*| o hr)? (1 + |gk\2|ak\2)_l} < rlog(P)}

min {sign(r), P { ge 2 el (1 + lgiPlnl?) ™ < P}

1 1
in < Si h ——  t< pt
I'Illl'l{ gr(T> {‘gk| ‘ak| ‘ k‘ Hlll’l{2 2|9k| |Oé/<:|2} — }}

min {sign(r), P {|hx|* < 2P" "'} + P {|gel*|ax*[hi]* < 2P} }
1 |h]?P
mm{Slgr(r) p--r +P{|gk\2mm{2 | k2| }SQP“I}}
d

= min {signr), P —(=n) + P {|g|* < 4P} + P {|gil*|lw]? < 4P} }
(e

—
RS
~

—
- o
=

—
-0
~

—
=

~

= min {sign(r), P T)} : (6)
where sigifr) is the sign function, i.e. sign) = 1, > 0,sign(r) = 0, < 0. Here, (a) follows
from the fact thatW = min {2, W} (b) and (d) follow from the union bound
inequality, (c) follows from the fact thdtv.|?|h.]? = min {%, W} and the pdf distribution

of the rayleigh-fading parameter near zero, and (e) folloeen the fact that the product of
two independent rayleigh-fading parameters behave as laighyfading parameter near zero.
(6) shows that each sub-channel’s tradeoff curve perforsna aingle-antenna point-to-point
channel.

Defining R, (P) as the random variable showing the rate of tfth sub-channel consisting

of the transmitter, thé’th relay, and the receiver in terms &f, the outage event of the entire
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channel from the-log(P), the event, is equal to

K-1
Pw}:P{NE:RAm+4N—URﬂPygNKﬂ%un} 7)
k=1
AssumingRy(P) = r log(P), we have
K-1
P{S}iP{NZT’k—l-(N—l)TKSNKT} (8)
k=1
P{Ry(P) < rylog(P)} is known by (6). Defining the regioR as
K-1
R = {(7«17712,... )]0 <1 < 1,NZrk+ (N —1rg < NKT} (9)
k=1
it is easy to check that all the vectofs,,r,, - - ,rg) that result in the outage event almost

surely lie in R. In fact, according to (6), for alk we know r, > 0. Also, for r, > 1,
P{R;(P) > rylog(P)} < e which is exponential in terms of. Hence,r, > 1 can
be disregarded for the outage region. As a re®{t€} =P {r € R}.

On the other hand, by (6) and the fact thak are independent, we have

P{r <rr<rl o rg <ol )= p(K-Xiarh) (10)

Now, we show thaP {£} = p~miner K=17 First of all, by taking derivative of (10) with respect
tory,r, - ,rg, it is easy to see that the probability density function-dfehaves the same as

the probability function in (10), i.ef,(r) = P~(5=17) Hence, the outage probability is equal

/re +(r)dr

[
R
’UOZ(R)P_ minyer K—1-r

to

P{&}

—_
JORVAN

P~ minger K—1-r (11)

Here, (a) follows from the fact thaR is a fixed bounded region whose volume is independent
of P. On the other hand, by continuity @~(~1%) overr, we haveP {£} > P~ minrer K-1r
which combining with (11), results intB {£} = P~ minrer K=1T Definingl(r) = K — 1 -1, we

have to solve the following linear programming optimizatiproblemmin,. {(r). Notice that
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the regionR is defined by a set of linear inequality constraints. To soheproblem, we have

(@) NK
I(r) > maX{O,K—%,K— sz 1”:}
®) 1 K
> max{O,K(l—r)—N,K(l—r)—N_Tl}. (12)

Here, (a) follows from the inequality constraint in (9) gaviag R, and (b) follows from the
fact thatry < 1 andVk < K : r, > 0. Now, we partition the rangé < r < 1 into three

intervals. First, in the case that> 1 — the feasible point = 1 achieves the lower bound

W!
0. Second, in the case that< + — -, the feasible pomt = (0,0,---,0,5E), achieves the
lower boundK (1 —r) — 2. Finally, in the case that — <.- <r < 1— -, The lower bound

K(1-r)—+is achievable by the feasible pointvk < K DT = %,n{ — 1. Hence,

. This completes the proofm

we havemin,er I(r) = max {0, K(1 —r) — +, K(1 —r) — 5

Remark - It is worth noting that as long as the graph{V, E) whose vertices are the relay
nodes and edges are the non interfering relay node paimsdiegla hamiltonian cyclé, the
result of this subsection remains valid.

