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Abstract

Diversity order is an important measure for the performance of communication systems over

MIMO fading channels. In this paper, we prove that in MIMO multiple access systems (or MIMO

point-to-point systems with V-BLAST transmission), lattice-reduction-aided decoding achieves the

maximum receive diversity (which is equal to the number of receive antennas). Also, we prove that

the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum

diversity.

I. I NTRODUCTION

In the recent years, MIMO communications over multiple-antenna channels has attracted

the attention of many researchers. In [1], a transmission technique called V-BLAST is

introduced for high-rate communications over point-to-point MIMO fading channels. V-

BLAST sends independent symbols over different transmit antennas. Therefore, it can also

be used for MIMO multi-access systems. Most of the sub-optimum decoding methods for

BLAST (such as nulling and cancelling, zero forcing and GDFE-type methods) can not

achieve the maximum receive diversity which is equal to the number of receive antennas.

In [2], a lattice decoder is proposed for the decoding of BLAST which (according to the

simulation results) achieves the maximum diversity. However, its complexity is exponential

in terms of the number of antennas. In [3], [4], and [5], an approximation of lattice decoding,

using lattice-basis reduction, is introduced which has a polynomial complexity and the

simulation results show that it achieves the receive diversity. In this paper, we give a

mathematical proof for achieving the receive diversity by the lattice-reduction-aided decoding.

Also, a similar proof shows that the naive lattice decoding (which discards the out-of-region

decoded points) achieves the receive diversity.



3

II. SYSTEM MODEL

We consider a multiple-antenna system withM transmit antennas andN receive anten-

nas. In a multiple-access system, we consider different transmit antennas as different users.

If we considery = [y1, ..., yN ]T , x = [x1, ..., xM ]T , w = [w1, ..., wN ]T and theN×M matrix

H, as the received signal, the transmitted signal, the noise vector and the channel matrix,

respectively, we have the following matrix equation:

y = Hx + w. (1)

The channel is assumed to be Raleigh and the noise is Gaussian, i.e. the elements ofH

are i.i.d with the zero-mean unit-variance complex Gaussian distribution. Also, we have the

power constraint on the transmitted signal, E‖x‖2 = 1. The power of the additive noise is

σ2 per antenna, i.e. E‖w‖2 = Nσ2. Therefore, the signal to noise ratio (SNR) is defined as

ρ = 1
σ2 .

In a MIMO multiple-access system or a MIMO point-to-point system with V-BLAST

transmission, we send the transmitted vectorx with independent entries fromZ2. At the

receiver, we can perform two slightly different types of LLL-aided decoding:

Type I) We find x̃ as the closest integer point toB∗y whereB is the reduced version

of H∗−1, i.e. B = H∗−1U, whereU is a unimodular matrix (whenM < N , we use the

pseudo-inverse instead of the inverse). The transmitted vector is decoded as,

x̂ = U∗−1x̃.

Type II) We find x̃ as the closest integer point toHred
−1y whereHred is the reduced

version ofH i.e. Hred = HU. The transmitted vector is decoded as,

x̂ = Ux̃.
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In the previous works [3] [4] [5], the LLL-aided decoding type II has been used. We

show that the type I method is more appropriate to reduce the effective noise, and indeed,

has a better performance. In the next section, we present the details of the proof of our main

result for the first method and show that a similar proof is valid for the second method.

III. D IVERSITY OF LLL- AIDED DECODING

For MIMO systems, diversity is defined aslimρ→∞
− log Pe

log ρ
. When there is no joint

processing among the transmit antennas, the maximum achievable diversity is equal toN ,

the number of receive antennas [6]. To prove that LLL-aided decoding achieves a diversity

order ofN , we use a bound on the orthogonality defect1 of the LLL reduction.

Theorem 1:Let Λ be anM -dimensional real lattice andB = [b1...bM ] be a reduced

basis ofΛ. If δ is the orthogonality defect ofB, then [7],

√
δ ≤ 2M(M−1)/4. (2)

In the rest of this section, in the lemmas 1-3, we bound the error probability by the

probability of an inequality ondH (the minimum distance of the lattice generated byH) and

the length of the noise vector being valid. In lemma 4, we bound the probability thatdH is

too small. Finally, in theorem 2, we prove the main result by combining the bounds on the

probability thatdH is too small, and the probability that the noise vector is too large.

