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Abstract

In this paper, a communication system includinginterfering additive white Gaussian noise
(AWGN) links is considered. Each transmitter uses a Gaussian codebook and each receiver only decodes
the data of the corresponding transmitter. For the case that the transmit powers are subject to arbitrary
linear constraints, a closed-form expression for the boundary points of the signal-to-interference-plus-
noise-ratio (SINR) region is obtained. Moreover, when the channels are time-varying and the average
powers are constrained, the zero-outage SINR region of the system is derived. In addition, a scenario
where the demanded SINR of the users is out of the SINR region is considered. A common approach is
to remove a subset of the users such that the demanded SINR can be provided for the remaining users;
the removed users are serviced in a later time slot. With the aim of maximizing the number of serviced

users in each time slot, a sub-optimal algorithm is developed, which outperforms the other alternatives.

Index Terms

SINR region, rate region, maximum achievable SINR, time-varying channel, zero-outage SINR

region, user removal.

. INTRODUCTION

A collection of transmitter-receiver pairs operating in a shared medium constitute a system

of interfering communication links. Practical examples of such configurations include cellular
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networks, code division multiple access (CDMA), and digital subscriber line (DSL) systems.
Due to the complexity of such structures, usually some simplifying assumptions are used in the
design and analysis of such configurations. A widely used assumption is to consider Gaussian
signal transmission and treat the interference as AWGN. In this case, the Shannon’s capacity
formula for AWGN channels is in effect. We follow this assumption throughout this paper.

The systems including interfering links have been the subject of research for many years. Based
on the network structure, these systems have been approached in different ways, e.g. by power
control [1], feasible region description [2]-[7], bandwidth allocation [8], transmission scheduling
[9], routing [10], base station selection [11], etc. In this work, we are mainly concerned with
characterizing the feasible SINR region of such systems when the transmission powers can take
any value within some linear constraints. According to our assumption, there is a one-to-one
logarithmic relation between the rate and the SINR of the users. Hence, by describing the feasible
SINR region, we are describing the feasible rate region, as well.

In general, a feasible region for interfering links is defined based on a network parameter
such as SINR, rate, capacity, processing gain, etc. In [2], it is shown that the feasible processing
gain region when the power is unbounded is convex. Note that for a constant bandwidth, the
processing gain is inversely proportional to the rate. Some topological properties of the mentioned
feasible region are investigated in [3] for the cases when there are constraints on the power of
individual users and when there is no constraint on the power. It is shown that the boundary of
the capacity region with one user’s power fixed and the rest unbounded is a shift of the boundary
of some capacity region with modified parameters, but unlimited power. However, this result is
not in a closed form and cannot be extended to the other forms of power constraints.

The study of the feasible SINR region shows that it is not convex in general [4], [5]. In [6], itis
shown that in the case of unlimited power, the feasible SINR region is log-convex. The authors
in [2] also consider a CDMA system without power constraints, and show that the feasible
inverse-SINR region is convex. In [4], it is proved that for a given quality of service (QoS)
parameter, the corresponding feasible region is convex, if the SINR is a log-convex function
of that QoS parameter. Reference [7] shows that under a total power constraint, the infeasible
SINR region is not convex.

In this paper, we consider the feasible SINR region and describe it by analytically obtaining its

boundary points. Our approach is to find the farthest point of the feasible SINR region from origin
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in a given direction. This makes the problem of SINR region characterization closely related
to the problem of maximizing the minimum SINR. There has been some effort to evaluate the
maximum achievable SINR in a system of interfering links. In [12], the maximum achievable
SINR of a system witmo constrainton the power is expressed in terms of the Perron-Frobenius
(PF) eigenvalue of a non-negative matrix. Then, this expression is utilized to develop an SINR-
balancing scheme for satellite networks. This formulation for the maximum achievable SINR is
deployed in many other wireless communication applications such as [13], [14].

It is not a straightforward task to generalize the elegant result of [12] for the realistic scenario
when the transmit powers are constrained. As a result, [12] remained as the only work of this kind
for many years. Recently, for a special case whentdted poweris constrained, the maximum
achievable SINR is obtained based on the PF-eigenvalue dhan1) x (n + 1) primitive
non-negative matrix [15]. In this paper, we adopt an approach that enables us to obtain closed
form expressions for the maximum achievable SINR in systems of interfering links with power
constraints. Our approach is general in the sense that it can be applied to systems with various
number of arbitrary linear power constraints. Moreover, this result yields a closed-form solution
for the SINR region of the systems with power constraints, in terms of the PF-eigenvalue of an
n x n irreducible matrix.