According to (4), we observe the SM scheme achieves the memimultiplexing gainl — ——
and the maximum diversity gaif, respectively, for the setup of non-interfering relaysneks
it achieves the maximum diversity gain for any finite valueNaf Also, assuming that the relays
spend the first” symbols out of th&” symbols to initialize and listen to the transmitter’s signa
we see that the SM scheme achieves the maximum multiplexamgwghich is1 — TT

Figure (2) shows the D-M tradeoff curve of the scheme for theeoof non-interfering relays

and varying number o and N.

B. General Case

In the general case, an interference term due to the neigigoozlay adds at the receiver
antenna of each relay.
r, = hpX + gyt + g, (13)

wherei ) is the interference link gain between thieh and (k)'th relays. Hence, the amplification

coefficient is bounded as;, < > L . Here, we observe that in the case that> 1,
P (ke P+ ]igy| ) +1

1By hamiltonian cycle, we mean a simple cyalevs - - - vxv1 that goes exactly one time through each vertex of the graph.
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the noisen, at the receiving side of thg’th relay can be boosted at the receiving side of the

next relay. Hence, we bound the amplification coefficienbyias= min < 1, — .
P (ke P+igy| ) +1

In this way, it is guaranteed that the noise of relays are nosted up through the system. This
is at the expense working with the output power less tRai©n the other hand, we know that

almost surely \hk\z , i(k)\Q <1. Hence, almost surely we hawg = 1. Another change we make

in this part is that we assume that the entire time of transionsconsists ofVK + 1 slots, and
the transmitter sends the data during the fi¥sk” slots while the relays send in the laSti
slots (from the second slot up to tRéK + 1'th slot). Hence, we hav& = (NK + 1)T". This
assumption makes our analysis easier and the lower bounldeodiversity curve tighter. Now,

we prove the main theorem of this section.

Theorem 2 Consider a half-duplex multiple relays scenario with K interfering relays whose
gains are independent rayleigh fading variables. The proposed SM scheme achieves the diversity
gain

dsar.1(r) > max {0, K(1-r)— %} , (14)

which achieves the optimum achievable DM tradeoff curve d,,.(r) = K(1 —r) as N — oo.

Proof: First, we show that the entire channel matrix acts as a lovieengular matrix. At

the receiver side, we have

Yok = Gkbnk+ Znk

= JkQ(k) Z Prn—ni k.l (h’klxnhkl + nm,kl) + Znk (15)
0<ny,ki,na (K+1)+ki <n(K+1)+k

Here,p, 1%, has the following recursive formulgy ;. = 1, Dn ik = T(k) k)P, (k)5 - DEFINING
the squaréV K x N K matrices a$s = Iy®diag{gi1, 92, - ,9x }, H = Iy®diag{hy, ho,--- , hx},
Q =1Iy®dag{ay,as, - ,ax}, and

1 0 0 0
Po,2,1 1 0 0
F= D0,3,1 D0,3,2 1 0 e (16)
PN-1,K,1 PN-1,K2 --- DorkkK—-1 1

2By almost surely, we mean its probability is greater than P, for all values ofs.
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where® is the Kronecker product [11] of matrices ahd is the N x N identity matrix, and the

NEK x1vectorsx (s) = [x11(s), 21.2(5), - -, 2n.x(5)]T,n (s) = [n11 (s) ,n12(s), - nyx(s)],
z(s) = [212(5), 213(5), -+, anvaa(8)]T, andy (s) = [y12(5), y1a(s), -, yvs1a(s)]", we have
y(s) = GQF (Hx(s) +n(s)) +z(s). 17)

Here, we observe that the matrix of the entire channel acis lasver triangular matrix of a
NK x NK MIMO channel whose noise is colored. The probability of getaf such a channel
for the multiplexing gain- is defined as

P{&} =P {log [Ixy + PH;HIP'| < (NK + 1)rlog(P)}, (18)

wherePy = Iyx + GQFFIQYGH, andHy = GQFH. Assume|h(k)|? = P~#®), |g(k)|? =
P=®) i(k)|? = P~®), and R as the region inR*X that defines the outage eveétin
terms of the vectofu, v,w], where = [u(1)p(2) - w(K)" v = p(L)v(2)---v(K)]" ,w =
[w(1)w(2) - --w(K)]". The probability distribution function (and also the inserof cumulative
distribution function) decays exponentially &7~ for positive values of. Hence, the outage
regionR is almost surely equal t® . = R () R3*. Now, we have