Lemma 1:ConsiderB = [b1...bM ] as anN ×M matrix, with the orthogonality defect

δ, and(B−1)∗ = [a1...aM ] as the Hermitian of its inverse (or its pseudo-inverse ifM < N ).

Then2,

max{‖b1‖, ..., ‖bM‖} ≤
√

δ

min{‖a1‖, ..., ‖aM‖} (3)

1Orthogonality defect is defined asδ = (‖b1‖2‖b2‖2...‖bM‖2)
detB∗B .

2This lemma is an extention of lemma 1 in [8].
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and

max{‖a1‖, ..., ‖aM‖} ≤
√

δ

min{‖b1‖, ..., ‖bM‖} . (4)

Proof: Considerbi as an arbitrary column ofB. The vectorbi can be written as

b′i +
∑

i6=j ci,jbj, whereb′i is orthogonal tobj for i 6= j. Now, [b1...bi−1b
′
ibi+1...bM ] can be

written asBP whereP is a unit-determinantM ×M matrix (a column operation matrix):

‖b1‖2...‖bi−1‖2.‖bi‖2.‖bi+1‖2...‖bM‖2 (5)

= δ detB∗B = δ detP∗B∗BP (6)

= δ det ([b1...bi−1b
′
ibi+1...bM ]∗[b1...bi−1b

′
ibi+1...bM ]) . (7)

According to the Hadamard theorem:

det ([b1...bi−1b
′
ibi+1...bM ]∗[b1...bi−1b

′
ibi+1...bM ]) ≤ (8)

‖b1‖2...‖bi−1‖2.‖b′i‖2.‖bi+1‖2...‖bM‖2. (9)

Therefore,

‖b1‖2...‖bi−1‖2.‖bi‖2.‖bi+1‖2...‖bM‖2 ≤ δ‖b1‖2...‖bi−1‖2.‖b′i‖2.‖bi+1‖2...‖bM‖2 (10)

=⇒ ‖bi‖ ≤
√

δ‖b′i‖. (11)

Also, B−1B = I results in<ai,bi> = 1 and<ai,bj> = 0 for i 6= j. Therefore,

1 = <ai,bi> = <ai, (b
′
i +

∑

i 6=j

ci,jbj)> = <ai,b
′
i> (12)

Now, ai andb′i, both are orthogonal to the(M − 1)-dimensional subspace generated by the

vectorsbj (j 6= i). Thus,

1 = <ai,b
′
i> = ‖ai‖.‖b′i‖ ≥ ‖ai‖.‖bi‖√

δ
(13)
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=⇒ 1 ≥ ‖bi‖.‖ai‖√
δ

(14)

=⇒ ‖bi‖ ≤
√

δ

‖ai‖ (15)

The above relation is valid for everyi, 1 ≤ i ≤ M . Without loss of generality, we can

assume thatmax{‖b1‖, ..., ‖bM‖} = ‖bk‖:

max{‖b1‖, ..., ‖bM‖} = ‖bk‖ ≤
√

δ

‖ak‖ (16)

≤
√

δ

min{‖a1‖, ..., ‖aM‖} . (17)

Similarly, by using (15), we can also obtain the following inequality:

max{‖a1‖, ..., ‖aM‖} ≤
√

δ

min{‖b1‖, ..., ‖bM‖} . (18)

Lemma 2:ConsiderB = [b1...bM ] as a reduced basis (LLL) [9] for the lattice generated

by H∗−1, B∗−1 = [a1...aM ], andδ as the orthogonality defect of the reduction. Then, if the

magnitude of the noise vector is less than
min{‖a1‖, ..., ‖aM‖}

2
√

Mδ
, the LLL-aided decoding

method correctly decodes the transmitted signal.

Proof: When we use the LLL-aided decoding method, we find the nearest integer point

to By. We should show that this point is the same as the transmitted vector; or in other

words, all the elements ofBw are in the interval(−1
2
, 1

2
). To prove this, we show that

‖Bw‖ < 1
2
. It is easy to show that,

‖Bw‖ ≤
√

M‖bmax‖.‖w‖ (19)

Now, according to (3),
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max{‖b1‖, ..., ‖bM‖} ≤
√

δ

min{‖a1‖, ..., ‖aM‖} (20)

Therefore,

‖Bw‖ ≤
√

Mδ.‖w‖
min{‖a1‖, ..., ‖aM‖} (21)

By using the assumption of the lemma,

‖Bw‖ <

√
Mδ.

min{‖a1‖, ..., ‖aM‖}
2
√

Mδ
min{‖a1‖, ..., ‖aM‖} (22)

=⇒ ‖Bw‖ <
1

2
. (23)

Lemma 3:ConsiderB = [b1...bM ] as a reduced basis (LLL) [9] anddH as the

minimum distance of the lattice generated byH, respectively. Then, there is a constant

numbercM (independent ofH) such that the LLL-aided decoding method correctly decodes

the transmitted signal, if the magnitude of the noise vector is less thancMdH.

