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Abstract

The closed-loop transmit diversity technique is used to improve the performance of the downlink channel in

MIMO communication systems. In these closed-loop systems, feedback delay and feedback error, as well as the

sub-optimum reconstruction of the quantized feedback data, are the usual sources of deficiency. We address the

efficient reconstruction of the beamforming weights in the presence of the feedback imperfections, by exploiting the

residual redundancies in the feedback stream. Focusing on the issue of feedback delay, we propose two approaches

to improve the performance. One is based on using a channel predictor at the receiver to compensate for the delay,

and using a joint source-channel coding (JSCC) method similar to our previous work [2] to compensate for the

feedback error. Another approach deals with the feedback imperfections in a unified reconstruction algorithm using

JSCC techniques. Furthermore, we introduce the concept of Blind Antenna Verification which can substitute the

conventional Antenna Weight Verification process without the need for any training data. The closed-loop mode

1 of the 3GPP standard is used as a benchmark, and the performance is examined within a Wideband-CDMA

simulation framework. It is demonstrated that the proposed algorithms outperform the conventional methods at all

mobile speeds, and are suitable for the implementation in practice.
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I. INTRODUCTION

The increasing demand for internet and wireless services highlights the need for an increase in the

capacity of the communication systems. Third generation of mobile communication, namely 3GPP [3]

and 3GPP2 [4], have developed WCDMA [5] and CDMA2000, respectively, to address this trend. The

improvement of the downlink capacity is one of the main challenges of the 3G systems, and closed-loop

techniques are known to have the potential to solve the problem. As a well-known example, Transmit

Adaptive Array [6] is part of the 3GPP standard with two transmit antennas at the base station and one

receive antenna at the mobile unit, which uses the Channel State Information (CSI) to beamform the

transmit signal.

In a downlink closed-loop system, the transmitter receives the required CSI through a limited-capacity

feedback channel from the receiver. The feedback data is a low-rate bitstream resulting from rough

quantization of the CSI at the receiver. There are three major imperfections which affect the closed-loop

systems: feedback delay, feedback error, and sub-optimal reconstruction. Feedback delay has been shown

to drastically affect the performance of closed-loop systems [7], [8], as the transmitter has to use outdated

CSI. This problem gets worse as the mobile speed increases because the channel is changing more rapidly.

The feedback data is usually uncoded, or has a low-rate coding. Hence, a closed-loop scheme is sensitive

to the errors in the feedback channel (see [2] and the references therein). Other than decreasing the closed-

loop gain, feedback error causes another more serious problem. For decoding purposes, the receiver needs

to know exactly what weights have been applied at the transmit antennas. However, the receiver is not

normally aware of the location of the errors in the feedback channel, which causes mismatch at the receiver.

This mismatch imposes an error floor on the system performance which is proportional to the feedback

error rate as each feedback error can potentially result in symbol errors in the respective slot. In many
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research works, an impractical assumption is made that the receiver somehow knows the exact transmitter

weights at all times. Ratifying this problem in practice, an Antenna-weight Verification algorithm, also

called Antenna Verification algorithm (AV), [9] is applied which needs some extra training data at the

receiver for each user. There are a few works in the literature on the AV problem, such as [10], [11],

[12]. These articles address the problem for the closed-loop modes1 of the 3GPP standard, when the

dedicated training data is available. In this article, we are interested in the AV problem without using

any extra training, i.e, in a blind fashion. A recent paper [13] deals with a similar problem, however, for

a single transmit-antenna selection system. Optimizing the signaling assignment, it has been shown that

verification of the selected antenna at the receiver is crucial when the feedback is erroneous. Furthermore,

a number of blind and non-blind AV methods have been proposed for the antenna selection system [13].

The reconstruction schemes used in closed-loop systems are usually not optimal due to simplifications

of the algorithms, and ignoring the feedback error and delay. Our focus here is on Mode 1 of 3GPP [9]

(as described in Section I-C) which only feeds back the phase information of the channel with a special

quantization scheme. Despite all the imperfections, Mode 1 has a good performance at low mobile speeds,

but it fails at higher speeds. In our previous work [2], the efficient reconstruction of beamforming weight

in the presence of feedback error is addressed. Some joint source-channel techniques are used to improve

the performance of Mode 1 of 3GPP, by taking advantage of the redundancy available in the CSI stream.

