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Abstract

Diversity order is an important measure for the performance of communication systems over
MIMO fading channels. In this paper, we prove that in MIMO multiple access systems (or MIMO
point-to-point systems with V-BLAST transmission), lattice-reduction-aided decoding achieves the
maximum receive diversity (which is equal to the number of receive antennas). Also, we prove that
the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum

diversity.

. INTRODUCTION

In the recent years, MIMO communications over multiple-antenna channels has attracted
the attention of many researchers. In [1], a transmission technique called V-BLAST is
introduced for high-rate communications over point-to-point MIMO fading channels. V-
BLAST sends independent symbols over different transmit antennas. Therefore, it can also
be used for MIMO multi-access systems. Most of the sub-optimum decoding methods for
BLAST (such as nulling and cancelling, zero forcing and GDFE-type methods) can not
achieve the maximum receive diversity which is equal to the number of receive antennas.
In [2], a lattice decoder is proposed for the decoding of BLAST which (according to the
simulation results) achieves the maximum diversity. However, its complexity is exponential
in terms of the number of antennas. In [3], [4], and [5], an approximation of lattice decoding,
using lattice-basis reduction, is introduced which has a polynomial complexity and the
simulation results show that it achieves the receive diversity. In this paper, we give a
mathematical proof for achieving the receive diversity by the lattice-reduction-aided decoding.
Also, a similar proof shows that the naive lattice decoding (which discards the out-of-region

decoded points) achieves the receive diversity.



[l. SYSTEM MODEL

We consider a multiple-antenna system widhtransmit antennas ard receive anten-
nas. In a multiple-access system, we consider different transmit antennas as different users.
If we considery = [y, ..., yn]?, x = [21, ..., z0)T s W = [wy, ..., wy]|T and theN x M matrix
H, as the received signal, the transmitted signal, the noise vector and the channel matrix,

respectively, we have the following matrix equation:
y =Hx+w. (1)

The channel is assumed to be Raleigh and the noise is Gaussian, i.e. the elendnts of
are i.i.d with the zero-mean unit-variance complex Gaussian distribution. Also, we have the
power constraint on the transmitted signaljxf> = 1. The power of the additive noise is
o? per antenna, i.e. |w||> = No?. Therefore, the signal to noise ratio (SNR) is defined as
p=

In a MIMO multiple-access system or a MIMO point-to-point system with V-BLAST
transmission, we send the transmitted vectowith independent entries frord?. At the
receiver, we can perform two slightly different types of LLL-aided decoding:

Type 1) We find x as the closest integer point 8*y whereB is the reduced version
of H*!, i.e. B = H*'U, whereU is a unimodular matrix (whed/ < N, we use the

pseudo-inverse instead of the inverse). The transmitted vector is decoded as,
x=U""x.
Type II) We find x as the closest integer point i,., 'y whereH.,., is the reduced

version ofH i.e. H,.;, = HU. The transmitted vector is decoded as,

x = Ux.



In the previous works [3] [4] [5], the LLL-aided decoding type Il has been used. We
show that the type | method is more appropriate to reduce the effective noise, and indeed,
has a better performance. In the next section, we present the details of the proof of our main

result for the first method and show that a similar proof is valid for the second method.

IIl. DIVERSITY OF LLL- AIDED DECODING

—log P.
log p
processing among the transmit antennas, the maximum achievable diversity is edual to

For MIMO systems, diversity is defined aisn,_.., . When there is no joint
the number of receive antennas [6]. To prove that LLL-aided decoding achieves a diversity
order of N, we use a bound on the orthogonality defesftthe LLL reduction.

Theorem 1:Let A be anM-dimensional real lattice anB = [b,...b,,] be a reduced

basis ofA. If ¢ is the orthogonality defect dB, then [7],

Vo < MM=D/4 2)

In the rest of this section, in the lemmas 1-3, we bound the error probability by the
probability of an inequality oy (the minimum distance of the lattice generatedHbyand
the length of the noise vector being valid. In lemma 4, we bound the probability/thét
too small. Finally, in theorem 2, we prove the main result by combining the bounds on the
probability thatdy is too small, and the probability that the noise vector is too large.

Lemma 1:ConsiderB = [b;...by/] as anN x M matrix, with the orthogonality defect
5, and(B~')* = [a;...a)] as the Hermitian of its inverse (or its pseudo-inversé/ift< N).