Proof: For an LLL reduction,

√
δ ≤ 2M(M−1)/4. (24)

Therefore, if we considercM =
2−1−M(M−1)/4

√
M

,

‖w‖ ≤ cMdH =⇒ ‖w‖ ≤ 1

2
√

Mδ
dH (25)

The basisB can be written asB = (H∗)−1U for some unimodular matrixU:
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(B−1)∗ = (((H∗)−1U)−1)∗ = (U−1H∗)∗ = H(U−1)∗ (26)

Thus, (B−1)∗ = [a1, ..., aM ] is another basis for the lattice generated byH. Therefore,

a1, ..., aM are vectors from the lattice generated byH, and therefore, the length of each of

them is at leastdH. Therefore,

‖w‖ ≤ 1

2
√

Mδ
dH ≤ 1

2
√

Mδ
min{‖a1‖, ..., ‖aM‖}. (27)

Thus, according to lemma 2, LLL-aided decoding method correctly decodes the transmitted

signal.

Lemma 4:Assume that the entries of theN ×M matrix H has independent complex

Gaussian distribution with zero mean and unit variance and considerdH as the minimum

distance of the lattice generated byH. Then, there is a constantβN,M such that [8],

Pr {dH ≤ ε} ≤





βN,Mε2N for M < N

βN,Nε2N . max
{
(− ln ε)N+1, 1

}
for M = N

. (28)

Theorem 2:For a MIMO multi-access system (or a point-to-point MIMO system with

the V-BLAST transmission) withM transmit antennas andN receive antennas, when we

use the LLL lattice-aided-decoding,

lim
ρ→∞

− log Pe

log ρ
= N. (29)

Proof: When‖w‖ ≤ cMdH, we have no decoding error. Thus,

Pe ≤ Pr {‖w‖ > cMdH} (30)

= Pr{c2
Md2

H ≤ 1

ρ
}. Pr

{
‖w‖ > cMdH

∣∣∣∣c2
Md2

H ≤ 1

ρ

}
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+ Pr{1

ρ
< c2

Md2
H ≤ 2

ρ
}. Pr

{
‖w‖ > cMdH

∣∣∣∣
1

ρ
< c2

Md2
H ≤ 2

ρ

}

+ Pr{2

ρ
< c2

Md2
H ≤ 4

ρ
}. Pr

{
‖w‖ > cMdH

∣∣∣∣
2

ρ
< c2

Md2
H ≤ 4

ρ

}
+ ... (31)

≤ Pr{c2
Md2

H ≤ 1

ρ
}+

Pr{c2
Md2

H ≤ 2

ρ
}. Pr

{
‖w‖2 ≥ 1

ρ

}
+

Pr{c2
Md2

H ≤ 4

ρ
}. Pr

{
‖w‖2 ≥ 2

ρ

}
+ ... (32)

The noise vector has complex Gaussian distribution with variance
1

2ρ
per each real

dimension. Thus, by using the union bound, we can bound the second part of each product

term as,

Pr

{
‖w‖2 ≥ γ

ρ

}
≤

2N∑
i=1

Pr

{
|wi|2 ≥ γ

2Nρ

}
≤ 2NQ

(√
γ

N

)
≤ 2Ne−

γ
2N (33)

Also, for the first part of the product terms, we have,

Pr

{
c2
Md2

H ≤ θ

ρ

}
= Pr

{
dH ≤

√
θ

c2
Mρ

}
(34)

By using (33) and (34), we can bound (32).