In this article, we consider the problem of feedback delay, as well as feedback error, in a closed-loop

system. To solve this problem, we propose two approaches. One approach uses predicted channel values

to compensate for the effect of feedback delay, and uses the JSCC method for the feedback error. In the

other approach, a unified JSCC framework deals with the feedback imperfections. Exploiting the novel

concept of Blind Antenna Verification, this method only uses the feedback bitstream and does not need

any type of training data. The performance of the algorithms is examined in the framework of the closed-

loop mode 1 of the 3GPP standard. For the channel model, we consider spatially-uncorrelated Rayleigh

1Namely, mode 1 and mode 2. Mode 2 is no longer part of the 3GPP standard.
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fading channels. In the simulations, we use a separate Jakes fading generator introduced in [14] for each

channel. Here is a list of notations used in this paper: [·](k) refers to the k’th element of a vector, [·]H is

the Hermitian transform, and C is the set of complex numbers.

A. Beamforming

In a closed-loop system, channel input x should be appropriately selected according to the channel

state [15]. Controlling the channel input can be accomplished with a conventional beamformer which

applies some weights to the transmitted signal for each antenna. Assuming two transmit antennas and one

receive antenna, a beamforming scheme can be expressed as

x = ws, (1)

where

w = [w(1), w(2)]T ∈ C2, (2)

and s is the transmitted symbol. It is assumed that ‖w‖2 = 1, which means the beamformer does not

change the transmit power. The received signal r is a complex number which is the superposition of the

signals from different antennas, as well as the noise, i.e.,

r = hTws + η (3)

= (
2∑

m=1

h(m)w(m))s + η. (4)

In the decoding process, the combining complex variable is applied as [16]

z = vHr = vHhTws + vHη, (5)

where z is used to calculate the output LLR (Log-Likelihood Ratio) values. It has been shown [17] that

to minimize the average probability of error in a MIMO system, w and v must be jointly selected to

maximize the instantaneous SNR. It could be concluded from (4) that SNRinst =
∣∣hTw

∣∣2 Es

N0
, where

Es = E[|s|2]. Several schemes for selection of w are introduced in the literature, for example refer to

[15]. Later, we will discuss the calculation of v (i.e., Antenna Weight Verification) in Section III.
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Fig. 1. Block diagram of a quantized co-phase feedback system

B. Quantized Co-phase Feedback

Figure 1 shows the block diagram of a quantized co-phase2 feedback system. In the figure, φn =

∠h
(2)
n − ∠h

(1)
n is the co-phase information, φ̃n is the quantized co-phase, and In is the respective index.

In is sent through the feedback channel and Jn is received at the base station, possibly delayed and/or

noisy. Here, a memoryless feedback channel is assumed.

At the transmitter, the phase information is used to calculate the beamforming weights, whereas the

transmit power is constant. Hence, it is assumed w
(1)
n = 1√

2
and

∣∣∣w(2)
n

∣∣∣ = 1√
2
. In an ideal co-phase feedback

system, ∠w
(2)
n = −φn.

C. Mode 1 of 3GPP

The closed-loop mode 1 of the 3GPP standard [9] is an example of the feedback system shown in

Fig. 1. In mode 1, the quantization of the co-phase φn is subject to a special framing structure as shown

in Fig. 2. Each (uplink) frame, which contains the feedback information, has a duration of 10 msec and

includes 15 slots. Each slot contains a number of data symbols depending on the data rate. For each slot,

one bit of feedback data is sent from the mobile unit which results in a feedback stream of 1500 bits per

second. The feedback bit is determined by one of the two one-bit quantizers Q0 and Q1, according to

Fig. 2, where Q0 = {0, π} and Q1 = {π/2,−π/2}. Showing the relative place of each slot in a frame,

we use a framed time index, τ = n mod 15, hence in a frame, τ = 0, 1, · · · , 14.
2The term co-phase refers to the phase difference between the two channels.
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Reconstruction Inverse Mapping Hard−Decision
φ̂

n
ŵ
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Fig. 3. Block diagram of the weight reconstruction for mode 1 of 3GPP

At the base station, after a hard-decision unit, the received feedback data bits are mapped to φ̂n phase

stream according to Fig. 2, i.e., φ̂n ∈ Q
τ mod 2

. The weight w
(2)
n is constructed from the two recent phases,

one from a Q0 slot and one from a Q1 slot. The reconstruction scheme can be shown as

ŵ(2)
n =





1
2
(ejφ̂n + ejφ̂n−1), τ 6= 0

1
2
(ejφ̂n + ejφ̂n−2), τ = 0.