(a)
]P){g} < ]P){|HT|2 |Pn|_1 < P—NK(l—r)-l-r}

0 P{—Nzu(k) 4 u(k) — min {0, 1), w((K)}+
k=1

~ NKlog(3) + log |Py|

< —NK(l—T)+T}

log (P)
(c) 2 12 K
< P {—NKlog ? i(])\;([;) 1) +NK(1—7r)—r< N;u(k) + v(k),
pu(k),v(k),w(k) = 0}~ (19)

Here, (a) follows from the fact that for a positive semide&mnatrix A we have|ll + A| > |A

(b) follows from the fact that

P 1
— mij Zmi (k) pw((k))
a(k) = min {1, 7S N (o 1} > 5 min {1,P,Pr® p }

and assuming is large enough such thd > 1, and (c) follows from the fact thai(k) < 1

and accordinglyp, »x, < 1, and knowing that the sum of the entries of each rowFif? is
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less thanV2K?, we havé FF < N?K%Iyg, andP{R} = P{R.}, and conditioned orR.,
we havemin {0, u(k),w((k))} = 0 andv(k) > 0 and consecutivelP y < (N?K? + 1)Ixx.

On the other hand, we know for vectqr$ 1%, w° > 0, we haveP {u > 1% v > 10w > W} =
pi( ) Similarly to the proof of Theorem 1, by taking derivativetiwvrespect tq:, v we
havef,,(u,v) = P~+w+) Defining the lower bound asl, = —%Hl — ) —
the new regiorR as®R = {y,v > 0, +1 - (u+v) >y}, the cube asZ = [0, K1]**, and for
1<i<2K,I¢f = [0,00) ! x [Kly, 00) x [0,00)*5~%, we observe

(a) .
P{E} < P{R)

/ Fu (11 v) dpdv + iﬂ”{[u, v] € ﬁmz;}
i=1

RNZ

IN

vol(R N T) P~ ™ Mowlennz (4" o g pkio

SRV

P—Klo

plKa-n-%], (20)

Here, (a) follows from (19) and (b) follows from the fact tWétﬂI is a bounded region whose
volume is independent aP. (20) completes the proof. [ |
Remark - The statement in the above theorem holds for the generalcag@ch any arbitrary
set of relay pairs are non-interfering. Hence, the propasd@me achieves the upper-bound of
the tradeoff curve in the asymptotic case/df— oo for any graph topology on the interfering
relay pairs.
According to (14), we observe the maximum multiplexing gaahievable by the SM scheme

is greater than or equal tb— which turns out to be tight because of the fact that the

NJ%+1’
transmitter is off in1 slot out of the VK + 1 slots. Also, the lower-bound shows us that SM
scheme achieves the multiplexing gdin which is tight too.

Figure (3) shows the D-M tradeoff curve of the scheme for theecof interfering relays and

varying number ofK’ and V.

3This can be verified by the fact that every symmetric real imair which has the property that for everya; ; > Z#,‘ |ai, ;|

is positive semidefinite.
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Fig. 3. DM Tradeoff for the proposed Switching Markovian 8ete and various values of (K,N), Interfering relays case

C. Multiple-Access Multiple Relays Scenario

In this section, we study the DM-T performance of the SM sal@mthe multiple-access sce-
nario aided by multiple relay nodes. Here, we assume that ieeno direct link between each of
the transmitters and the receiver. However, like the cagg@ffering relays in last subsection, the
graph of interfering relay pairs can have any topology. Asisig having)M transmitter, we show
that for the rate sequeneelog(P), rslog(P), ...,y log(P), in the asymptotic case of — oo,
the SM scheme achieves the diversity gding yac(ri, 72, ..., 7)) = K (1 D rm>+,
which is shown to be optimum due to the cut-set bound on thédetween the relays and the

receiver. The received signal at théh relay would be

M
r, = Z P X + iy by + Mk (21)

m=1
Here, h,, i is the rayleigh channel coefficient between th&h transmitter and the’th relay

and x,, is the transmitted vector of the'th sender. The amplification coefficient in theth
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relay is set as
P

P (Efle i + \i<k>\2> +1

Again, in the same way as shown in the last subsection, we asity econclude thaty, =

(22)

ap = min ¢ 1,

1. At the receiver side, after waiting K + 1 slots, it decodes the transmitters’ messages,
wi,ws, ..., wk, Dy jointly typical decoding of the received vector in thetlaV K slots and the
transmitted signal of all senders, i.e. the same way, thalyotypical decoder works in the
multiple access setup ( [7]). Notice that the receiver desdde messages based on the received
vector received from all thé&V K slots together.

