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Abstract

In this paper, the inherent drawbacks of the naive lattice decoding for MIMO fading systems is investigated.

We show that using the naive lattice decoding for MIMO systems has considerable deficiencies in terms of the

rate-diversity trade-off. Unlike the case of maximum-likelihood decoding, in this case, even the perfect lattice

space-time codes which have the non-vanishing determinant property can not achieve the optimal rate-diversity

trade-off. Indeed, we show that in the case of naive lattice decoding, when we fix the underlying lattice, all the

codes based on full-rate lattices have the same rate-diversity trade-off as V-BLAST. Also, we drive a lower bound on

the symbol error probability of the naive lattice decoding for the fixed-rate MIMO systems (with equal numbers of

receive and transmit antennas). This bound shows that asymptotically, the naive lattice decoding has an unbounded

loss in terms of the required SNR, compared to the maximum likelihood decoding1.

I. INTRODUCTION

In recent years, there has been extensive research on designing practical encoding/decoding schemes to

approach theoretical limits of MIMO fading systems. The optimal rate-diversity trade-off [1] is considered

as an important theoretical benchmark for practical systems. For the encoding part, recently, several lattice

codes are introduced which have the non-vanishing determinant property and achieve the optimal trade-

off, conditioned on using the exact maximum-likelihood decoding [2] [3] [4]. The lattice structure of

these codes facilitates the encoding. For the decoding part, various lattice decoders, including the sphere

decoder and the lattice-reduction-aided decoder are presented in the literature [5] [6]. To achieve the exact

maximum likelihood performance, we need to find the closest point of the lattice inside the constellation

region, which can be much more complex than finding the closest point in an infinite lattice. To avoid

this complexity, one can perform the traditional lattice decoding (for the infinite lattice) and then, discard

the out-of-region points. This approach is called Naive Lattice Decoding (NLD).
1Financial support provided by Nortel and the corresponding matching funds by the Natural Sciences and Engineering Research Council

of Canada (NSERC), and Ontario Centres of Excellence (OCE) are gratefully acknowledged.



2

In [7], the authors have shown that this sub-optimum decoding (and even its lattice-reduction-aided

approximation) still achieve the maximum receive diversity in the fixed-rate MIMO systems. Achieving

the optimal receive diversity by a low decoding complexity makes lattice-reduction-aided decoding (using

the LLL reduction) an attractive choice for different applications. Nonetheless, this work shows that

concerning rate-diversity trade-off, the optimality can not be achieved by the naive-lattice decoding or its

approximations.

In [8], using a probabilistic method, a lower bound on the best achievable trade-off, using the naive

lattice decoding, is presented. In this paper, we present an upper bound on the performance of the naive

lattice decoding for codes based on full-rate lattices. We show that NLD can not achieve the optimum

rate-diversity trade-off. Also, for the special case of equal number of transmit and receive antennas, we

show that even the best full-rate lattice codes (including perfect space-time codes such as the Golden

code [3]) can not perform better than the simple V-BLAST (if we use the naive lattice decoding at the

receiver). It should be noted that in this paper, we have assumed that the underlying lattice is fixed for

different rates and SNR values (e.g. lattice codes introduced in [2] [3] [4]). If we relax this restriction,

there can exist a family of lattice codes (based on different lattice structures for different rates and SNR

values) which achieves the optimum tradeoff using the naive lattice decoding [9].

In section IV, we complement the result of [7] by showing that for the special case of equal number

of transmit and receive antennas, although the naive lattice decoding (and its LLL-aided approximation)

still achieve the maximum receive diversity, their gap with the optimal ML decoding grows unboundedly

with SNR.

II. SYSTEM MODEL

We consider a multiple-antenna system with M transmit antennas and N receive antennas. In a multiple-

access system, we consider different transmit antennas as different users. If we consider y = [y1, ..., yN ]T ,

x = [x1, ..., xM ]T , w = [w1, ..., wN ]T and the N ×M matrix H, as the received signal, the transmitted

signal, the noise vector and the channel matrix, respectively, we have the following matrix equation:

y = Hx + w. (1)

The channel is assumed to be Raleigh, i.e. the elements of H are i.i.d with the zero-mean unit-variance

complex Gaussian distribution, and the noise is Gaussian. Also, we have the power constraint on the

transmitted signal, E‖x‖2 = P . The power of the additive noise is σ2 per antenna, i.e. E‖w‖2 = Nσ2.