Case 1, M < N :

(32) ≤ βN,M

(
1

c2
Mρ

)N

+ βN,M

(
2

c2
Mρ

)N

.2N.e−
1

2N + βN,M

(
4

c2
Mρ

)N

.2N.e−
2

2N + ... (35)

=⇒ Pe ≤ c

ρN
(36)

wherec is a constant. Therefore,

lim
ρ→∞

− log Pe

log ρ
≥ N. (37)
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Case 2, M = N :

(32) ≤ βN,N

(
1

c2
Mρ

)N

max

{(
1

2
ln c2

Mρ

)N+1

, 1

}
+

βN,N

(
2

c2
Mρ

)N

max

{(
1

2
ln

c2
Mρ

2

)N+1

, 1

}
.2N.e−

1
2N

+βN,N

(
4

c2
Mρ

)N

max

{(
1

2
ln

c2
Mρ

4

)N+1

, 1

}
.2N.e−

2
2N + ... (38)

We are interested in the large values ofρ. For ρ > cM
2 and ln ρ > 1,

(32) ≤ βN,N

(
1

c2
Mρ

)N

(ln ρ)N+1 + βN,N

(
2

c2
Mρ

)N

(ln ρ)N+1.2N.e−
1

2N

+βN,N

(
4

c2
Mρ

)N

(ln ρ)N+1.2N.e−
2

2N + ... (39)

=⇒ Pe ≤ c′ (ln ρ)N+1

ρN
(40)

wherec′ is a constant. Therefore,

lim
ρ→∞

− log Pe

log ρ
≥ lim

ρ→∞
log ρN − (N + 1) log (ln ρ)− log c′

log ρ
= N. (41)

In the above proof, we have considered the LLL-aided decoding type I. In this case,

the effective noise vector is equal tow′ = B∗w, compared tow′ = H−1w in zero-forcing.

In the previous works [3] [4] [5], the LLL-aided decoding type II has been used. For the

type II method, the effective noise vector is equal tow′ = Hred
−1w and the average energy

of its ith component is proportional to the square norm of theith column of(Hred
∗)−1. By

using inequality (4) from lemma 1 (to bound the square norm of the columns of(Hred
∗)−1)
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Fig. 1. Bit Error Rate of the two LLL-aided decoding methods forM = 6 transmit antennas andN = 6 receive antennas

with the rateR = 12 bits per channel use.

and using a similar proof as lemma 2, we can show that the results of lemma 2 and theorem

2 are still valid. Therefore, both of these LLL-aided decoding methods achieve the receive

diversity in V-BLAST MIMO systems (or multiple access MIMO systems). However, it is

worth noting that the first method is a more natural approach to reduce the power of the

entries of the effective noise vector, and has a better performance (see figure 1).

IV. RELATION WITH THE NAIVE LATTICE -DECODING

When we have a finite constellation, for each pair of constellation points, the pair-wise

error probability can be bounded by Chernoff bound (similar to [6]). By using the union

bound, we can show that the exact ML decoding achieves the diversity order ofM , the

number of antennas. However, when we use lattice decoding for a finite constellation and
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consider the out-of-region decoded lattice points as errors, achieving the maximum diversity

by lattice decoding is not trivial anymore. However, by using lemma 4, we can show that

this suboptimum method (called the naive lattice decoding [10]) still achieves the maximum

diversity.

Theorem 3:For a MIMO multi-access system (or a point-to-point MIMO system with

the V-BLAST transmission method) withM transmit antennas andN receive antennas, when

we use the naive lattice decoding,

lim
ρ→∞

− log Pe

log ρ
= N. (42)

Proof: When‖w‖ ≤ 1
2
dH, we have no decoding error. Thus, by using1

2
instead ofcM

in the proof of theorem 2, we can boundPe by boundingPr
{‖w‖ > 1

2
dH

}
. Therefore, we

can obtain the same result as theorem 2.

In [10], it is shown that for the naive lattice decoding, we can find a family of lattices

(generating a family of space-time codes) which achieves diversity order ofM (M ≤ N is

the number of transmit antennas). The current result shows that even if we use the codes

generated by the integer lattice, the naive lattice decoding achieves the maximum receive

diversity of N (number of receive antennas).

V. CONCLUSIONS

We have shown that LLL reduction, which is a polynomial-time algorithm, achieves

the maximum receive diversity in MIMO decoding. By using LLL reduction and the Babai

approximation, the complexity of the MIMO decoding is equal to the complexity of the zero-

forcing method with an additional polynomial time preprocessing. Also, it is shown that by
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using the naive lattice decoding, instead of ML decoding, we do not loose the diversity order.
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