Now, we prove the main statement of this subsection.

Theorem 3 Consider a multiple-access channel consisting of M transmitting nodes aided by
K half-duplex relays. Assume there is no direct link between the transmitters and the receiver.

The proposed SM scheme achieves the diversity gain

M M +
dsmarac(ri, 2, i) = [K <1 - Zrm> - %} , (23)
m=1

where 1,79, ..., 1) are the rates corresponding to users 1,2, ..., M. Moreover, as N — oo, it

+
achieves the optimum DM tradeoff curve which is do,e aprac(r1,re, - 1) = K (1 — fozl rm) .
Proof: At the receiver side, we have

Yok = Grbng+ Znk

M
- gka(k) § pn—nl,k,kl E hm,klxm,nl,kl + nnl,kl _'_ ZTL,k?
)+k

0<n1,k1,n1(K+1)+k1<n(K+1 m=1

(24)

wherep,, x x, is defined in the proof of Theorem 2 anmdl, ,,, », represents the transmitted signal
of the m’th sender in thet’'th slot of the n’th sub-block. Similar to (17), we have

M
y (s) = GQF (Z H,.x,, (s) +n (s)> +2z(s), (25)
m=1
WhereHm - IN ® dlag {hm,b h’m,27 Tty hm,K}) Xm (8) - [xm,l,l(s)u xm,1,2(8>7 e 7xm,N,K<S)]T)

andy,, n,, z,, G, Q, F are defined in the proof of Theorem 2, . Again, we observe tiehtatrix
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of the entire channel from each of the transmitters to theivec acts as a MIMO channel with
a lower triangular matrix of siz&V K’ x NK.
Here, the outage event occurs whenever there exists a sdbset{1,2,..., M} of the

transmitters that

I (xs(s);y(s)|xse(s)) < (NK +1) (Z m) log(P). (26)
meS
This event is equivalent to
log [Ixy + PHyHP'| < (NK + 1) (Z rm> log (P). (27)
meS

whereP y is defined in Theorem 21 = GQFHg, and

Hs =Iy@diagd > [hmil’s D bl D Tl - (28)
meS meS meS

Defining such an event & and the outage event & we have

P{} = P U &

SC{1,2,...,.M}

< . P&

SC{1,2,...,.M}

< (M-
= D, Pl

= Sg{rll?;?.(.,M} P{&s}. (29)

Hence, it is sufficient to upper-bour{Es} for all S.
Defining Hs = Iy ® diag{maxmecs |fm.1|, Maxmes [Pmal, - MaxXpmes |hm.x |}, We have
HsHY < HsHY. Therefore,

P{&} < P {log )IKN + PGQFH:HIF/QUGHP | < (NK + 1) (Z rm> log (P)}

meS
S P{SS}. (30)
Assumemax,cs |hmi|> = P7*®), and |g(k)]? = P7*®) |i(k)]? = P~“®), and R as the

region in R3% that defines the outage evefitin terms of the vectorfu, v, w]. Again, since

DRAFT



18

P{RNR*} = P~>, we can sayP{R} = P{R,} whereR, = R(NR3X. Rewriting the

equation series of (19), we have

P{és} < IP’{—NKIOg BVE 1)) | yg (1 - Zrm> S r < NS ulk) + v(k),
k=1

1Og(P) meS meS

puk), v(k), w(k) = 0} (31)

On the other hand, we know for vector v, w° > 0, we haveP {u > p% v > 1% w > W} =

P8I0+ Similarly to the proof of Theorem 1, by taking derivativetivrespect tqu, v
log[3(N2K2+1)]
- log(P)

(1=, coTm) — =25 the new regiorR asR = {,v > 0,11+ (u+v) > I}, the cube

7 asZ = [0, K1o)**, and forl < i < 2K, Z¢ = [0, 00)" ! x [Kly, 00) x [0, 00)25~, we observe

P {53} (s) P{R)

we havef,,(u,v) = P~ 1Skt Defining the lower bound, asl, =

IN

/ fuw(ﬂa’/)dﬂdV-i-iP{[u,y] Eﬁﬁff}

RNZT

vol(R N T) P~ "o asernz V(ISK4) o g porio

SCHVS

P—Klo
P K(-Smesrm)-=m55 | (32)