The signal to noise ratio (SNR) is defined as ρ = MP
σ2 .
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We send space-time codewords X = [x1, ...,xT ] with complex entries (xi ∈ CM ) and at the receiver,

we find x̃i as H−1ỹi where [ỹ1, ..., ỹT ] is the closest MT -dimensional lattice point to [y1, ...,yT ].

III. RATE-DIVERSITY TRADE-OFF FOR THE NAIVE LATTICE DECODING

To drive the upper bound on the rate-diversity trade-off of NLD, we first present a lower bound on the

probability that the received lattice (the lattice code after passing through the fading channel) has a short

vector.

Lemma 1 Assume that the entries of the N×M matrix H has independent complex Gaussian distributions
with zero mean and unit variance and consider d (HTL) as the minimum distance of the lattice generated
by HTL, where L is the full-rank MT ×MT generator of a given complex lattice with unit volume2 and
HT is the NT ×MT block diagonal matrix constructed by repeating H along the main diagonal. We
have,

lim
ε→0

log Pr{d (HTL) ≤ ε}
log ε

≤ 2M(N −M + 1) (2)

Proof: Consider σ1 ≤ σ2 ≤ ... ≤ σM the nonzero singular values of H. Considering the pdf of the

singular values of a Gaussian matrix [10], it can be shown that [1]

lim
ε→0

log Pr
{

σ1 ≤ εb1 , ..., σM ≤ εbM
}

log ε
=

M
∑

i=1

2(N −M + 2i− 1)bi (3)

Thus

lim
ε→0

log Pr
{

σ1 ≤ 1
4
√
M
εM , σi ≤ 1

4
√
M
for i > 1

}

log ε
=

2(N −M + 1) ·
(

M + lim
ε→0

log 1
4
√
M

log ε

)

+

M
∑

i=2

2(N −M + 2i− 1) · lim
ε→0

log 1
4
√
M

log ε

= 2M(N −M + 1). (4)

Consider vmin as the singular vector of H, corresponding to σ1. For each MT -dimensional complex

vector v = [a1v
T

min a2v
T

min... aTvT

min]
T,

‖HTv‖2 =

T
∑

i=1

a2
i ‖Hvmin‖2 =

T
∑

i=1

σ2
1‖aivmin‖2 = σ2

1‖v‖2. (5)

2Volume of a lattice generated by matrix L is defined as detΛ , det(L∗
L)

1

2 , and is equal to the volume of the fundamental region of

the lattice.
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Thus, assuming σ1 ≤ 1
4
√
M
εM ,

‖HTv‖ ≤ 1

4
√
M
εM‖v‖. (6)

Consider A as a 2MT -dimensional hypercube with edges of length 1
εM whose 2T edges are parallel

to the subspace spanned by the vectors v = [a1v
T

min a2v
T

min... aTvT

min]
T and the other 2T (M − 1) edges

are orthogonal to that subspace. The volume of this cube is ε−2M2T . Because the volume of the lattice is

1, for K, the number of lattice points inside this cube, we have3 limε→0
K

ε−2M2T
= 1.

Now, assuming σ1 ≤ 1
4
√
M
εM and σM ≤ 1

4
√
M

, the region HTA is inside a 2MT -dimensional orthotope

(in the subspace spanned by HT ) whose 2T edges (which correspond to the smallest singular value σ1)

have length 1
4
√
M

and the length of the other 2T (M − 1) is at most 1
4
√
MεM

(because of the bound on the

largest singular value σM ). The 2T smaller edges can be covered by at most d4−1ε−1e ≤ 2−1ε−1 segments

of length ε√
M

and the others can be covered by at most d4−1ε−(M+1)e ≤ 2−1ε−(M+1) segments of length
ε√
M