(6)

Note that at each time, equation (6) selects the ŵ
(2)
n from a set of 4 predefined weights. This construction

also guarantees that
∣∣∣ŵ(2)

n

∣∣∣ = 1√
2

for all n.

It is observed from Fig. 2 that φ̃n (and similarly φ̂n) can attain one of four values, φ̃n ∈ {−π/2, 0, π/2, π}.

Therefore, index In could be defined as In ∈ {0, 1, 2, 3}, respectively. It is notable that these 2-bit symbols

are constructed from the 1-bit feedback and the time information τ . Furthermore, equation (6) shows that

the weight reconstruction block of mode 1 can be depicted as shown in Fig. 3. It is observed that the weight

reconstruction algorithm has been separated into different parts in the standard, and can be potentially

improved through a joint design, i.e., calculation of ŵ
(2)
n directly from the sequence of Jn.
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II. EFFICIENT RECONSTRUCTION OF THE BEAMFORMING WEIGHT

In the sequel, we assume the framing structure and the quantization scheme of the closed-loop mode

1 of the 3GPP standard [9], as described in the previous section. However, our approach can be used for

any other feedback scheme as well.

A. MMSE Solution in the Presence of Feedback Delay and Error

In the previous work [2], [18], the MMSE algorithm in the presence of noisy feedback is introduced.

The best algorithm is obtained when soft-output is used (i.e., assuming that Jn is available before a hard-

decision operation), and it is called SoftNMMSE (Soft-Normalized-MMSE). In the following, a similar

approach is pursued when the feedback data is delayed as well.

Assuming a delay of d symbols in the feedback channel (d is a non-negative integer), the sequence

Jn−d = [J1, J2, · · · , Jn−d] is available at the base station at time n. The fundamental theorem of estimation

states that given Jn−d,

ŵ(2)
n = E

[
w(2)

n

∣∣Jn−d

]
(7)

is the minimum mean-squared error (MMSE) estimate of the weight w
(2)
n . Similar to what is shown in

[19], the formula can be approximated by the following form:

ŵ(2)
n =

∑
E

[
w(2)

n

∣∣In−µ+1
n

]
P

(
In−µ+1

n

∣∣ Jn−d

)
, (8)

where the summation is over all the possible µ-fold sequences of In−µ+1
n = [In−µ+1, · · · , In−1, In]. In (8),

E
[
w

(2)
n

∣∣∣In−µ+1
n

]
is a codebook, and the probability part can be computed as explained in Section II-A1.

We are dealing with the estimation of a complex variable with a constant amplitude, as
∣∣∣ŵ(2)

n

∣∣∣ = 1√
2
.

However, there is no control on the amplitude of ŵ
(2)
n in (7) and (8). Hence, we need an MMSE estimator

with a constant amplitude, which is introduced in a lemma in [2] and is called NMMSE (Normalized-

MMSE). According to the lemma, the antenna weight can be calculated using the MMSE solution of (7)
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or (8) as

ŵ(2)−normal
n =

1√
2

ŵ
(2)
n∣∣∣ŵ(2)
n

∣∣∣
. (9)

1) Markov Model: For capturing the residual redundancies [20] in the feedback stream, we assume

that the bitstream follows a Markov model of order γ. A trellis structure is set up based on the Markov

model to exploit the redundancies. The states of the trellis are defined as Sn = In−γ+1
n . The trellis is

specified by the probabilities of the state transitions, P (Sn|Sn−1), which are the A Priori Probabilities

(APP) of the Markov model.

2) Calculation of the A Posteriori Probabilities at the Transmitter: The probability P
(
In−µ+1

n

∣∣ Jn−d

)

in (8) could be calculated by using the state probabilities given the received feedback data, P (Sn|Jn−d).

In the absence of feedback delay, this calculation reduces to P (Sn|Jn) as in [2] which is the estimation

of the state probabilities at time n given the feedback symbols up to time n. In the following, we present

a recursive algorithm for calculation of P (Sn|Jn−d). Note that this formulation has a predictive nature as

well, because the last d feedback symbols are not available due to the feedback delay. In other words,

this is a joint prediction and estimation method, and so the resulting algorithm is called SoftNMMSE-JP,

where JP stands for Joint Prediction.

