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Strategy in Single-Hop Wireless Networks

Jamshid Abouei, Masoud Ebrahimi, and Amir K. Khandani

Abstract

In this paper, a simple decentralized power allocation strategy is proposed, which

relies on the local information in a single-hop wireless network with n links. The main

goal of the strategy is to improve the average sum-rate. We first define a new utility-

based framework, in which each user takes into account the negative impact of its power

increment on the other users performance. For large n and by knowing only the direct

channel gain hii, the optimum strategy for user i is to transmit with full power or remain

silent. The transmission policy is to compare hii with a prespecified threshold τn that is a

function of n. Under a Rayleigh fading channel condition, it is demonstrated that among n

pairs of nodes, the average number of active links is of order log n. Also, the average sum-

rate scales as Θ(log n). The performance of the proposed strategy is compared with that

of the centralized power allocation scheme and the non-cooperative power control games

through simulation and the analytical arguments. The proposed on-off power allocation

scheme has the advantage of not requiring a central controller. The proposed strategy

relies on a one shot game with a simple structure, rather than the iterative mechanism

used in the pricing algorithm. These properties make our scheme more practical in time-

varying networks.
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I. Introduction

As the demand for higher data rates increases, effective spectral usage and power

control emerge as the main issues in wireless networks. Power control in transmitters

has long been regarded as an effective tool to combat channel fluctuations or multi-

path fading. It also dramatically reduces the interference effect that limits the capacity

of the system. In recent years, various power control schemes have been extensively

studied in cellular and multihop wireless networks [1]–[12]. For example, in code-

division-multiple-access (CDMA) systems with voice services, the power control is

performed to equalize all the received signals at the base station [1]. While, for

CDMA data applications or in general multimedia services, the powers are assigned

to different users such that the minimum quality of service (QoS) requirements are

achieved [2], [3].

In conventional wireless systems, the power allocation is performed by using

a central controller. For example, Grandhi et al. [13] propose a centralized power

control scheme for the uplink wireless radio systems to achieve a common carrier-to-

interference ratio for all the receivers. In the model proposed in [14], a central node

jointly controls transmission powers and spreading gains of the users. It is shown

that under the bang bang strategy (i.e., the users either transmit with full power

or remain silent), the users in the cell are allocated the full powers in decreasing

order of the channel gains. Chiang et al. [9] use the geometric programming for the

power control in CDMA and multihop wireless networks, and for different values of

signal-to-interference-plus-noise ratio (SINR). In the low SINR regime, they solve a

nonlinear optimization problem through an iterative algorithm, and based on the

cooperation between nodes.

Clearly, centralized power allocation schemes provide a significant improvement
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in the network performance over decentralized approaches. However, they require

cooperation between nodes or complete knowledge of all aspects of the network.

Also, when the size of the network continues to grow, deploying centralized power al-

location schemes becomes computationally intractable. Furthermore, for time-varying

networks, due to overwhelming amount of information, the power assignments can

not perfectly trace the channel fluctuations. These problems has drawn the attention

of the researchers to the decentralized power allocation schemes.

The main goal of applying the decentralized scenario is that the operational

decisions are made solely by the individual users. Among many decentralized power

control schemes, the problem of the non-cooperative power control game (NPCG)

in wireless networks has received much attention in recent years [4]–[8]. The first

study on NPCG algorithms in CDMA wireless data networks was framed in [4]. This

work was further expanded in [5] and [6] by using the pricing mechanism from game

theory [15]. In these works and with the assumption of a static wireless model, they

use an iterative algorithm that converges to the optimum powers. Etkin and Tse [7]

propose power and spectrum allocation strategies based on game theory concepts.

They present non-cooperative power allocation scenarios by using the static and the

repeated games. However, they assume omniscient nodes with complete information of

the network. In order to analyze the more realistic networks, it is essential to properly

account for the unavoidable uncertainty in channel gains and also the interference.