. Thus, this orthotope can be covered by at most (2−1ε−1)
2T (

2−1ε−(M+1)
)2T (M−1)

= 2−2MT ε−2M2T

hypercubes of edge length ε√
M

. Because limε→0
K

ε−2M2T
= 1, when ε → 0, the number of these small

hypercubes is smaller than the number of lattice points inside them. Thus, based on Dirichlet’s box

principle, in one of these hypercubes there are at least 2 points of the new lattice, hence d (HTL) is

smaller than the diameter of the small hyper cubes:

dH ≤
√
M · ε√

M
. (7)

Therefore,

lim
ε→0

log Pr{d (HTL) ≤ ε}
log ε

≤ lim
ε→0

log Pr
{

σ1 ≤ εM , σM ≤ 1
2M

}

log ε
= 2M(N −M + 1). (8)

�

Theorem 1 Consider a MIMO fading channel with M transmit and N receive antennas (M ≤ N ) with
codebooks from an MT -dimensional lattice L, which are sent over T channel uses. For the naive lattice
decoding, the rate-diversity trade-off of the system is

dNLD(r) ≤M(N −M + 1)− r (N −M + 1) ,

for 0 ≤ r ≤ M. (9)
3When a region is large, the number of lattice points inside the region can be approximated by the ratio between the volume of the region

and the volume of the lattice.
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Proof: Consider the code of rate R constructed from the lattice. The number of codewords is equal to

2R. Without any loss of generality, we can assume that the volume of the lattice is fixed and is equal to

1, and the power constraint P is dependent on the rate. To satisfy the power constraint, at least half of

the codewords should have power less than 2P . The number of codewords with power less than 2P is

equal to the number of lattice points inside a 2M -dimensional sphere whose volume is proportional to

PM . Thus, by approximating the number of lattice points with the ratio of the volume of the region and

the volume of the lattice:

2R ≤ c1P
M . (10)

where c1 is a constant, independent of SNR4. According to the definition of the multiplexing gain, r =

limSNR→∞
logR

log SNR
. Using (10),

lim
SNR→∞

logP

logSNR
≥ log 1

M
logR

log SNR
=

r

M
. (11)

For the symbol error probability Pe, considering SNR = MP
σ2 ,

Pe ≥ Pr

{

d (HTL) ≤ σ√
M

}

.Q

(

1

2
√
M

)

= Pr

{

d (HTL) ≤
√
P√

SNR

}

.Q

(

1

2
√
M

)

. (12)

Therefore, using lemma 1 (with ε =
√
P√

SNR
) and (11),

dNLD(r) = lim
SNR→∞

− logPe
logSNR

≤ lim
SNR→∞

− log Pr
{

dH ≤
√
P√

SNR

}

log SNR

≤ lim
SNR→∞

−2M(N −M + 1)
(

log
√
P√

SNR

)

log SNR

= lim
SNR→∞

−2M(N −M + 1)
(

1
2
logP − 1

2
log SNR

)

log SNR

≤ −
(

r

2M
− 1

2

)

· 2M(N −M + 1)

= M(N −M + 1)− r (N −M + 1) . (13)

�

4Throughout this paper c1, c2, ... are only dependent on size of dimensions.
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Corollary 1 In a MIMO fading channel with M = N transmit and receive antennas, if we use the
naive lattice decoding, the rate-diversity trade-off for full-rate lattice code can not be better than that of
V-BLAST.

Proof: When M = N , according to Theorem 1,

dNLD(r) ≤M − r (14)

On the other hand, for the V-BLAST system with lattice decoding [11],

dV−BLAST (r) = M − r (15)

�

It is interesting to compare this result with the results on lattice space-time codes which have non-

vanishing determinants. Although by ML decoding, these codes (such as the 2× 2 Golden code) achieve

the optimal rate-diversity trade-off, when we replace ML decoding with the naive lattice decoding (and

its approximations), their performance is not much better than the simple V-BLAST scheme (specially

when the number of transmit and receive antennas are the same)

To better understand the difference between the naive lattice decoding and the ML decoding, we note

that for small constellations, when the generator of the received lattice has a small singular value, the

minimum distance of the lattice can be much smaller than the minimum distance of the constellation.