Let

P (Sn|Jn−d) = C1 · P (Sn, Jn−d)

= C1 · P (Jn−d−1) · P (Sn|Jn−d−1)

·P (Jn−d|Sn, Jn−d−1) (10)

= C2 · P (Sn|Jn−d−1) · P (Jn−d|In−d) (11)

for d ≤ γ − 1, where C1 and C2 are normalizing variables. The term P (Sn|Jn−d−1) can be written as

follows

P (Sn|Jn−d−1) =
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∑
· · ·

∑
Sn−1

P (Sn|Sn−1, Jn−d−1) · P (Sn−1|Jn−d−1)

=
∑

· · ·
∑

Sn−1

P (Sn|Sn−1) · P (Sn−1, Sn−2|Jn−d−1)

=
∑
Sn−1

P (Sn|Sn−1) ·
∑

· · ·
∑

Sn−2

P (Sn−1, Sn−2|Jn−d−1)

=
∑
Sn−1

P (Sn|Sn−1) · P (Sn−1|Jn−d−1). (12)

Therefore, P (Sn|Jn−d) can be calculated recursively as

P (Sn|Jn−d) = C2 · P (Jn−d|In−d)

·
∑
Sn−1

P (Sn|Sn−1) · P (Sn−1|Jn−d−1). (13)

Another approach to overcome the feedback delay is introduced in the following section.

B. Channel Prediction at the Receiver

If the receiver calculates the feedback symbols by using the future channel states, it can cancel out the

effect of the delay in the feedback channel. This approach can be implemented by using d-step predicted

values of the channel coefficients, and these values can be computed by applying a short-range fading

prediction algorithm [21], [22] to the current channel values. Here we use an Auto Regressive (AR) model

of order 3 to predict the fading samples, and SoftNMMSE is used to deal with the feedback error. The

resulting algorithm is called SoftNMMSE-LP where LP stands for Linear Prediction.

In practice, channel coefficients are estimated using some pilots, training bits, etc. which usually

introduce some error in the available channel coefficients. Note that these channel estimates are used

to generate feedback symbols, calculate the LLR values for the decoding process, etc. Therefore, the

quality could have a direct impact on the overall performance of a closed-loop system. Here, the channel

estimation error is modelled as an Additive White Gaussian Noise (AWGN), and SNRz is defined as

the ratio of the average channel fading power, E[|hn|2], to the noise power. The effect of SNRz on the

performance of different algorithms is examined in the simulations.
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III. ANTENNA WEIGHT VERIFICATION

When an error occurs in the feedback channel, an incorrect antenna weight (i.e., beamforming weight)

vector is applied at the transmitter, which leads to two consequences. First, the received signal power

is smaller [23], because a non-optimum weight is applied. However, our simulations show that the

performance degradation due to this effect is rather small. The second consequence is more serious:

Each time a feedback error occurs, the mobile station does not know the actual antenna weight vector that

is applied at the base station. Since the mobile station obtains the dedicated (i.e., user-specific) channel

estimate by combining the estimates for individual antennas from common pilots with the assumed weight

vector used at the base station, this can cause significant dedicated channel estimation error, henceforth

error in calculation of the combining variable v, resulting in some error floor in the performance. To

minimize this effect, a technique called Antenna Weight Verification (AV) [10] has been suggested. In

this method, some extra preamble bits are transmitted to each user, and these are used to estimate the

dedicated channel which includes the effect of possible feedback errors.

In the next section, we introduce a novel technique called Blind Antenna Verification (BAV) which

does not need any extra preamble bits. This blind method processes the feedback symbols, which means

that the proposed method has a low complexity in comparison with symbol-based3 blind approaches (such

as the blind selection verification methods introduced in [13]). Using the proposed BAV in conjunction

with the SoftNMMSE-JP algorithm provides an efficient closed-loop algorithm in the presence of feedback

imperfections, as shown in the numerical results.

3By a symbol-based method, we mean that a method that needs to perform calculations on the sequence of data symbols. On the other

hand, the proposed method in this article only needs a slot-by-slot calculation. The complexity of these two approach is proportional to

symbol rate and feedback rate, respectively.
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A. Blind Antenna Verification

Consider Fig. 4. At the transmitter, the best estimate of the optimum beamforming weight, in the MMSE

sense, is

ŵn = E[wn|Jn−d]. (14)

Transmitter applies the weight to the transmit signals. At the receiver, an estimate of ŵn is required for

the decoding process, for example, for the calculation of v in (5). Assume that the receiver uses w̃n.

