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Abstract

In this paper, a communication system includingn interfering additive white Gaussian noise

(AWGN) links is considered. Each transmitter uses a Gaussian codebook and each receiver only decodes

the data of the corresponding transmitter. For the case that the transmit powers are subject to arbitrary

linear constraints, a closed-form expression for the boundary points of the signal-to-interference-plus-

noise-ratio (SINR) region is obtained. Moreover, when the channels are time-varying and the average

powers are constrained, the zero-outage SINR region of the system is derived. In addition, a scenario

where the demanded SINR of the users is out of the SINR region is considered. A common approach is

to remove a subset of the users such that the demanded SINR can be provided for the remaining users;

the removed users are serviced in a later time slot. With the aim of maximizing the number of serviced

users in each time slot, a sub-optimal algorithm is developed, which outperforms the other alternatives.

Index Terms

SINR region, rate region, maximum achievable SINR, time-varying channel, zero-outage SINR

region, user removal.

I. I NTRODUCTION

A collection of transmitter-receiver pairs operating in a shared medium constitute a system

of interfering communication links. Practical examples of such configurations include cellular
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networks, code division multiple access (CDMA), and digital subscriber line (DSL) systems.

Due to the complexity of such structures, usually some simplifying assumptions are used in the

design and analysis of such configurations. A widely used assumption is to consider Gaussian

signal transmission and treat the interference as AWGN. In this case, the Shannon’s capacity

formula for AWGN channels is in effect. We follow this assumption throughout this paper.

The systems including interfering links have been the subject of research for many years. Based

on the network structure, these systems have been approached in different ways, e.g. by power

control [1], feasible region description [2]–[7], bandwidth allocation [8], transmission scheduling

[9], routing [10], base station selection [11], etc. In this work, we are mainly concerned with

characterizing the feasible SINR region of such systems when the transmission powers can take

any value within some linear constraints. According to our assumption, there is a one-to-one

logarithmic relation between the rate and the SINR of the users. Hence, by describing the feasible

SINR region, we are describing the feasible rate region, as well.

In general, a feasible region for interfering links is defined based on a network parameter

such as SINR, rate, capacity, processing gain, etc. In [2], it is shown that the feasible processing

gain region when the power is unbounded is convex. Note that for a constant bandwidth, the

processing gain is inversely proportional to the rate. Some topological properties of the mentioned

feasible region are investigated in [3] for the cases when there are constraints on the power of

individual users and when there is no constraint on the power. It is shown that the boundary of

the capacity region with one user’s power fixed and the rest unbounded is a shift of the boundary

of some capacity region with modified parameters, but unlimited power. However, this result is

not in a closed form and cannot be extended to the other forms of power constraints.

The study of the feasible SINR region shows that it is not convex in general [4], [5]. In [6], it is

shown that in the case of unlimited power, the feasible SINR region is log-convex. The authors

in [2] also consider a CDMA system without power constraints, and show that the feasible

inverse-SINR region is convex. In [4], it is proved that for a given quality of service (QoS)

parameter, the corresponding feasible region is convex, if the SINR is a log-convex function

of that QoS parameter. Reference [7] shows that under a total power constraint, the infeasible

SINR region is not convex.

In this paper, we consider the feasible SINR region and describe it by analytically obtaining its

boundary points. Our approach is to find the farthest point of the feasible SINR region from origin
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in a given direction. This makes the problem of SINR region characterization closely related

to the problem of maximizing the minimum SINR. There has been some effort to evaluate the

maximum achievable SINR in a system of interfering links. In [12], the maximum achievable

SINR of a system withno constrainton the power is expressed in terms of the Perron-Frobenius

(PF) eigenvalue of a non-negative matrix. Then, this expression is utilized to develop an SINR-

balancing scheme for satellite networks. This formulation for the maximum achievable SINR is

deployed in many other wireless communication applications such as [13], [14].

It is not a straightforward task to generalize the elegant result of [12] for the realistic scenario

when the transmit powers are constrained. As a result, [12] remained as the only work of this kind

for many years. Recently, for a special case when thetotal poweris constrained, the maximum

achievable SINR is obtained based on the PF-eigenvalue of an(n + 1) × (n + 1) primitive

non-negative matrix [15]. In this paper, we adopt an approach that enables us to obtain closed

form expressions for the maximum achievable SINR in systems of interfering links with power

constraints. Our approach is general in the sense that it can be applied to systems with various

number of arbitrary linear power constraints. Moreover, this result yields a closed-form solution

for the SINR region of the systems with power constraints, in terms of the PF-eigenvalue of an

n× n irreducible matrix.

Later, we apply the mentioned approach to a time-varying system where the channel gains are

selected from a finite set with certain probabilities, and the average power of users are subject

to some linear constraints. For this system, we obtain the SINR region which is achievable

regardless of the channel realizations. This region is known as thezero-outage SINR region

[16], [17, Page 111-112]. In [16], the optimal zero-outage SINR for a point-to-point channel is

obtained. Our result implements the same concept when we haven interfering links with finite

number of channel realizations.