Later, we apply the mentioned approach to a time-varying system where the channel gains are
selected from a finite set with certain probabilities, and the average power of users are subject
to some linear constraints. For this system, we obtain the SINR region which is achievable
regardless of the channel realizations. This region is known azeheoutage SINR region
[16], [17, Page 111-112]. In [16], the optimal zero-outage SINR for a point-to-point channel is
obtained. Our result implements the same concept when werhaverfering links with finite
number of channel realizations.

It is likely in practical communication systems that the required SINR of the users is a point
out of the feasible SINR region. In this case, one possible solution is to remove some of the
users such that the required SINR of the remaining users falls in the feasible region of those
users; the removed users are serviced in the subsequent time slots when their channel is in a
better condition. This approach is inherent to any opportunistic scheduling problem [9]. With
this approach, it is desirable to find a feasible subset of users (i.e., a subset of users which

satisfy the required SINR) with maximum cardinality [18]. This problem is claimed to be NP-
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complete [19]. In the literature, some heuristic algorithms are presented for this problem. In [13],
a stepwise removal algorithm (SRA) has been proposed for the case that the transmit power
is unbounded. In [20], another algorithm named as stepwise-maximum-interference-removal-
algorithm (SMIRA) is proposed, and it is shown that this algorithm outperforms SRA. For the
systems with constraint on the power of the individual transmitters, an algorithm known as
gradually-removal-distributed-constrained-power-control (GRX-DCPC) is proposed in [19]. This
algorithm is presented in the forms of centralized, distributed, restricted, and non-restricted user
selection. In the restricted algorithm known as GRR-DCPC, the user to be removed is selected
from the users attaining the maximum power in the power updating procedure. Whereas, in the
non-restricted algorithm (GRN-DCPC), the user to be removed is selected from all active users.
The simulation results show that GRN-DCPC (centralized non-restricted algorithm) outperforms
other mentioned schemes in [19].

In this paper, we exploit the obtained results on the maximum achievable SINR, to develop a
suboptimal algorithm which maximizes the number of active users satisfying a required SINR and
some power constraints. The algorithm is flexible for any linear power constraint. We consider
two sorts of constraints on power: (i) individual constraints on the power of all users, and (ii)
constraint on the total power of all users. Simulation results show that the proposed algorithm
outperforms the alternative schemes in both cases in terms of the number of active users.

The rest of the paper is organized as follows: In Section II, the system model and problem
formulation are presented. The SINR region for this system is characterized in Section Ill.
Section 1V is dedicated to the systems with time-varying channels. The removal algorithms are
proposed in Section V. Finally, the paper is concluded in Section VI.

Notation: All boldface letters indicate column vectors (lower case) or matrices (upper case).
x;; andx; represent the entryi, j) and column: of the matrixX, respectively. A matrixX,, .,
is callednon-negativeand denoted byX > 0 if z;; >0 Vie {l,...,n} andj € {1,...,m}.

Also, X > Y is equivalent toX — Y > 0, whereX,Y and 0 are non-negative matrices of
compatible dimensions [21let(X), Tr(X), X', and|X| denote the determinant, the trace, the
transpose, and the Euclidean norm of the maXixrespectivelyI is an identity matrix with
compatible size® represents the Kronecker product operator. diags a diagonal matrix whose

main diagonal isx. We define the reciprocal of a polynomiglz) of degreem asa™q (). For
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a matrix X, a vectory, and a set of indice§, the matrixZ = 4(X,y,S) is defined as

x;+y j€ES

X; otherwise
In other words, the function)(X,y,S), addsy to the columns ofX, whose index is in set
S. In addition, X*" is the matrixX whosei* column and row is removed. We use a similar

notation for a vector whosé”" element is removed.

[I. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a communication systemrotransmitter-receiver pairs, where each transmitter
aims to send data to its corresponding receiver. Each pair is nariiekl @sel). The channels
between the transmitter and receiver terminals are represented by the gain @Gairjy;;],. <.
whereg;; is the attenuation of the power from transmitfeto receiver:. This attenuation can
be the result of fading, shadowing, or the processing gain of the CDMA system. A white
Gaussian noise with zero mean and variangeis added to each signal at the receiver
terminal. The receivers are conventional receivers in the sense that each receiver only decodes its
corresponding data and multiuser detection is not employed. Assuming the transmitters utilize
Gaussian codebooks, the distribution of the interference will be Gaussian, as well. Hence, the

SINR of useri denoted byy; is obtained as

9iiDi .
Vi = = , Vie{l,...,n}, (1)
o} + zj;l 9ijDj
jF#i

where p; is the power of transmittet. In practice, the power vectgs = [p;],.x1 iS Subject to

the trivial constraint

p=>0, 2)
and a set of constraints in the form of
Zpigpgmu m:17"'7M (3)
1€Qm
where(2,, C {1,...,n} andM is the number of constraints. Note that the scenarios of individual

power constraints and total power constraints can be considered as special cases of (3). A power

vector is said to bedmissibleif it satisfies the power constraints (2) and (3).
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1=(0.98,0.2)
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Fig. 1. The boundary of SINR Region for two-interfering links

Proposition 1 For any two power vectorp and p that satisfy0 < p < p, if p is admissible

then, p is admissible as well.