Here, (a) follows from (31) and (b) follows from the fact tHélﬂI is a bounded region whose

volume is independent aP. Comparing (29), (30), and (32), we observe

. . ~ . — K(l—z%zl rm)_z'n{:l Tm:|
< < < [ A
Piets sg{%?f}f,M} Piési= Sg{rf,l;,i.}.{.,M} F {ES}_P (33)

m=1

+
Now, we prove that’ <1 — ZM rm> is the upper-bound on the diversity gain of the system
corresponding to the sequence rates-, ..., ). TO prove, we observe

M (a)
P{&} > P{ max )I(tl,t2, cootisy) < (Z rm> log(P)} = pK(-Xh rm) " (34)

p(t1,t2,.. btk f—t

Here, (a) follows from the DM tradeoff of the point-to-poitiSO channel proved in [6]. This

completes the proof. [ |
Remark - The statement in the above theorem holds for the generalcaggich any arbitrary

set of the relay pairs are non-interfering. Hence, the pedascheme achieves the upper-bound
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of the tradeoff curve in the asymptotic caseNdf— oo for any graph topology on the interfering
relay pairs.
In the Symmetric situation, i.e., the multiplexing gains of all the users agual (to sayr),

the lower-bound function on the diversity in Theorem 3 takesmple form. First, we observe

that the maximum multiplexing gain achievable by each usg\%i KIJ(VJL Noticing that in the
SM scheme, the receiver is receiving dataﬁi}é% of the time, we observe the lower-bound in
Theorem 3 is tight for the maximum multiplexing gain achigeaby the SM scheme. Also, by
, we observe that SM scheme achieves the maximum diversity [gawhich turns out to be
tight too. Finally, the lower-bound on the DM curve of SM sofesis [k (1 — M7) — 427 for

N
the Symmetric situation.

D. Multiple-Access Sngle Relay Scenario

As we observe, the proofs stated here sofar are valid fordéeasio of having multiple relays
(K > 1). Indeed, For the case of single relay scenario, both theesgiml SAF scheme and its
modified version are reduced to the simple AF scheme in wiiehdlay listens to the transmitter
for half of the frame and transmits the amplified version @& thceived signal in the next half
of the frame. However, like the case of no interfering relsigglied in [1], the statements above
are no longer valid for the scenario of single relay netwankleed, in this scenario, the DDF
scheme by [2] achieves the DMT tradeoff when there is no tlinek between the transmitters

and the receiver.

Theorem 4 Consider a multiple-access channel consisting of M transmitting nodes aided by
a single half-duplex relay. Assume all the network nodes are equipped with single antenna and
there is no direct link between the transmitters and the receiver. The amplify-and-forward scheme

achieves the DMT curve which is

M +
darmac(risre, ... ra) = (1—227’m> : (35)
m=1

However, the optimum DMT of the network is

ZM , +
dyrac(ri,ro,...,ry) = |1 ——=m=L. ™ | 36
mac(r1, 72 M) ( 1_2%:1 Tm> (36)

which is achievable by the DDF scheme of [2].
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Proof: First, we show that the DMT of the AF scheme follows (35). A¢ tleceiver side,

we have

M
y = ga (Z X + n) + z, (37)

m=1

where h,, is the channel’'s gain between th&th transmitter and the relay; is the downlink

channel’s gain, and = \/ is the amplification coefficient . Defining the outage

P
Py [hm]?+0.5
event&s for a s setS C {1,2,..., M} the same way defined in Theorem 3, we have

P{€s} = P {1 (xs:¥|xsc) < 2 (Z rm> log(P)}

meS

- P{log (1 +P (Z \hm|2> lg” laf? (0.5 + 0.5 g \a|2)‘1> <

meS

2 <Z rm> log(P)}
meS
= 2 ?|a|* min b ~(1=2% es m)
P{(n%w ) 9ol {1, MW} <P }

= P {Z ] < P‘(l‘zzmes’“”L)} -

1
P |g‘2 ( |hm|2> min { P, < P—(l—zzmesrm)
{ = 2 (S )

= IP’{|hm|2 < P_(1_2Zm€$7"m)} +

P {|g|2 (Z |hm|2> < P—2<l—2mes’“m>} +

meS

2 2
. {\g| S Szp—o—?zmesw)}. (38)
Zm=1|hm|

To compute the second term in (38), we have

P {|g|2 (Z |hm|2> < e} <P{lgP |hml” <€} =€ (39)

meS

On the other hand, we have

P {|g|2 <Z |hm|2> < E} > IP){|g|2 < E} H ]P){|hm|2 < %} = €. (40)

meS meS
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Putting (39) and (40) together, we have