Figure 2 shows this situation for a small 4-point constellation from a 2-dimensional lattice.

We should note that this upper bound is for full-rate lattices. Lattices with lower rate, can provide

higher diversity, but their rate is limited by the dimension of the lattice. For example, The Alamouti code,

based on QAM constellations, can achieve the full diversity for fixed rates (r = 0), but its rate is limited

by one.

IV. ASYMPTOTIC PERFORMANCE OF THE NAIVE LATTICE DECODING FOR M = N

In [7], it is shown that for N ≥M , the naive lattice decoding achieves the receive diversity in V-BLAST

systems (indeed, even its simple latice-reduction-aided approximation still achieves the optimum receive

diversity of order N ). However, there is a difference between two cases of M < N and M = N . While

for M < N , compared to ML decoding, the performance loss of the naive lattice decoding is bounded in

terms of SNR [7], here we show this is not valid for the case of M = N . This dichotomy is related to

the bounds on the probability of having a short lattice vector in a lattice generated by a random Gaussian

matrix.
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Fig. 1. Comparison between the optimal rate-diversity tradeoff and the upper bound on the rate-diversity trade-off of full-rate lattice codes

(including perfect space-time codes such as the Golden code)

dmin

dH

Fig. 2. Minimum distance of a lattice (dH = d (HT L)), compared to the minimum distance of a lattice code (dmin)
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In [12], an upper bound on the probability of having a short lattice vector is given:

Lemma 2 Assume that the entries of theM×M matrix H has independent complex Gaussian distributions
with zero mean and unit variance and consider d(H) as the minimum distance of the lattice generated
by H. Then, there is a constant C such that [12],

Prob{d(H) ≤ ε} ≤ Cε2M ln

(

1

ε

)M−1

.

The term ln
(

1
ε

)

suggests an unboundedly increasing gap between the performance of ML decoding

and the naive lattice decoding (though both of them have the same slope M ).

In this section, we present a lower bound on the error probability of the naive lattice decoding and

show that this unboundedly increasing gap does exist.

Lemma 3 For M ≥ 2 and ε < 1, for the lattice generated by an M ×M random complex Gaussian
matrix H with zero mean and unit variance, there is a constant C ′ such that,

Prob{d(H) ≤ ε} ≥ C ′ε2M ln

(

1

ε

)

. (16)

Proof: Consider L(v1 ,...,vM) as the lattice generated by v1,v2,...,vM . Each point of L(v1,...,vM) can be

represented by v(z1,...,zM) = z1v1 + z2v2 + ...+ zMvM , where z1, ..., zM are complex integer numbers.

The vectors v1,v2,...,vM are independent and jointly Gaussian. Therefore, for every complex vector

b = (b1, ..., bM), the vector vb = b1v1 + b2v2 + ... + bMvM has complex circular Gaussian distribution

with the variance

%2
b = ‖b‖2 = |b1|2 + ...+ |bM |2. (17)

Now, considering the pdf of vb, we can bound Pr {‖vb‖ ≤ ε} =
∫

‖v‖≤ε fvb
(v) dv by using the fact

that e
− ε2

%2
b ≤ e

− ‖v‖2

%2
b ≤ 1 for ‖v‖ ≤ ε:

∫

‖v‖≤ε

1

πM%2M
b

e
− ε2

%2
b dv ≤

∫

‖v‖≤ε
fv(v) dv ≤

∫

‖v‖≤ε

1

πM%2M
b

dv. (18)

Thus, because the volume of region of the integral (which is a 2M -dimensional sphere with radius ε)

is proportional to ε2M ,

c6
ε2M

‖b‖2M e
− ε2

‖b‖2 ≤ Pr {‖vb‖ ≤ ε} ≤ c7
ε2M

‖b‖2M . (19)
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We can represent any M -dimensional complex integer vector as a 2M -dimensional real integer vector.