Proof: The proof follows from the fact that in the power constraints (3), all powsgrs

appear with non-negative coefficients. [ |

The main goal is to find the feasible SINR region, i.e. the set of all pdints - - , +,,) which
are obtained from all admissible power vectptsTo this end, we try to find the boundary points
of the feasible region. Any boundary point of the feasible region is the farthest feasible point
from the origin in a directior > 0. If we can obtain such a point for an arbitragy then the
whole boundary can be obtained by changingo different directions (see Fig. 1). As a result,
the boundary of the SINR region is parametrically described in terms of the pargmeter

By introducing a new variable and for a unit-length vectog, the above discussion can be
formulated as the problem of finding the largessuch thatyu is feasible. This problem can

be written as

max
b,y
s.t. Vi = MK, i:17"'7n
(4)
p=>0
Zpi§ﬁ9m7 m:1>"'7M
1€
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The numerical solution of this problem can be obtained through geometric programming [22],

[23]; however, we propose a different approach which leads to a closed-form solution.

[Il. SINR REGION CHARACTERIZATION

The purpose of this section is to obtain a closed form expression for the boundary points of
the feasible SINR region by using problem (4) and the discussion preceding it. First, we consider

a special case, where there is only one power constraint involved in the problem, i.e.,

max 7y
p7’y
st v = Wiy, 1=1,---,n
)
p=>0
sz S ﬁg?
1€Q)
whereQ2 C {1,...,n}. Later, we show how to obtain the solution of (4) by utilizing the solution
of (5).
By defining the normalized gain matrixX as
At
A = [aij]nxna Q5 = Gis (6)
0 i=y
the constrainty; = u;y in (5) is rewritten as
D —q, Vie{l,...,)n}, 7)
M+ 2251 HitisDj
where
2
Hi05
ni=—", M= [Ninx1. (8)
Gii
After reformulating (7) in a matrix form, we have
1 :
<§P—m%OOA)p=n. 9)

This is a system of linear equationsn The objective is to find the maximum such that the
solution for this system of linear equations satisfies the power constraints of (5).
When there is no constraint on the power vector (other than the trivial constragmt-00),

it is a well-known result [12] that an SINR is achievable if and only if

1
0<y< .
=7 X (diag(p)A)

(10)
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where)\*(-) is the Perron-Frobenius eigenvalue the associated matrix [21]. We aim to obtain
the range of achievable SINRs under the additional constpaint, p; < p,,.
Let us defineF as
F =1 — ~ydiag(pu)A. (12)

Then, the system of linear equations in (9) is reformulated as

Fp =, (12)

wheren is defined in (8). According to the Cramer’s rule, the solution to (12) is obtained by
 det(HW)

Pi= et (F)

where HY) = ¢ (F,yn —f;, {i}). Note that the numerator and the denominator in (13) are

(13)

polynomials iny. Therefore, the constraidt,, ., p; < p, can be written as
>ico det(H®)

det(F)
Defining u,(y) = P, det(F) — >, .o det(H?) and f(y) = det(F), the inequality (14) is

equivalent to

< Py (14)

u, (7)
f()

Letv(u,) andv(f) denote the smallest positive real simple rootgf~) andf(v), respectively.

> 0. (15)

To proceed with the problem of finding the feasible range,ofve should first find these values.
The following lemma states one of the properties of matrices that will help us through the

problem analysis.

X; #Yy; J=1i then
X;j=y; J#t

Lemma 2 If square matricesX and Y differ only in column, i.e.,
det (X) + det (Y) = det (¢ (X, yi, {i}))
Lemma 3 The polynomialu, () can be described as

1, (7) = B, det (zp <F —;—",Q))

1See Theorem 4 for the definition of the Perron-Frobenius eigenvalue.
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Proof: Without loss of generality, we assume tifat= {1, ..., k}, i.e., the firstk users are

subject to the total power constraint. From the definitioniofy) and H®, we have
k
u,(v) =7, (det (F) — " det (ﬂ@)) 7 (16)
=1

whereH® = ¢ (F, m_ f;, {z’}>. Equation (16) is rewritten as
b

Q

u,(v) =7, (det (F) — det (ﬂ<1>> - i det (H<>>> . (17)

SinceF and H® are the same except for the first column, using Lemma 2 , we have

det (F) — det (ﬂ<1>) — det (w (F —;—", {1})). (18)

Q

On the other hand, using the fact that adding a multiple of a column to another does not change

the value of the determinant, we have

det (ﬂ@) — det (¢ (ﬂ@), N T 1})) . (19)
Then, using (18) and (19) and regardiﬁﬁ) = Z—n, we can rewrite (17) as
w0 =, (de (v (720 (1)) (20)

—gdet (w (ﬂ“%—%,ﬂ,...,i—@))) .