P {Ig\2 (Z \hmF) < } ~e (41)
meS

Now, to compute the third term in (38), we observe

. 2 2 ZmES |hm|2 (a) 2 2 (b)
e=P{|g|" <e} <PJ|gl WSE <P<lgl Z|hm| Sep=¢€
m=1 m

meS

Here,(a) follows from the fact that with probability one (more preslig with probability greater
than1 — P~ for everyd > 0) we havelh,,|<1 and (b) follows from (41). As a result
B |
P {W Lpes Ponl } s (42)
Zm:l |hm|
From (38), (41), and (42), we have

P{Eg} - P—‘S|(1—22mesrm) + P—Z(l—zmesrm) + P_(l_szES 7”7,L) - P_(l_szesrm)Jr_ (43)
Observing (43) and applying the argument of (29), we have

+
P{E} = P&} = P~ (12X 44
{€} o {Es} (44)

This completes the proof for the AF scheme. Now, to compuaalitersity-multiplexing tradeoff
for the DDF scheme, assume the relay listens to the trarehsiggnal for the portion of the

time. Hence, we have

m) log(P

[=mind1, max (Emes rm) Lo 2) . (45)
sc{r2..M} log (14 (3°,,cs |hml”) P)

The outage event is occured whenever the relay can not triatienreencoded information bits

in the remaining portion of the time. Hence, we have

M
P{E} iIP’{(l —Dlog (1+g)*P) < (Z rm> log(P)}. (46)
m=1
Assuming|h,,|* = P7#= and|g|? = P, at high SNR we have
[ ~ min {1, max E"TES fm } 47
SC{1,2,..M} 1 — min,,es tm

Equivalently, an outage event is occured whenever

) esTm -
(1 — SQ{III,I2ETJ.X ) (1-v)< Z T (48)

WM} 1 —minges f,
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We are looking for the vector poirifi, o, . . ., fiar, ] in the outage regiorR, i.e. the region
that satisfies (48), for WhiclerZ%:1 I 1S Minimized. To find such a point, assume the subset

S, takes the maximum value in (48). Definidg= >"""_ ry, andp = 3™ 11,,,, we have

R@(l— Z“?e&“rm )(1—1/)><1—i)(1—1/). (49)
1 — miny,es, tm 1—p
Here, (a) follows from (48). Equivalently,
@ (1-=w(-vr) l—p—v
> . 50
A-p+0-0 T-p+1-1) 0
Here, (a) follows from (49). It easily can be checked that (50) is eqlént to
R>(1—-R)(1—p—v). (51)

which is the equivalent condition to (48) for the vectEﬂ, 0,...,0,v+ fozl im| to be in
R. Hence, having the vectdy, uo, ..., ua, v] in the outage region, we can conclude that
[0,0, L0 v+ Zn”le im| € R. Applying the same argument as in the proof of Theorem 3,

we have

P{€}t = P{lu1,pas. .., par,v] €ER}

- p- (min[ﬂl,uzw---vf‘M’“]ER V+Z%:1 HM)
N P_(min[oyo,.“,O,V]GR V)
- (1—M)
= P =y rm ) ©?

This completes the proof for the diversity-multiplexingdeoff analysis of the DDF scheme.
Now, we porve that the DDF scheme achieves the optimal diyaraultiplexing tradeoff. It
easily can be seen that for any channel realization of thevarkt the DDF scheme achieves
the capacity of the MAC single relay network with no direarsmitter-receiver link. Hence,
the outage region of the DDF scheme, i.e. the region of theraarealizations that the point
(r1,79,...,7y) is outside of the DDF scheme’s achievable rate region, ishaedwf any other

scheme’s outage region. This completes the proof of the rEineo [ ]

V. CONCLUSION

A simple scheme based on the sequential SAF scheme is prbposeits performance is

studied in the multiple-access multiple relays scenariwlch there is no direct link between
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the transmitters and the receiver. In the case of no-integeelays, the diversity-multiplexing

tradeoff of the scheme is derived and is shown to achieve plienam tradeoff for large values

of IV, the number of sub-blocks. Also, in the general scenariorgvtiee graph of interfering

relays can have any topology, a lower-bound is derived ferdilrersity-multiplexing tradeoff of

the scheme and is shown to achieve the optimum diversityyphering tradeoff for asymptotic

values of N. However, in the case of multiple-access channel assisitdansingle relay, while

it is shown that the proposed scheme is unable to follow thenopn diversity-multiplexing

tradeoff, the DDF scheme of ( [2]) is shown to perform optimimthis scenario.
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