In our proof, we consider only integer vectors in the set B which consists of integer vectors z such that

their real entries do not have a nontrivial common divisor and ‖z‖∞ ≤ ε−
1

2M where ‖ · ‖∞ represents

the norm of the largest real entry. First, we show that the number of such integer vectors z in the region

2(k−1) < ‖z‖∞ ≤ 2k is at least 22Mk. The total number of integer points in the region 2(k−1) < ‖z‖∞ ≤ 2k

is5 (2k+1 + 1
)2M −

(

2k + 1
)2M . The number of those points whose entries have a common divisor i is at

most equal to the number of integer points in the region ‖z‖∞ ≤ 2k

i
. Therefore, nk, the number of integer

vectors z whose entries does not have nontrivial common divisors, can be lower bounded by

nk ≥
(

(

2k+1 + 1
)2M −

(

2k + 1
)2M

)

−
2k
∑

i=2

(

2
2k

i
+ 1

)2M

>
(

(

2k+1 + 1
)2M −

(

3 · 2k−1
)2M

)

−
2k
∑

i=2

(

3
2k

i

)2M

> 22kM+2M

(

1−
(

3

4

)2M

−
(

3

2

)2M ∞
∑

i=2

1

i2M

)

> 22kM+2M

(

1−
(

3

4

)2M

−
(

3

2

)2M

·
(

1

22M
+

1

32M
+

∫ ∞

3

1

x2M
dx

)

)

= 22kM+2M

(

1−
(

3

4

)2M

−
(

3

4

)2M

−
(

1

2

)2M

−
(

3

2

)2M

· 1

32M−1(2M − 1)

)

> 22kM+2M

(

1− 2

(

3

4

)2M

− 1

22M
.

(

1 +
2

2M − 1

)

)

≥ 22kM+2M

(

1− 2

(

3

4

)4

− 1

24
.

(

1 +
2

3

)

)

> 22kM+2M · 2−4 ≥ 22kM for M ≥ 2. (20)

Now, we find an upper bound on Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} for two different complex integer vectors

z′ and z′′ which belong to B. We can write z′ as az′′+r where a is a complex number and r is a complex

vector, orthogonal to z′′. We show that ‖r‖ ≥ 1√
2M
ε

1
2M . The area of the triangle which has vertexes 0,

z′, and z′′, is equal to S = 1
2
‖r‖ · ‖z′′‖. On the other hand, because 0, z′, and z′′ are integer points, 2S

should be integer. Also, because the entries of z′ do not have any nontrivial common divisor, z′ can not

be a multiplier of z′′ (and vice versa). Because z′ and z′′ are not multipliers of each other, S is nonzero.

Thus, S ≥ 1
2
, hence,

5The number of points in the cube ‖z‖∞ ≤ 2k is
`

2k+1 + 1
´2M and the number of points in the cube ‖z‖∞ ≤ 2(k−1) is

`

2k + 1
´2M .
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z
′′

r

z
′

ε
−1/2M

Fig. 3. integer points in the region ‖z‖∞ ≤ ε−
1

2M .

1

2
‖r‖ · ‖z′′‖ ≥ 1

2
(21)

=⇒ ‖r‖ ≥ 1

‖z′′‖ ≥
1√

2M‖z′′‖∞
≥ 1√

2Mε−
1

2M

=
1√
2M

ε
1

2M . (22)

Now we bound Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε}. Because r ⊥ z′′, we can see that vr ⊥ vz′′ . Thus, when

‖vr‖ > ε, using the fact that va+b = va + vb,

‖vz′‖ = ‖vaz′′+r‖ = ‖vaz′′ + vr‖ ≥ ‖vr‖ > ε

Therefore,

Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε}

≤ Pr {‖vr‖ ≤ ε, ‖vz′′‖ ≤ ε} (23)
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Based on the orthogonality of r and z′′, vr and vz′′ are independent. Thus, using (19), (22), and noting

that ‖z′′‖ ≥ 1 (because z′′ is a nonzero integer vector):

Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} ≤ Pr {‖vz′′‖ ≤ ε} · Pr {‖vr‖ ≤ ε}