This is done by using the Bayesian game theory concept [15], where each user observes

the local information in a network and has beliefs about the other users’ actions. This

motivates us to design a decentralized power allocation strategy for single-hop wireless

networks, in which each link utilizes the local information to determine its power.

In this paper, a utility-based framework is proposed that relies on a decentralized

power allocation scheme. Unlike [16], in our algorithm, we do not use relay nodes.

Also, we consider only one shot game. The main advantage of our scheme is that each

user allocates its power based only on its direct channel gain. The above properties
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make our algorithm more practical in time-varying networks. It is shown that for large

n and by knowing only the direct channel gain hii, the optimum strategy for user i is

to transmit data with full power or remain silent. The decision rule is to compare hii

with a chosen threshold τn. This approach is different from the multiuser diversity

scheme, introduced by Knopp and Humblet [17], where the base station permits

only one user with the best channel to transmit. Under a Rayleigh fading channel

condition, an asymptotic analysis is carried out to show that among n pairs of nodes,

the average number of active links is of order logn. Also, it is demonstrated that the

average sum-rate scales as Θ(log n). The performance of the proposed algorithm is

compared with that of the centralized power allocation algorithm and NPCG with

the pricing scheme through the simulation and the analytical arguments.

The rest of the paper is organized as follows. In Section II, the network model

is introduced. The on-off power allocation strategy is presented in Section III. We

derive an asymptotic expression for the average sum-rate in Section IV. In Section

V, the system performance is characterized and simulated. Finally, in Section VI, an

overview of the results and conclusions is presented.

Knuth’s notation [18]: For any functions f(n) and g(n):

• f(n) = O(g(n)) means that limn→∞ |f(n)/g(n)| <∞.

• f(n) = ω(g(n)) means that limn→∞ |f(n)/g(n)| = ∞.

• f(n) = o(g(n)) means that limn→∞ |f(n)/g(n)| = 0.

• f(n) = Θ(g(n)) means that limn→∞ |f(n)/g(n)| = c, where 0 < c <∞.

Also, N is a set of natural numbers less than or equal to n.

II. Network Model

Consider a single-hop wireless network, in which n pairs of nodes1, indexed by

1, ..., n, are located within the network area (Fig. 1). We assume that the number

1In this work, the term “pair” is used for the transmitter and the related receiver, and “user” only for the

transmitter.
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Fig. 1. A single-hop wireless network with n = 4.

of links is a common information for users in the network. Each pair consists of

one transmitter and one receiver equipped with a single antenna. Also, receivers

are conventional linear receivers without any multiuser detection and interference

cancelation. It is assumed that all the transmissions occur over the same bandwidth.

The channel is quasi-static Rayleigh fading. In this model, the channel gains remain

constant while transmitting one block and change independently from block to block.

The link between transmitter j and receiver i is represented by the channel gain

hji = |gji|2, where the complex variables gji’s are the channel coefficients. Under a

Rayleigh fading channel condition, hji’s are exponentially distributed with unit mean.

Thus, the cumulative distribution function (CDF) of hji be denoted by FY (y) = 1−ey.

Here, we assume that each receiver knows only its direct channel gain. This channel-

state information (CSI) is fed back to the corresponding transmitter without any

error.

We denote the average transmit power of user i by pi ∈ P, where P , [0, Pmax]

is the strategy space of each user. Also, the non-negative vector P = (p1, ..., pn)

represents the vector of all the users’ power in the network. The power of additive
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white Gaussian noise (AWGN) in each receiver is assumed to be N0. To simplify the

notations, we assume N0 is normalized by Pmax. Hence, without loss of generality, in

the sequel, we assume Pmax = 1. The interference from other users on receiver i is

equal to

Ii(P−i) =

n
∑

j 6=i
j=1

hjipj, (1)

where P−i , (p1, ..., pi−1, pi+1, ..., pn). Throughout the paper, we occasionally use Ii

instead of Ii(P−i). Assuming Gaussian signal transmission from all the transmitters,

the distribution of the interference will be Gaussian as well. Thus, the SINR of link

i is defined as

γi(P) ,
hiipi

Ii(P−i) +N0
. (2)

The SINR is an important quantity, since it determines a different measure of

QoS, particularly the maximum possible data rate. The achievable data rate of link

i in the presence of AWGN is obtained as [19]

Ri(P) = log (1 + γi(P)) , nats/channel use, (3)

where log(.) is the natural logarithm function. As will be seen in the next section,

the rate function in (3) is used to define our utility function.