SinceF and H® are the same except for the columnwe can easily see that the matrices
v <F, —i—n,{l,...,i — 1}) and v <ﬂ(i), —Z—n,{l,...,z’ — 1}) are the same except for the
Dq

det (¢ <F,_;_n7{1avz_1})>

it" column. Therefore,
— det (w ( @ I i 1}))
b

— det (¢ (F,—%,{l,...,i})).

By successively applying this procedure to (20), the claim is proved. [ |
The representation of, () in Lemma 3 lends itself to finding the smallest positive simple root

of u, (). To this end, we need the Perron-Frobenius theorem for irreducible matrices. A square
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non-negative matriXX is said to be irreducible if for every pair; of its index set, there exists
a positive integern = m(i, j) such thatrET) > 0, wherexg.”) is the (i, )" element ofX™
[21].

Theorem 4 [21] (The Perron-Frobenius Theorem for irreducible matrices) SuppKses an
m X m irreducible non-negative matrix. Then there exists an eigenval(X) (Perron-Frobenius
eigenvalue or PF-eigenvalue) such that

(i) A*(X)>0anditis real.

(i) M(X) > |AMX)| for any eigenvalue\(X) # \*(X).
(i) If X >Y >0, then\*(X) > |A(Y)| for any eigenvalue oY .

(iv) A*(X) is a simple root of the characteristic polynomial Xf

Lemma 5 The smallest positive root of, () and f(v), respectively, are

) 1
) = — (v (dema. 20) )
o m. (21)

Proof: From Lemma 3, we have

u,(y) = p,, det (1/) (F, —;—n, Q))

—p, det (w (I — ~diag(p)A, —;—”’, 9))

Q

1
Y P,

1
= p_y" det (;I — (diag(u)A, 1—71’ Q) ) .

Q

Consequently}lﬂ_ﬂ is the reciprocal of the characteristic ponnomiah/o(diag(u)A, _ﬂ, Q)

Q Q

Therefore, the roots of () are equal to the inverse of the eigenvalues ﬁ‘diag(u)A, ]_91, Q.
Assuming all channel gaing;; and all weighting coefficientg, are positive, it can be verified
that all elements of)? | diag(u)A, Z_?ﬂ’ Q2| are positive. This means ( diag(pu)A, ]_)Q, Q)

is an irreducible matrix. Hence, acgording to Theorem 4, the PF-eigenvalue of this matrix is

real and positive and has the largest norm among all eigenvalues. Also, it is a simple root of
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the characteristic polynomial of the aforementioned matrix. Therefore, the inverse of the PF-
eigenvalue ofy (diag(p,)A, T?E’Q) gives the smallest positive simple root of (y) and the
first part of the claim is prov%d.

To find v(f), note that

f() = det (F) = det (I — ydiag(p)A)

=" det (%1 — diag(u)A> , (22)

where the definition ofF in (11) has been used. Therefor;) is the reciprocal of the
characteristic polynomial ofliag(xs)A. Hence, with the same argument as foy(y), it can
be shown that the inverse of the PF-eigenvalueliaf () A gives the smallest positive simple

root of f(+y). This completes the proof. u

Lemma 6 The smallest positive root of,(~) and f(y) satisfyv(u,,) < v(f).

Proof: Since v (diag(u)A,_ﬂ,Q) > diag(u)A > 0 and both are irreducible, using
P

Theorem 4, we have ;

A" (w (diag(u)A, pﬂ, Q)) > \*(diag(p)A).

Q

According to Lemma 5, this inequality can be rewritten as

o)~ T (@3)

This completes the proof. [ |

Theorem 7 In a system ofu interfering links and the normalized gain matriX, under the
power constraints,
p>0, > pi<p, QC{l...n}
ieQ
an SINRy is feasible if and only if
1

A+ (w (diag(u)A, ]%, Q)) |

To prove the theorem, we need the following lemma.

0<~<

(24)
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Lemma 8 Consider two SINR vectorg and <, which correspond to the power vectgssand

p, respectively. A necessary condition for the inequalitg < to hold is thatp < p.

Proof: See the Appendix. [ |

Proof of Theorem 7:According to Lemma 5, (24) is equivalent to
0 <7y <v(uy). (25)

Also, recall that the total power constraint is equivalent to (15).

For the achievability part, we should show that anpysatisfying (25) corresponds to an
admissible power vector. Recall that the condition for the positivity of the power vector is given
in (10) and the total power constraint is equivalent to (15). The positivity constraint is guaranteed
due to the fact that the right-hand-side of (10) equdl§ andv(u,) < v(f) (see Lemma 6).