≤
(

c7
ε2M

‖z′′‖2M
)

·
(

c7
ε2M

‖r‖2M
)

≤ c27ε
2M · ε

2M (2M)M

(

ε
1

2M

)2M

= c8ε
4M−1 (24)

Now, we use the Bonferroni inequality [13],

Pr {d(H) ≤ ε} = Pr {∃ z 6= 0 : ‖vz‖ ≤ ε} ≥ Pr {∃ z : z ∈ B, ‖vz‖ ≤ ε}

≥
∑

z∈B
Pr {‖vz‖ ≤ ε}

−
∑

z′,z′′∈B
Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} (25)

For the first term of (25),

∑

z∈B
Pr {‖vz‖ ≤ ε} (26)

≥

—

log

„

ε−
1

2M

«�

∑

k=0

∑

z∈B,2k−1<‖z‖∞≤2k

Pr {‖vz‖ ≤ ε} (27)

By using (20), (19), and noting that ‖z‖ ≤
√

2M‖z‖∞ and e−
ε2

‖z‖2 ≥ e−1 (because ε < 1 and ‖z‖ ≥ 1),

(27) ≥

—

log

„

ε−
1

2M

«�

∑

k=0

22kM · c6ε
2M

(2k)2M · (2M)M
· e−1 (28)
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≥

—

log

„

ε−
1

2M

«�

∑

k=0

c9ε
2M (29)

=
(⌊

log
(

ε−
1

2M

)⌋

+ 1
)

· c9ε2M ≥ c10ε
2M · ln

(

1

ε

)

. (30)

For the second term of of (25), because the number of complex integers in B (which is at most the

number of integer points in the cube ‖z‖∞ ≤ ε−
1

2M ) is bounded by c11
(

ε−
1

2M

)2M

= c11ε
−1, the number

of pairs (z′, z′′) is at most (c11ε
−1)

2. Thus, using (24):

∑

z′,z′′∈B
Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} (31)

≤
(

c11ε
−1
)2 · c8ε4M−1 (32)

≤ c12ε
4M−3 (33)

Now, by using (30) and (33),

(25) ≥ c10ε
2M ln

(

1

ε

)

− c12ε4M−3 (34)

≥ C ′ε2M ln

(

1

ε

)

, for M ≥ 2. (35)

�

Theorem 2 Consider a MIMO fading channel with M transmit and M receive antennas and a V-BLAST
transmission system. The naive lattice-decoding has an asymptotically unbounded loss, campared to the
exact ML decoding.

Proof: For ML decoding, by using the Chernoff bound for the pairwise error probability and then

applying the union bound for the finite constellation, we have [14]

Perror−ML ≤ c13(SNR)−M (36)

where c13 depends on the size of constellation.

For naive lattice decoding,
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Perror−NLD ≥ Pr

{

dH ≤
1√
SNR

}

.Q

(

1√
M

)

≥ c14(SNR)−M ln(SNR). (37)

Therefore, although both of them asymptotically have the same slope and achieve the optimal receive

diversity of order M , for large SNRs, the gap between their performances is unbounded (with a logarithmic

growth, or in other words, log log SNR in dB scale). �

V. CONCLUSIONS

In this paper, the inherent limitations of the performance of the naive lattice decoding is investigated.

The naive lattice decoding and various implementions of it (such as the sphere decoding) and its simple

approximated versions (such as the LLL-aided decoding) are very attractive for the practical MIMO sys-

tems. Nontheless, to achieve theoretical benchmarks (such as the rate-diversity trade-off), these techniques

are not always sufficient. For the rate-diversity trade-off, although different elegant lattice codes have been

introduced which achieve the optimal trade-off [2] [3] [4], they need ML decoding to achieve optimality.

On the other hand, there can exist a family of lattice codes (based on different lattice structures for

different rates and SNR values) which achives the optimum tradeoff using the naive lattice decoding [9].

However, the existence proof in [9] does not provide any constructive solution for the encoding of such

codes. Therefore, the problem of achieving the optimum diversity-multiplexing tradeoff by a practical

encoding and decoding scheme is still open.
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