III. Power Allocation Strategy

In this section, a simple decentralized power allocation strategy based on local

information is proposed. We use a utility-based framework inspired by the non-

cooperative power control game with pricing2 proposed in [6]. In our scheme, each user

2The NPCG with pricing is an effective strategy to encourage the transmitters to use their powers more

efficiently rather than increasing the power selfishly. In the case of the linear pricing, the utility function of

link i is defined as

ui(P) , Ri(P) − βnpi, i ∈ N ,

where βn is the pricing factor that depends on the number of users.
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aims to maximize its own utility function. Also, the main goal of the proposed strategy

is to improve the average sum-rate. To prevent the users from selfishly increasing

their powers, the negative impact that each user imposes on the other users should

be considered in the definition of the utility function. To this end, the utility function

of link i is defined as the rate of link i plus the statistical average rates of the other

links in the network. This is different from the pricing scheme in [6], in which the

utility of user i is defined as the rate minus a scale factor times the power. Another

difference is that we use only one shot game rather than the iterative algorithm used

in pricing mechanism.

To obtain the optimum power pi, i ∈ N , link i relies only on its own channel

gain, hii. Here, hii and pi are the private information of link i. However, the private

information of other links (their powers and direct channel gains), and also the

channel gains hji, j 6= i, are unknown to user i. Motivated by the static Bayesian

game theory3, user i considers the private information of the other links as random

variables and selects its power such that its utility function defined in the following

is maximized. To this end, the utility function of link i is defined as

ui(pi, hii) , T (pi, hii) +
n
∑

j 6=i
j=1

Sj(pi), i ∈ N , (4)

where

T (pi, hii) = E

[

log

(

1 +
hiipi

Ii +N0

)]

, (5)

and the expectation is computed with respect to Ii, and

Sj(pi) = E

[

log

(

1 +
hjjpj

hijpi +
∑

k 6=j,i hkjpk +N0

)]

, j 6= i, (6)

3In the static Bayesian game theory [15], user i selects the best action ai in the strategy space Ai such

that the expected utility function is maximized, i.e.,

a∗
i (Θi) = arg max

ai∈Ai

Eθ
−i

[ui] ,

where Θi is the private information or type of user i and θ−i , (θ1, ...θi−1, θi+1, ..., θn).
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where the expectation is computed with respect to P−i and hlj, for all l ∈ N . Noting

that the power distribution strategy for each user is based on its direct channel gain,

we assume all users follow the same power allocation policy pj = F(hjj), for all j ∈ N .

We will later describe the function F(.). Since hjj’s have the same distributions, it

is concluded that the power pj’s will also have the same distribution.

Noting that the channel gain hkj’s are random variables with the same distri-

butions, Sj becomes independent of j. Thus, in the sequel, we drop index j from Sj.

Consequently, the utility function of link i can be simplified as

ui(pi, hii) = T (pi, hii) + (n− 1)S(pi). (7)

In the proposed strategy, user i chooses the transmission power pi such that its

utility function is maximized, i.e.,

p∗i = arg max
pi∈P

ui(pi, hii), i ∈ N . (8)

Lemma 1: Let pj be a random variable with mean q and variance σ2. Then, for

the interference Ii =
∑n

j 6=i hjipj, with probability one (w. p. 1), we have

Ii ∼ (n− 1)q, (9)

as n→ ∞.