To prove that inequality (15) holds, note thaf(0) > 0 andf(0) > 0. Sincev(u,) < v(f) (see
Lemma 6), both polynomials, (~) andf(y) are non-negative foy < v(u,), which means their
ratio is non-negative as well. This completes the proof for achievability.

For the converse, we should show that anyy > v(u,), is not feasible. From (10), the
constraintp > 0 guarantees that > v(f) is not feasible. If/(u,) = v(f), the proof is complete.

For the case that(u,) < v(f), we should prove that the values 9fin the rangev(u,) < v <
v(f) are not feasible. First, note th?ﬁi—;) is a continuous function of andv(u,,) is its smallest

positive simple root. Hence, there existsean 0, such that for(u,) < v < v(u,) +¢, we have

U, ()
f(v)

assume by contradiction thatjasatisfyingv(u,) + ¢ < 4 < v(f) is achievable and corresponds

< 0 and the constraint (15) is violated. Hence, these valuesare not achievable. Now,

to the power vectop. From (10), anyy that satisfiesy < 4, corresponds to a power vector

p > 0. Due to Lemma 8, we havp < p. Sincep is an admissible power vector, according

to Proposition 1p is admissible as well. This means any~y < 4, is achievable. This is in

contradiction to the fact that(u,) < v < v(u,) + € is not achievable. [
Theorem 7 describes the feasible SINR region when there is only one power constraint as

shown in problem (5). The next theorem shows how to utilize the result of Theorem 7 to obtain

the solution of the original problem (4), where multiple power constraints exist.

Theorem 9 Assumey* is the solution of(4) and ~, is the solution of the same problem when
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only themth power constraint of(4) exists. Then, we have
~* = min~y,. (26)
Proof: For a general maximization problem witli constraints, it is obvious that the solution
is at most equal to the minimum of the solutions of the same problems with single constraints,
i.e.

7" < min-,,. (27)

By definingm* = arg min,, v,,, (27) can be rewritten as

V< Ve (28)
Assumep’, is the power vector corresponding ¢, for all m € {1, ---, M}. According to
Lemma 8, we have:,. < p;, for all m € {1, ---, M}. Hence,p},. is an admissible power

vector for problem (4). As a result, we have

YA (29)

The theorem is proved by comparing (28) and (29). [ |
In the common scenario when the power of individual users and the total power are constrained,

Theorems 7 and 9 yield the following result on the maximum achievable SINR .

Corollary 10 The maximum achievabtein (4), where power vector is subject to the following

constraints,

p>0, p<P, > p<h
=1

is equal to
* = min ! )
It (v <diag<u>A,%,{1,...,n}))
1

Y (w (ahag( A {n}
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20

L = \
18 : - B

161 : .

Fig. 2. The SINR region for2 interfering links with the following constraints on the power, #: > 0, p2 > 0,
Bipr+p2<pPi,p1 20,p22>20C:0<p1 <p1,p22>0,D:0<py < pa,p1 >0

The boundary of the SINR region in any direction can be obtained by chogpsiagcordingly.
Due to the explicit relationship between the SINR and the rate in Gaussian channels, obtaining
the SINR region in these channels amounts to the rate region characterization. As an example,
Fig. 2 and Fig. 3, respectively, depict the SINR region and the rate region of a system with the

gain matrixG as
0.6791 0.0999

0.0411 0.6864

while the power of individual users and the total power are upper-boundéed Hy0.8, p, =

1, p,=14,ando}=03=10".

IV. TIME-VARYING CHANNEL

So far, we have assumed that the channel gains are fixed with time. However, in practice,
channel gains vary with time due to the users movement or environment changes.

In this section, we consider a communication system witinterfering links whose channel
gain matrix is randomly selected from a finite 4&&,, ..., G} with probabilitiesp,,...,p,,
respectively. The goal is to characterize the SINR regfomvhich is achievable regardless of

the channel state.
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Fig. 3. The rate region for &-interfering-link system with the following constraints on the power,pA:> 0,

P2>0,Bipr +p2 <P, p1 20, p2>0C:0<p; <P1,p22>0,D:0<py <Pa,p1 >0

If the transmitters are subject to instantaneous power constraints, as in the previous section, the
achievable SINR region is the intersection of the achievable regions in each channel realization.

In other words, assuming,; denotes the achievable region in stjteve have

F=x (30)
=1

A more common scenario for time-varying channels is the case where the average transmit
powers are constrained. In this case, the transmitters enjoy the flexibility of using less power
when the channel conditions are good and save the power for unfavorable channel states. Fig. 4
provides a comparison for the two scenarios with an example of a system with two interfering
links. It is observed that the feasible region in the instantaneous power constrained scenario is
a subset of the feasible region in the average power constrained scenario.