Thert,
Ve

max{|/by||, ..., [bal} < —
min{|ay ||, ..., [|an]|}

3)

I
B
This lemma is an extention of lemma 1 in [8].
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'Orthogonality defect is defined ds= (P12l Parl™)




and
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il o} )

Proof: Considerb, as an arbitrary column oB. The vectorb; can be written as

maX{Halua X HaMH} <

b;+2i¢j ¢;;b;, whereb! is orthogonal tdb; for i # j. Now, [by...b;_1b}b;1;...by] can be

written asBP whereP is a unit-determinanfi/ x M matrix (a column operation matrix):

oo |12 [ bi [ b 1. [ba o [2... o | (5)
— 5det B*B = § det P*B*BP (6)

According to the Hadamard theorem:
det ([by...b;_1b}bi1.. by [b1...bi1b'bi .. by]) < (8)
o 12 foi 212 [ 1ol ©)
Therefore,
oD [ [be 2. Tbac ... [oar [* < Sl bal ... [Tbac |1 s [ [bag [ (10)
= [Ibil| < V5[IbE]|. (11)
Also, B~'B =1 results in<a;,b,> = 1 and <a;, b;> = 0 for i # j. Therefore,
1 = <a;,b> = <a;, (bj+ > c¢;;b;)> = <a;, bj> (12)

i#j
Now, a, andb’, both are orthogonal to thel/ — 1)-dimensional subspace generated by the

vectorsb; (j # ). Thus,

[l
Vo

1= <a;bi> = [lai.[b]l = [laif- (13)



a;
—1> ||bi||-% (14)

Vo
= ||bi]| < Ha_‘H (15)

The above relation is valid for every 1 < ¢ < M. Without loss of generality, we can

assume thamax{||b1||, ..., ||bal|} = || bl
V6
max{|[by[[, ..., [[barl|} = x| < (16)
[l
< — Vs : 17)
min{||ay ..., [lan|[}
Similarly, by using (15), we can also obtain the following inequality:
Ve
max{||lai[, ..., ||a < — ) 18
u

Lemma 2:ConsideB = [b;...b,,] as a reduced basis (LLL) [9] for the lattice generated
by H*', B*~! = [a;...a)], and§ as the orthogonality defect of the reduction. Then, if the
min{[|ai |, ..., [[am|[}

magnitude of the noise vector is less than
g 2V Mo

method correctly decodes the transmitted signal.

, the LLL-aided decoding

Proof: When we use the LLL-aided decoding method, we find the nearest integer point
to By. We should show that this point is the same as the transmitted vector; or in other
words, all the elements dBw are in the interval(—1,1). To prove this, we show that

|IBw|| < 3. Itis easy to show that,

Bw|| < VM|[bpael|.[[w] (19)

Now, according to (3),



Vo

b.|[,..., ||b < 20
max{{[bill, .. [Ibarll} < Cerr =
Therefore,

M. ||w

[Bw| < — VM. ||w]| (21)

min{|a ||, ..., [[an }

By using the assumption of the lemma,

[Bw| < ——— 2 #2)

min{||a ||, ..., [|an||}

1

— [Bw| <. @3)
u
Lemma 3:ConsiderB = [b;...by,] as a reduced basis (LLL) [9] andy as the

minimum distance of the lattice generated Bl respectively. Then, there is a constant

numberc,, (independent oH) such that the LLL-aided decoding method correctly decodes

the transmitted signal, if the magnitude of the noise vector is lessdhdg.

Proof: For an LLL reduction,

V3 < QM(M-1)/a,
9—1-M(M~1)/4
Therefore, if we considet,; = ———,
M VM
1

The basisB can be written a3 = (H*)'U for some unimodular matritJ:

(24)

(25)



(B™) = ((H)'0) ™) = (UT'HY) =H(U )’ (26)
Thus, (B™Y)* = [aj,...,ay] is another basis for the lattice generated Hy Therefore,
ai,...,ay are vectors from the lattice generated Hy and therefore, the length of each of
them is at leastli;. Therefore,

1 1
dg <

2V Mo 2V Mo

Thus, according to lemma 2, LLL-aided decoding method correctly decodes the transmitted

Iwll <

min{]|ay ||, ..., [[an[}- (27)

signal. [ |
Lemma 4:Assume that the entries of th€ x M matrix H has independent complex
Gaussian distribution with zero mean and unit variance and congjgexs the minimum

distance of the lattice generated Bl Then, there is a constanty ,, such that [8],

By e for M < N
Pr{dg < ¢} < . (28)

By ne?N. max {(— Ing)N+L, 1} for M = N
Theorem 2:For a MIMO multi-access system (or a point-to-point MIMO system with

the V-BLAST transmission) with\/ transmit antennas an¥ receive antennas, when we

use the LLL lattice-aided-decoding,

—log P,
lim —8%¢ _ N (29)
p—oe logp
Proof: When ||w| < c¢ydu, we have no decoding error. Thus,
P. < Pr{||w| > cpdu} (30)

1
= PI"{C?MCZ%I < ;} Pr {”WH > cpdyg

1
2 72
cyldy < —



1 2
+Pr{- < &dy <=} Pr {HWH > cprdg
P p

1 2
;“W%ﬁ;}

2 4
+Pr{; < cydy < ;}.Pr {HWH > cpdu

2 L 4}
—<cydg < — 4.
p  MHT )

2 72 1

< Pr{cydg < —}+
p

2 1

Pe(chdy < 2. Pr{wl? = S+

4 2
Pr{ci,dg < ;}.Pr {HWH2 > ;} + ...