Proof: See Appendix I.

Theorem 1: For sufficiently large n, if each user knows only its own channel gain,

then the optimum power for (8) is one of the extreme points4 of P.

Proof: Here, we assume the powers pj are random variables with E [pj] = q and

variance σ2. For given hii and pi, Lemma 1 yields

log

(

1 +
hiipi

Ii +N0

)

∼ log

(

1 +
hiipi

(n− 1)q +N0

)

, w. p. 1,

4In the power domain P = [0, 1], the extreme points are 0 and 1.
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as n→ ∞. Thus from (5), T (pi, hii) is simplified as

T (pi, hii) ≈ E

[

log

(

1 +
hiipi

(n− 1)q +N0

)]

= log

(

1 +
hiipi

(n− 1)q +N0

)

.

With a similar argument, (6) can be simplified as

S(pi) ≈ E

[

log

(

1 +
hjjpj

hijpi + (n− 2)q +N0

)]

, (10)

where the expectation is computed with respect to hjj, hij and pj. For sufficiently

large n,

hiipi

(n− 1)q +N0

� 1,

hjjpj

hijpi + (n− 2)q +N0
� 1.

Consequently, by using log(1 + z) ≈ z for |z| � 1, we have

T (pi, hii) ≈
hii

β
pi, (11)

S(pi) ≈ E

[

hjjpj

hijpi + β

]

, (12)

where β , nq+N0. Noting that hjj is independent of hij, and considering pj = F(hjj),

we have

E

[

hjjpj

hijpi + β

]

=

∫ ∞

0

∫ ∞

0

xF(x)

ypi + β
e−xe−ydxdy

=

∫ ∞

0

xF(x)e−xdx

∫ ∞

0

e−y

ypi + β
dy

= −
µ

pi

e
β

pi Ei

(

−
β

pi

)

, (13)

where µ =
∫∞

0
xF(x)e−xdx is a constant value, and Ei(x) , −

∫∞

−x

e−t

t
dt, x < 0 is

the exponential-integral function. An asymptotic expansion of Ei(x) is as [20]

Ei(x) =
ex

x

[

M−1
∑

k=0

k!

xk
+O(|x|−M)

]

; M = 1, 2, ..., (14)
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as x→ −∞. By using (13), (14) and setting M = 3, we can rewrite (12) as

S(pi) ≈
µ

β

(

1 −
pi

β
+ 2

(

pi

β

)2
)

+
µ

β
O

(

|
pi

β
|3
)

. (15)

For large values of n, we can ignore the term O

(

|
pi

β
|3
)

. Consequently, an

asymptotic formula for the proposed utility function (7) is,

ui(pi, hii) = T (pi, hii) + (n− 1)S(pi)

≈
hii

β
pi +

nµ

β

(

1 −
pi

β
+ 2

(

pi

β

)2
)

. (16)

Taking the first-order derivative of the utility in (16) yields,

∂ui(pi, hii)

∂pi

=
1

β

(

hii −
nµ

β

)

+

(

2

β

)2
nµ

β
pi.

Also, the second-order derivative of the utility in (16),
∂2ui(pi, hii)

∂p2
i

=

(

2

β

)2
nµ

β
,

is a positive value. Thus, (16) is a convex function of pi. It is a known fact that a

convex function attains its maximum at one of the extreme points of its domain [21].

This completes the proof of the theorem.

Corollary 1: For the proposed algorithm and sufficiently large n, the power

distribution for each user is a Bernoulli random variable with parameter q, i.e.,

f(pi) =







q, pi = 1,

1 − q, pi = 0,
(17)

for all i ∈ N

Motivated by Corollary 1 and with the assumption that each user knows its

direct channel gain, we describe the on-off power allocation strategy for single-hop

wireless networks.

On-Off Power Allocation Strategy: In the network with n links, all users

perform the following steps during one block:
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1- Based on the direct channel gain, the transmission policy for each user is

pi = F(hii) =







1, if hii > τn

0, Otherwise,
(18)

for all i ∈ N , where τn is a prespecified threshold level.