In [16], it is shown that in a point-to-point system, the maximaeato-outage SINKs equal

to L, wherep is the average transmit signal power anpds the power gain of the channel

Ei[1/gl]
in the /th realization. In accordance with the concept of zero-outage SINR, in this section we
consider theero-outage SINR regiatefined as the set of SINRs which are achievable regardless
of the channel realization. The objective is to characterize the zero-outage SINR region when we

haven interfering links with finite number of channel realizations and the average transmitter
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= = =realization 1
----- realization 2
=— zero-outage| |

SINR2

I I
15 2 25
SINR1

Fig. 4. The SINR region for a two-interfering-link system = 0.3, p, =0.7, 7, =1

powers are subject to some linear constraints. Following the same discussions as in the previous
sections, it is concluded that this problem is equivalent to finding the maximumhich is
achievable by all users in all channel states, while the average power of the users are constrained.

In mathematical notations, we have the following optimization problem
maxpm,7 ¥
s.t. Vil > s Vi, l, 1€{l,....,n}, le{l,...,L}
pii >0, Vi, l, ie{l,...,n}, le{l,...,L}
E [Z@GQ pi,l] <Py
where~, ; andp; ; are respectively the SINR and the power of transmittavhen the channel

(31)

gain matrix isG,. Note that the constraint; ; > ;v guarantees that the SINR of users
greater thanu;v, regardless of the channel stétdf there were more power constraints in (31),
similar to the previous section, the solution would be equal to the minimum solution of the same
problems with separate single power constraints. Hence, in this section we solely concentrate
on the above problem with a single power constraint.

We define an expanded system includinfj users with block diagonal matricés and A
as the channel gain matrix and the normalized gain matrix, respectivelyALetenote the
normalized gain matrix in the statee {1,...,L}. MatricesG and A are block diagonal

matrices, where th&" submatrix on the diagonal i€&; and A;, respectively. It is clear that
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block diagonal format of these matrices reflects the fact that there is no interference between
the virtual links associated with different states. In the new system, 1), denotes the power

of transmitteri, when the channel gain matrix i&,;. Similar to the previous discussions, the
requirements on these links form a system of linear equations with the following formulation in

a matrix form,

1 . ~
(;IannL —diag(1rx1 ® M)A> p=n, (32)

where

2
i0; .
Mit(1—tyn = a cie{l,....n} le{l,... L}
Jit+(1-1)n,i+(1-1)n

Similar to (11), we defind" as

1 _ s
F = ;InLXnL — d1ag(1LX1 (24 pl,)A

Then, we have
Fp=m.

Using Cramer’s rule, we have

det (H(i+(l—1)n))
Pitr(i-1)n = det(F) )

whereH (=0 = o) (F,vyn — £, 4_1)n, {i + ({ — 1)n}). The average of the total power of the

users in(2 is equivalent to

sz+(l 1) ] ZPZZPHZ n

1€Q =1 1€Q

det (H(H-(l—l)n))

=2m) det(F)

=1 1€Q)

- e Zmzdet ), (33)

Based on (33), we define

u,(7) = p, det(F Zpl Zdet g0

= 1€

and
f(y) = det(F).
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Therefore, the constraint iy, [, pi,1] <D, is equivalent to

ug, ()
i) =

Like before, it is easy to show that the maximum achievable SINR satisfying the power constraints
of (31) is

7 = min {v(f), v(u,)}. (34)

To simplify u, (), we have

u,(7) =P, det(F Zpl > det (HOEFIM)

=1 1€Q

- (det Y et (s )),

=1 ieQ

whereH(+(=1n) js H+(0-Dn) whose column + (I — 1)n is multiplied by 2. Using the same
p

Q

procedure as before, we obtain
u,(v) = p, det (F — D),

where

D= Zw(anL,pg”{ (I —1)n :ieQ})

Q
According to Theorem 4, it is easy to see that
1
v(u,) = T :
A (djag(lel oA+ v (oannL, ’;_)l—", {it+(-Dn:ic Q}))

=1 Q2

and
1

X (ding(1.0 @ wA)

Therefore, using Theorem 4 and equation (34), we have the following theorem.

v(f) =

Theorem 11 The maximum achievabtein a time-varying communication system withnter-

fering links and probability vectop, ,.,, with the power constraints
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pii >0, Vi, l, ie{l,....,n}, le{l,...,L}

sz‘,l] < Py

1€Q

E,

is equal to

. 1
V= :

L
A <diag(1Lx1 oA +> Y (oannL, ;—", {i+(-1n:ic Q}))
=1

Q

whereA is annL x nL block diagonal matrix whos&" diagonal submatrix is the normalized

gain matrix at the state.