(31)

(32)

The noise vector has complex Gaussian distribution with var|a2ncq)er each real

p

dimension. Thus, by using the union bound, we can bound the second part of each product

term as,

2N
2 o Z 2 gl | —

Also, for the first part of the product terms, we have,

0 0
Pricd,d3 <=V =Prildg <.,/ —
r{"“—p} Y{H— W}

By using (33) and (34), we can bound (32).

Case 1 M < N:

1\" 2\ _1 4 \" _2
(32) § ﬁN,M -5 + BN,]V[ -5 2N.e 2N + ﬁN,M -5 2N.e 2N 4 ..
Cyp P CypP CpP

M M

wherec is a constant. Therefore,

(33)

(34)

(35)

(36)

(37)
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Case 2 M = N:

1 \N 1 N+1
(32) < By (c?\/[_p) max { (5 In cpr) ,1} +
9 N 1 2 N+1
BN~ (—2 ) max { (— In _ch) ,1 ON.e 3N
o\ eyp 2 2

4 N 1 C2 N+1 )
+0n,n (2—) max { (— In M) : 1} 2N.e 2N 4 ... (38)
T\ eyp 2 4

We are interested in the large valuespofFor p > ¢,2 andlnp > 1,

1\" 2 \" .
(32) < Bnn (2—) (Inp)™* + By v (2—) (Inp)**12N.e729
5P 5P

M M
4 N N+1 -2
+0On.N - (In p) 2N.e 2N + ... (39)
CmP
/ 1 N+1
— P, < % (40)

wherec is a constant. Therefore,

_ N __ . /
lim log P, > 1im log p (N +1)log (Inp) —loge
p—oo  logp p—00 log p

= N. (41)
u
In the above proof, we have considered the LLL-aided decoding type I. In this case,
the effective noise vector is equal to = B*w, compared tow’ = H'w in zero-forcing.
In the previous works [3] [4] [5], the LLL-aided decoding type Il has been used. For the
type Il method, the effective noise vector is equakto= H,., 'w and the average energy

of its ith component is proportional to the square norm of dhecolumn of(Hmd*)_l. By

using inequality (4) from lemma 1 (to bound the square norm of the columaELQf*) ")
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Fig. 1. Bit Error Rate of the two LLL-aided decoding methods #dr= 6 transmit antennas an = 6 receive antennas

with the rateR = 12 bits per channel use.

and using a similar proof as lemma 2, we can show that the results of lemma 2 and theorem
2 are still valid. Therefore, both of these LLL-aided decoding methods achieve the receive
diversity in V-BLAST MIMO systems (or multiple access MIMO systems). However, it is

worth noting that the first method is a more natural approach to reduce the power of the

entries of the effective noise vector, and has a better performance (see figure 1).

V. RELATION WITH THE NAIVE LATTICE -DECODING

When we have a finite constellation, for each pair of constellation points, the pair-wise
error probability can be bounded by Chernoff bound (similar to [6]). By using the union
bound, we can show that the exact ML decoding achieves the diversity ordef, dhe

number of antennas. However, when we use lattice decoding for a finite constellation and
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consider the out-of-region decoded lattice points as errors, achieving the maximum diversity
by lattice decoding is not trivial anymore. However, by using lemma 4, we can show that
this suboptimum method (called the naive lattice decoding [10]) still achieves the maximum
diversity.

Theorem 3:For a MIMO multi-access system (or a point-to-point MIMO system with
the V-BLAST transmission method) with/ transmit antennas andl receive antennas, when
we use the naive lattice decoding,
—log P. N

lim
p—oe logp

(42)
Proof: When|w| < +dy, we have no decoding error. Thus, by usihinstead ofc,,
in the proof of theorem 2, we can bourt by boundingPr {||w|| > $du }. Therefore, we
can obtain the same result as theorem 2. [ |
In [10], it is shown that for the naive lattice decoding, we can find a family of lattices
(generating a family of space-time codes) which achieves diversity ordéf i/ < N is
the number of transmit antennas). The current result shows that even if we use the codes
generated by the integer lattice, the naive lattice decoding achieves the maximum receive

diversity of N (number of receive antennas).

V. CONCLUSIONS

We have shown that LLL reduction, which is a polynomial-time algorithm, achieves
the maximum receive diversity in MIMO decoding. By using LLL reduction and the Babai
approximation, the complexity of the MIMO decoding is equal to the complexity of the zero-

forcing method with an additional polynomial time preprocessing. Also, it is shown that by
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using the naive lattice decoding, instead of ML decoding, we do not loose the diversity order.
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