Hence, w̃n needs to be as close to ŵn as possible. In the following, we introduce a theorem to address

this problem. Two lemmas are introduced beforehand which are used to prove the theorem.

Lemma 1: The following sequence

wn ↔ In−d ↔ Jn−d (15)

constitutes a Markov chain.

Proof: See Appendix A.

Lemma 2: Assume that X ↔ Y ↔ Z constitutes a Markov chain. Then,

E [E[X|Y ]|Z] = E[X|Z]. (16)

Proof: See Appendix B.

Note that the inner E[·] of the left side of (16) and the E[·] of the right side are with respect to X ,

and the outer E[·] of the left side is with respect to Y .

Theorem 1 (Joint Beamforming and Blind Antenna Verification): In a closed-loop system, the follow-

ing criteria are desired:

1) Select w̃n to

minimize E‖w̃n −wn‖2 (17)

given In−d which is available at the receiver.

2) Select ŵn to

minimize E‖ŵn − w̃n‖2 (18)
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given Jn−d which is available at the transmitter.

The following system satisfies both criteria:

w̃n = E[wn|In−d], (19)

ŵn = E[wn|Jn−d]. (20)

Proof: From criterion 1, according to the fundamental theorem of estimation (19) is obtained. The

transmitter should find an estimate of w̃n as given in (18). Let us call this weight ˆ̃wn. Again, by using

the fundamental theorem of estimation, from criterion 2 we can write

ˆ̃wn = E[w̃n|Jn−d]. (21)

In the following, we will show that ˆ̃wn = ŵn where ŵn is introduced in (20), and this concludes the

proof.

According to Lemma 1,

wn ↔ In−d ↔ Jn−d (22)

constitutes a Markov chain. Hence we can write

ˆ̃wn = E[w̃n|Jn−d] (23)

= E
[
E[wn|In−d]

∣∣ Jn−d

]
(24)

= E[wn|Jn−d] (25)

= ŵn, (26)

where Lemma 2 is used to derive (25). The result shows that if the transmitter uses (20), and the receiver

uses (19), both criteria are satisfied.

Note that theorem 1 does not explicitly use the optimal beamforming criterion (i.e., minimize E‖ŵn −wn‖2,

as is used in [2]), however this criterion is satisfied by (20). This means that beamforming goal and AV goal

are jointly achieved by using the theorem. This method does not need any dedicated (i.e., user-specific)

training sequence at the receiver and so it is a blind solution for the AV problem. For the implementation
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of the solution introduced in Theorem 1, the receiver calculates (19) which could be done similar to

(8). However, it does not need any trellis processing because the probabilities are fixed. The required

P (Sn|In−d) can be calculated as shown in Appendix C.

IV. NUMERICAL RESULTS

The block diagram of the simulated feedback system is shown in Fig. 4. The simulation parameters

are summarized in Table I. The feedback bitstream is BPSK modulated (uncoded) and added with White

Gaussian Noise with the variance of σ2
n = 0.370 (equivalent to the feedback error of 5%). The following

algorithms are compared: Standard, SoftNMMSE-JP-BAV, SoftNMMSE-LP, and SoftNMMSE-IP. Standard

refers to the closed-loop mode 1 of the 3GPP standard, as explained in Section I-C. The algorithm

SoftNMMSE-JP-BAV is an implementation of Theorem 1 which is a combination of the Joint Prediction

approach of Section II and Blind Antenna Verification. The algorithm SoftNMMSE-LP uses the approach

in Section II-B which applies a linear predictor of order 3 for channel prediction. Finally, the algorithm

SoftNMMSE-IP (where “IP” stands for Ideal Channel Prediction) uses the same approach as Section II-B,

but assumes that the required future channel coefficients are perfectly available without the effect of channel

estimation and channel prediction errors. Therefore, SoftNMMSE-IP can be considered as a performance

bound for dealing with feedback delay. It is notable that SoftNMMSE-JP-BAV and SoftNMMSE-LP are

enhancements to the closed-loop mode 1 of 3GPP, and they are compatible with the standard.