V. REMOVAL ALGORITHM

The solution of problem 4 fot, = s = ... = p,, corresponds to a specific point on the SINR
region, where all users have the same SINR. Sometimes the required SINR is above this point
and accordingly it is not achievable. Therefore, like any opportunistic scheduling problem, a
subset of users should be serviced and the rest are serviced in a later time-slot when the channel
gains are changed. This approach exploits the channel variations and schedules the users that
are in a better channel condition for transmission to improve the performance.

To find the largest set of active users satisfying the SINR requirement, we have to examine all
the combinations of the users and select a feasible subset with the maximum cardinality. Clearly,
this scheme is computationally exponential. As a suboptimum alternative scheme, we propose a
greedy removal algorithm. The main idea behind the presented algorithm is as follows. At each
step, if the active users do not satisfy the required SINR, one user is removed. This user is the
one which provides the highest increase in the maximum achievable SINR if it is removed. We
call this user theworst user The proposed algorithm is presented for different sorts of power
constraints.

According to (10) and Theorem 7, in general, the maximums equal to the inverse of the
PF-eigenvalue of a matriX, i.e., v* = L In a system with a large number of users,

A (X)
computing the PF-eigenvalue is computationally extensive. In this case, it is beneficial to use
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an approximation of the PF-eigenvalue as follows. According to [24], the eigenvalues of the
matricesX? and X are related as
A(XT) = N(X).

Furthermore, we have

Tr(X9) =) N,

where); = \;(X) is theith eigenvalue of the matriX. Since the PF-eigenvalue of an irreducible
matrix has the largest norm among all the eigenvalues of that matrix [24], we can approximate
A*(X) with the T'r(X9), i.e., \*Y(X) =~ T'r(X?). This approximation is stronger if the power
is larger. However, the simulation results show that 2 yields a very good approximation of
the exact value in our problem. Therefore, we use

v \/T:(Xz) ¢
as an approximate value for. In what follows, we investigate the problem of user removal for

two more common cases of power constraints and present an efficient algorithm for each case.

Case One: Constraints on the Power of Individual Transmitters

Assume there is a constraint on the power of individual transmitters. We design an efficient
suboptimal algorithm to find the maximum cardinality subset of the users satisfying a minimum
SINR requirement. We define the matiix (A, _ﬂ, {j}) as the matrix) (A, _ﬂ, {j}) whose

p; p;

J J
it" column and row are removed. Therefore, the worst link is

A~

— argmax ", (36)

where

*5 7

) 1
v = min

T (o)

is the maximum achievable SINR when uses removed. Equation (37) is obtained from (26).

(37)

The users are removed one by one based on (36) until all of the active users satisfy the rate

requirement. We call this algorithm tieemoval Algorithm 1I-A
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To reduce the complexity of this algorithm, which is due to the calculation of the PF-

eigenvalue, we use the following approximation scheme. According to (35) and (37), we have

. 1
/A min

i \/Tr (w”( = ,{J}))

By some straightforward calculations, this approximation can be rewritten as
_ 1

*7

~* & min

J w/wij7

*1

where

(_—j> + Z Z aga + 2 @G]k JFi

- k=1 =1
Wij ki I£i iZi

According to [25], equation (36) can be simplified to

= arg min max Wy .
7

Based on this result, the following algorithm is developed when the required SINR.is
Removal Algorithm 11-B
1) SetA asin (6),p=[p,], n=n, R=0, andv =[1,2,...,n].
2) Find the maximum achievable SINR as

1
~v* = min
JEV
(o)
3) If v* >, v is the set of active users, stop.
4) Update the coefficients);; as

<_—j) + Z Z ap gy, + 2 %agk JF

Wij = Vi i
0 j=1
5) Determine the worst link as= arg min max W
T 7:_ j o e
6) SetR — RU{v;}, A— A" ,v—vVv' ,p—DP ,n«n" ,andm < m—1, and go to

step 2.

January 1, 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 22

Case Two: Total Transmit Power Constraint

When the total power is constrained py the worst user is determined as

A 1
1 = argmax

1 A*(w <A,%,{1,2,...,n}))

We call this algorithm theRemoval Algorithm 1lI-A Similar to the previous discussions, we

(38)

propose the following low-complexity algorithm for the user removal with total power constraint
(see [25] for detalils) .
Removal Algorithm 111-B
1) SetA asin (6),m =n, R=¢g, andv =[1,2,...,n].
2) Find the maximum achievable SINR as
1

t A* (w (A,%,{L...,m}))

3) If v* > 4, v Is the set of active users, stop.

*

4) Update the coefficients); as

= a2y agay + 25 0y 423 Ya, +2—Z"j ( )
—1 pt 1 1 pt pt
J= J= J=
j7i J#z
5) Determine the worst link as= arg max w;.

6) SetR «— RU{v:}, A «— AT, vevi , p—n,m<m-—1, and go to step 2.