2- After adjusting the powers, each active user transmits a pilot signal with full

power. The receivers measure the interference and compute the SINR and the rate

using (3). Then, each receiver feedbacks the rate to its transmitter.

3- The active user transmits data with the computed rate and with full power.

IV. Network Analysis with On-Off Power Strategy

As described in the previous section, in the on-off power allocation strategy, each

user transmits with full power if its direct channel gain is greater than τn. Noting

that each link is activated independent of the other links with probability q, it is

concluded that the power distribution for each user is a Bernoulli random variable

with parameter q. Also, the number of active links is a binomial random variable

with parameters n and q. Here, we denote q as the probability of the link activation

that is defined as

q , Pr {hii > τn} . (19)

In this section, we use the average sum-rate as a key parameter in the network

performance. To justify using the average, it should be noted that under the quasi-

static channel model, the channel gains and the interference change independently

from block to block. So, it should be considered the average sum-rate instead of the

sum-rate, where the average is computed with respect to hii’s and Ii’s. Thus, letting

R̄sum denote the average sum-rate of the network, we have

R̄sum = E

[

n
∑

i=1

Ri

]

=
n
∑

i=1

E [Ri] . (20)

In the next theorem, we derive asymptotically the optimum threshold τn such

that the average sum-rate is maximized.
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Theorem 2: For the on-off power scheme and sufficiently large n, the optimum

τn that maximizes the average sum-rate is

τ ∗n = log n− log log n+ Θ(1). (21)

Proof: For the on-off power scheme and using (19) and (20), we have

E [Ri] = E [Ri|hii > τn]Pr {hii > τn} + E [Ri|hii ≤ τn]Pr {hii ≤ τn}

= qE [Ri|hii > τn] + (1 − q)E [Ri|hii ≤ τn] .

Noting that for hii ≤ τn, pi = 0, it is concluded

E [Ri|hii ≤ τn] = E

[

log

(

1 +
hiipi

Ii +N0

)

|hii ≤ τn

]

= 0.

Thus,

E [Ri] = qE

[

log

(

1 +
hii

Ii +N0

)

|hii > τn

]

.

By using Lemma 1, we have

E [Ri] ≈ qE

[

log

(

1 +
hii

(n− 1)q +N0

)

|hii > τn

]

,

where the expectation is computed with respect to hii. For large values of n and by

using log(1 + z) ≈ z for |z| � 1, it yields

E [Ri] ≈ qE

[

hii

nq +N0

|hii > τn

]

=
q

nq +N0

∫ ∞

τn

xe−(x−τn)dx

=
q(1 + τn)

nq +N0
.

Consequently, by using q = Pr {hii > τn} = e−τn , (20) is expressed as

R̄sum ≈
n
∑

i=1

q(1 + τn)

nq +N0

= n
e−τn(1 + τn)

ne−τn +N0
. (22)

Thus, the optimization problem is

τ ∗n = arg max
τn

R̄sum. (23)
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Taking the first-order derivative of (22) yields

∂R̄sum

∂τn
= n

ne−2τn −N0τne
−τn

(ne−τn +N0)2
. (24)

Also, the second-order derivative of (22),

∂2R̄sum

∂τ 2
n

≈ −n2N0(2 + τn)e−2τn

(ne−τn +N0)3
,

is a negative value. Thus, the maximum value of R̄sum is obtained by setting (24)

equal to zero. So, we have

ne−τn −N0τn = 0,

or

nq +N0 log q = 0. (25)

It can be verified that the solution for (25) is

q∗ = N0
logn

n

(

1 −
log logn

log n
−

logN0

logn

)

. (26)

Consequently, the optimum threshold level τn that maximizes R̄sum is

τ ∗n = − log q∗

= logn− log logn + Θ(1). (27)

Corollary 2: For the proposed strategy, the probability of the link activation

scales as Θ

(

log n

n

)

.