Fig. 5 shows the FER performance curves versus transmit SNR at four different mobile speeds (V=1,

5, 25, and 100 kmph), for SNRz = 40 dB representing the case where the channel estimation has a

good quality (for example, when powerful channel pilots are available). Similarly, Fig. 6 shows the FER

performance curves for SNRz = 10 dB representing the case with poor channel estimation quality (for

example, when blind channel estimation is used at the receiver).

It is observed that both proposed approaches significantly outperform the Standard algorithm at all

mobile speeds. For the case of high SNRz, the channel prediction approach acts better than the joint

approach which only uses the feedback bitstream. However, when SNRz is low, the joint approach acts
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Fig. 4. Block diagram of our feedback system

Carrier Frequency 2.15 GHz

Modulation QPSK

Transmitter 2 Antennas

Receiver 1 Antenna

Data Rate 15000 bps

Feedback Rate 1500 bps

Channel Coding Turbo Code

Code Rate 1/3

Frame Length 300 (20 mSec)

Bit Interleaving One Frame

Power Control Not applied

Feedback Delay 2 slots

Feedback Noise Variance 0.370

TABLE I

SIMULATION PARAMETERS

better, since the predicted channel values are not very accurate in this case.

For high SNRz and low mobile speeds, both approaches have the same performance and offer about

1 dB gain over the Standard algorithm. When the mobile speed is low, channel is changing slowly and the

roughly quantized CSI has enough information about the channel. Also, the channel prediction algorithms
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act very well as the channel values have significant time-correlation. In other words, the effect of feedback

delay vanishes for low mobile speeds. Therefore, as it is observed in Fig. 5 for V=1 kmph, both approach

touch the “SoftNMMSE-IP” performance. As the mobile speed increases, the increasing effect of feedback

delay causes the performance curves to split.

It is observed that at high mobile speeds, our joint approach significantly outperforms the Standard

algorithm, for both poor and good quality of channel estimation. This shows that our joint prediction

algorithm can be used to increase the range of mobile speeds where the closed-loop algorithm can be

effectively applied. The algorithm only needs the calculations once per each feedback slot (i.e., the total

complexity is proportional to the feedback rate which is much less than the data symbol rate), and the
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algorithm has a reasonable complexity, mostly needed at the base station. Both approach proposed in this

paper are similarly applicable to any other MIMO closed-loop system.

APPENDIX A

PROOF OF LEMMA 1

Using the data processing theorem, we know that

wn ↔ In−d ↔ Jn−d (27)

forms a Markov chain, because the feedback sequence In−d is calculated from the weight sequence wn

at the receiver, and Jn−d, which is received at the transmitter after passing through the feedback channel,
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is an (stochastically) impaired version of In−d. Therefore, for the conditional PDF’s, it can be written

f
(
wn|In−d, Jn−d

)
= f

(
wn|In−d

)
. (28)

Now, the following integration of both sides
∫
· · ·

∫

wn−1

f
(
wn|In−d, Jn−d

)
dwn−1 =

∫
· · ·

∫

wn−1

f
(
wn|In−d

)
dwn−1, (29)

results in

f
(
wn|In−d, Jn−d

)
= f

(
wn|In−d

)
, (30)

meaning that

wn ↔ In−d ↔ Jn−d (31)

is a Markov chain.

APPENDIX B

PROOF OF LEMMA 2

As a property of a Markov chain,

f(x|y, z) = f(x|y), (32)

where f(·) is the PDF of the respective random variable. Hence,

EY [EX [X|Y ]|Z] = (33)
∫ (∫

xf(x|y)dx

)
f(y|z)dy (34)

=

∫ ∫
xf(x|y)f(y|z)dxdy (35)

=

∫ ∫
xf(x|y, z)f(y|z)dxdy (36)

=

∫ ∫
xf(x, y|z)dxdy (37)

=

∫
xf(x|z)dx (38)

= EX [X|Z]. (39)
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APPENDIX C

DERIVATION OF P (Sn|In−d) FOR RECEIVER

We can write

P (Sn|In−d) = P (Sn|Sn−d) (40)

= P (Sn|Sn−d), (41)

where P (Sn|Sn−d) is the d-step transition probability which is calculated once as follows

P (Sn|Sn−d) = P (Sn|Sn−d) (42)

=
∑

· · ·
∑

Sn−d−1
n−1

P (Sn|Sn−1) ·

P (Sn−1|Sn−2) · · ·P (Sn−d−1|Sn−d). (43)
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