A. Numerical Results

The simulation results are presented for a Rayleigh fading channehwtl. For the results
in a cellular network see [25]. The parametegssfollow an exponential distribution with mean
and variance one for the forward gains, and m&@r? and variancel0—* for the cross gains.

We defineOutage Probabilityas the ratio between the number of the inactive users to the
total number of the users. This probability shows the percentage of the users that fail to attain
the required SINR. We use this function as a metric to compare different algorithms, as it is
used in [13], [26].

In [19], a number of removal algorithms when the power of transmitters are individually

constrained are proposed. We selected centralized GRN-DCPC to compare it with our results
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Fig. 5. Constraints on the Power of Individual Transmitters? = 10=2, p, = 1w Vi

since according to [19], it outperforms the other presented algorithms in that work. The simulation
results in Fig. 5 show a significant improvement in the outage probability of the algorithms II-A
and II-B compared to GRN-DCPC. As depicted in Fig. 6, when the total power is bounded, the
performance of algorithms IlI-A and IlI-B is very close to the optimum result (which is obtained
by exhaustive search). To the best of our knowledge, there are no alternative algorithms for the

case that the total power is bounded.

VI. CONCLUSION

In this paper, a communication system includingnterfering AWGN links is considered.
Each transmitter uses a Gaussian codebook and each receiver only decodes the data of the
corresponding transmitter. We have obtained a closed-form solution for the maximum achievable
SINR in such a system, utilizing the Perron-Frobenious theorem, when the sum-power on any
subset of the users is constrained. This result leads to characterizing the boundary of SINR
region for the system. In addition, we consider a time-varying channel where channel gains are
selected randomly from a finite set with a certain probability and the average power of the users
are constrained linearly. We obtain the zero-outage SINR region for such a system. In addition,
we consider the scenario in which the required SINR is out of the SINR region. We develop a

user removal algorithm which maximizes the number of users which are active simultaneously
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Fig. 6. Constraint on the Total Power,? = 1073 Vi, p, = 1w

and satisfy the SINR requirement. This algorithm is compared with other alternatives and it is

shown that it outperforms the other ones.

APPENDIX

PROOF OFLEMMA 8

First, we need the following lemma.

Lemma 12 Let p and p be two power vectors with the corresponding SINR vectprand
4, respectively. Consider the non-empty index®et {1, --- , n}. Assume the power vectors
satisfy
pi=<ip, Viel
Di = Di, VielIe°,

(39)

wherea > 1 is a constant and® = {1, --- , n} \ Z. Then, we have

It is noteworthy that the special case®f= {1, --- , n} corresponds to the case tiat= ép.

In this case, we havé < ~.
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Proof: From the definition of SINR in (1), for any € Z, we have

A o= 9iiDi
' o7 4 Y i=19iD;
i

GiiDi
07 + D jere 9iiPj + Zj‘fg 9iiD;
jF#i

(39) égiipi
07+ 3 jeze GiiPj + a Zasg 9iiD;
j#i
9iiDi
07 + 3 jeze 9iPj + Zj)if, 9iip;
j T
= Y

(41)

where the last inequality is because- 1 and the right-hand-side of (41) is a decreasing function
of a. [ |

Now, we are ready to prove Lemma 8. Given tha¥ 4, we should prove that the index set
J={i:1<i<n,p; <p;}is empty. To this end, we show thatjf is not empty then, there
exists some € J for which 4; < ~;; this is a contradiction tey < 4.

For the special case that and p satisfy condition (39) (withZz = ), Lemma 12 can be
applied and it is concluded that < ~; for all - € 7. This completes the proof.

For the case that condition (39) is not satisfied, we prove the claim by inductid/ pn
(cardinality of 7).

For |7| = 1, only one component, say of p is less than the corresponding componenpin
Thus, we have); < v;. Now, we should show that if our claim is true for any| € {1, --- , ¢},
ie., if

1<|T <t = Fied: %<y, (42)

then, it is true for|J| = ¢+ 1 as well, i.e.,

T =(+1 = 3FieJ: %<y (43)
Let us define
o = min {&} (44)
USVAR W]

and choose a new power veciet = o*p with the corresponding SINR vecter. According to

the definition ofp*, for the corresponding index sgt* = {;j : 1 < j < n, p; < p;} itis clear
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that | 7*| < |J|, which means the cardinality of * is at most equal td. Also, sincep and

p do not satisfy condition (39)7* is not empty. By utilizing the assumption of induction it is

concluded that there exists somiec J* for which 77 < ~;. On the other hand, since” > 1,

p* andp satisfy condition (39) witliZ = {1, --- , n}. According to Lemma 127; < ~; for all
j € {1, ---, n}. Hence, it is concluded thagt < ~; for somej € J* and the proof is complete.
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