Corollary 3: In the network with n pairs of nodes, the average number of active

links is of order log n.

Theorem 3: For the on-off power allocation strategy, the average sum-rate scales

as Θ(logn).

Proof: By using (22), the average sum-rate for every value of τn is

R̄sum ≈ n
e−τn(1 + τn)

ne−τn +N0
(28)

= n
q(1 − log q)

nq +N0
. (29)
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Fot sufficiently large n, nq +N0 ≈ nq. Thus, (29) can be simplified as

R̄sum ≈ 1 − log q. (30)

Substituting (26) in (30) yields

R̄sum ≈ logn− log logn + Θ(1). (31)

From (28), it is concluded that the average sum-rate is a function of the threshold

level τn, where τn depends on the channel model. Also, Theorem 3 implies that for

the network with the on-off power allocation scheme, the average sum-rate scales as

Θ(logn) without using any relay and coordination between nodes.

V. Performance Evaluation

In this section, we compare the performance of the proposed scheme with that of

the NPCG, the centralized power allocation and NPCG with linear pricing algorithms.

In the NPCG, each user aims to maximize its utility function selfishly by adjusting its

power. Given the fixed power vector P−i, the utility function Ri(P) = log (1 + γi(P))

is a concave function of power pi. Using the Debreu Theorem [22], it can be shown that

the NPCG algorithm has a unique Nash Equilibrium (NE) [23] that is the maximum

power for each user. Since each transmitter uses full power, the average sum-rate is

degraded. The next lemma investigates asymptotically the average sum-rate of the

NPCG.

Lemma 2: The average sum-rate of the NPCG scheme is a decreasing function

of the number of links, and approaches 1 as n→ ∞.

Proof: See Appendix II.

In the centralized power allocation scheme, it is assumed that the central knows

all the network information. For each channel realization and through exhaustive

search, the central node selects the optimum power vector P = (p1, ..., pn) such that

the maximum average sum-rate is achieved.



15

We also compare the performance of the proposed strategy with that of the

NPCG with linear pricing proposed in [6]. Referring to [6], the NPCG with linear

pricing is defined as

ui(P) , ri(P) − βnpi, (32)

where ri(P) is the data transmission rate. It is shown that if ui(P) satisfies the Non-

Decreasing Differences5 (NDD) property, there always exists a NE [6]. It is easy to

verify that the NDD property is not valid for the utility function (32) with

ri(P) = log

(

1 +
hiipi

Ii(P−i) +N0

)

. (33)

One solution for the problem is to modify the utility function by dropping 1 in

(33), i.e.,

ui(P) = log

(

hiipi

Ii(P−i) +N0

)

− βnpi. (34)

In this case, user i selects the optimum power pi such that (34) is maximized.

We use the optimum powers computed in this manner in the rate (33) to obtain the

average sum-rate.

Fig. 2 illustrates the average sum-rates of the on-off power allocation strategy,

the NPCG, the centralized power allocation algorithm and the NPCG with linear

pricing defined in (34). It is seen that the performance of the proposed strategy is

better than that of the NPCG. Also, the highest average sum-rate is achieved by the

centralized scheme. However, in the network with a large number of links, deploying

centralized power allocation schemes becomes computationally intractable. While in

our strategy, the average sum-rate is achieved without coordination among the links.

Also, it is seen that the result for the new developed strategy is better than

that of the pricing scheme defined in (34). It should be noted that the proposed

strategy uses a one shot game with a simple structure. While in the NPCG with

5According to supermodularity theory [24], for continuous and twice differentiable utilities, ui(P) has

NDD in P if and only if ∂2ui/∂pi∂pj ≥ 0 for all j 6= i. One condition for existence of the Nash equilibria is

that the utility function ui(P) has (NDD) in P [6].
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Fig. 2. Average sum-rate vs. the number of links for N0 = 0.1.

pricing, the optimum powers and the pricing factors are obtained by using iterative

algorithms. Updating the pricing factor is the other problem in the pricing scheme.

Particularly in the networks with mobile nodes, where the channel gains change from

block to block, updating the pricing factor in each channel realization is not feasible.

The aforementioned properties make our algorithm more practical in time-varying

networks.

Fig. 3 shows the average sum-rate of the proposed strategy, the NPCG and the

centralized power allocation schemes versus the signal-to-noise ratio (SNR), where

SNRi ,
hiipi

N0
. (35)

It is seen that the average sum-rate of the proposed strategy increases logarith-

mically with the SNR.

VI. Conclusion

In this paper, we developed a new decentralized power allocation strategy for

single-hop wireless networks. We presented the on-off power allocation strategy, in



17

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

SNR (dB)

A
ve

ra
ge

 S
um

−R
at

e

 

 

Centralized

New Strategy

NPCG

Fig. 3. Average sum-rate vs. SNR for n = 2.

which each user transmits with full power if its direct channel gain is greater than a

threshold level τn. This policy motivates users remain silent in the case of bad channels

in order to adopt a social behavior. It was demonstrated that among n pairs of nodes,

the average number of links that communicate simultaneously is of order logn. Also,

we proved that the average sum-rate scales as Θ(logn) without using relay nodes. It

should be noted that decreasing in the average rate per link with n may be regarded

as unacceptable by users when the number of links is large. A feasible scenario for

solving this problem is to use relay nodes or a partial cooperation between links.

Appendix I

Proof of Lemma 1

Let define ξj = hjipj, where hji is independent of pj. Under a quasi-static

Rayleigh fading channel condition, it is concluded that ξj’s are the i.i.d. random
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variables with

E [ξj] = E [hjipj] = q,

V ar [ξj] = E
[

ξ2
j

]

− E
2 [ξj] = 2σ2 + q2,

where E
[

h2
ji

]

= 2. Also, the received interference Ii =
∑

j 6=i hjipj is a random variable

with mean µ and variance ϑ2, where

µ = E

[

n
∑

j 6=i

ξj

]

= (n− 1)q,

ϑ2 = V ar

[

n
∑

j 6=i

ξj

]

= (n− 1)(2σ2 + q2).

By using the Chebyshev inequality [25], we obtain

Pr{|Ii − µ| < ψn} ≥ 1 −
ϑ2

ψ2
n

,

for all ψn > 0. Thus,

Pr{|Ii − (n− 1)q| < ψn} ≥ 1 −
(n− 1)(2σ2 + q2)

ψ2
n

.

It is seen that for all ψn = ω(
√

(n− 1)(2σ2 + q2)),

lim
n→∞

1 −
(n− 1)(2σ2 + q2)

ψ2
n

= 1.

Thus,

(n− 1)q − ψn < Ii < (n− 1)q + ψn, w. p. 1.

If we choose ψn = o((n− 1)q), then we can assume Ii ∼ (n− 1)q, w. p. 1.

Appendix II

Proof of Lemma 2

Noting that all the users transmit data with power Pmax = 1, the average sum-

rate is

R̄sum = E

[

n
∑

i=1

Ri

]

=

n
∑

i=1

E

[

log

(

1 +
hii

Ii +N0

)]

,
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where Ii =
∑n

k 6=i hki is the received interference. It is obvious that the average sum-

rate decreases when the number of users increases. By using Lemma 1 and noting

that µ = E [Ii] = n− 1, the average sum-rate is simplified as

R̄sum ≈
n
∑

i=1

E

[

log

(

1 +
hii

(n− 1) +N0

)]

,

where the expectation is computed with respect to hii. Consequently, for sufficiently

large n and using log(1 + z) ≈ z for |z| � 1, the average sum-rate is

R̄sum ≈
n

n +N0
E [hii] ≈ 1,

and this proves the lemma.
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