It is likely in practical communication systems that the required SINR of the users is a point

out of the feasible SINR region. In this case, one possible solution is to remove some of the

users such that the required SINR of the remaining users falls in the feasible region of those

users; the removed users are serviced in the subsequent time slots when their channel is in a

better condition. This approach is inherent to any opportunistic scheduling problem [9]. With

this approach, it is desirable to find a feasible subset of users (i.e., a subset of users which

satisfy the required SINR) with maximum cardinality [18]. This problem is claimed to be NP-
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complete [19]. In the literature, some heuristic algorithms are presented for this problem. In [13],

a stepwise removal algorithm (SRA) has been proposed for the case that the transmit power

is unbounded. In [20], another algorithm named as stepwise-maximum-interference-removal-

algorithm (SMIRA) is proposed, and it is shown that this algorithm outperforms SRA. For the

systems with constraint on the power of the individual transmitters, an algorithm known as

gradually-removal-distributed-constrained-power-control (GRX-DCPC) is proposed in [19]. This

algorithm is presented in the forms of centralized, distributed, restricted, and non-restricted user

selection. In the restricted algorithm known as GRR-DCPC, the user to be removed is selected

from the users attaining the maximum power in the power updating procedure. Whereas, in the

non-restricted algorithm (GRN-DCPC), the user to be removed is selected from all active users.

The simulation results show that GRN-DCPC (centralized non-restricted algorithm) outperforms

other mentioned schemes in [19].

In this paper, we exploit the obtained results on the maximum achievable SINR, to develop a

suboptimal algorithm which maximizes the number of active users satisfying a required SINR and

some power constraints. The algorithm is flexible for any linear power constraint. We consider

two sorts of constraints on power: (i) individual constraints on the power of all users, and (ii)

constraint on the total power of all users. Simulation results show that the proposed algorithm

outperforms the alternative schemes in both cases in terms of the number of active users.

The rest of the paper is organized as follows: In Section II, the system model and problem

formulation are presented. The SINR region for this system is characterized in Section III.

Section IV is dedicated to the systems with time-varying channels. The removal algorithms are

proposed in Section V. Finally, the paper is concluded in Section VI.

Notation: All boldface letters indicate column vectors (lower case) or matrices (upper case).

xij andxi represent the entry(i, j) and columni of the matrixX, respectively. A matrixXn×m

is callednon-negativeand denoted byX ≥ 0 if xij ≥ 0 ∀i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
Also, X ≥ Y is equivalent toX − Y ≥ 0, whereX,Y and 0 are non-negative matrices of

compatible dimensions [21].det(X), Tr(X), X′, and |X| denote the determinant, the trace, the

transpose, and the Euclidean norm of the matrixX, respectively.I is an identity matrix with

compatible size.⊗ represents the Kronecker product operator. diag(x) is a diagonal matrix whose

main diagonal isx. We define the reciprocal of a polynomialq(x) of degreem asxmq
(

1
x

)
. For
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a matrixX, a vectory, and a set of indicesS, the matrixZ = ψ(X,y,S) is defined as

zj =





xj + y j ∈ S
xj otherwise

In other words, the functionψ(X,y,S), addsy to the columns ofX, whose index is in set

S. In addition,Xi− is the matrixX whoseith column and row is removed. We use a similar

notation for a vector whoseith element is removed.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a communication system ofn transmitter-receiver pairs, where each transmitter

aims to send data to its corresponding receiver. Each pair is named alink (user). The channels

between the transmitter and receiver terminals are represented by the gain matrixG = [gij]n×n

wheregij is the attenuation of the power from transmitterj to receiveri. This attenuation can

be the result of fading, shadowing, or the processing gain of the CDMA system. A white

Gaussian noise with zero mean and varianceσ2
i is added to each signal at the receiveri

terminal. The receivers are conventional receivers in the sense that each receiver only decodes its

corresponding data and multiuser detection is not employed. Assuming the transmitters utilize

Gaussian codebooks, the distribution of the interference will be Gaussian, as well. Hence, the

SINR of useri denoted byγi is obtained as

γi =
giipi

σ2
i +

∑n
j=1
j 6=i

gijpj

, ∀i ∈ {1, . . . , n}, (1)

wherepi is the power of transmitteri. In practice, the power vectorp = [pi]n×1 is subject to

the trivial constraint

p ≥ 0, (2)

and a set of constraints in the form of

∑
i∈Ωm

pi ≤ p
Ωm

, m = 1, · · · , M (3)

whereΩm ⊆ {1, . . . , n} andM is the number of constraints. Note that the scenarios of individual

power constraints and total power constraints can be considered as special cases of (3). A power

vector is said to beadmissibleif it satisfies the power constraints (2) and (3).
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Fig. 1. The boundary of SINR Region for two-interfering links

Proposition 1 For any two power vectorsp and p̂ that satisfy0 ≤ p ≤ p̂, if p̂ is admissible

then,p is admissible as well.

Proof: The proof follows from the fact that in the power constraints (3), all powerspi

appear with non-negative coefficients.

The main goal is to find the feasible SINR region, i.e. the set of all points(γ1, · · · , γn) which

are obtained from all admissible power vectorsp. To this end, we try to find the boundary points

of the feasible region. Any boundary point of the feasible region is the farthest feasible point

from the origin in a directionµ ≥ 0. If we can obtain such a point for an arbitraryµ, then the

whole boundary can be obtained by changingµ to different directions (see Fig. 1). As a result,

the boundary of the SINR region is parametrically described in terms of the parameterµ.

By introducing a new variableγ and for a unit-length vectorµ, the above discussion can be

formulated as the problem of finding the largestγ such thatγµ is feasible. This problem can

be written as
max
p, γ

γ

s.t. γi = µiγ, i = 1, · · · , n

p ≥ 0∑
i∈Ωm

pi ≤ p
Ωm

, m = 1, · · · , M

(4)
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The numerical solution of this problem can be obtained through geometric programming [22],

[23]; however, we propose a different approach which leads to a closed-form solution.

III. SINR REGION CHARACTERIZATION

The purpose of this section is to obtain a closed form expression for the boundary points of

the feasible SINR region by using problem (4) and the discussion preceding it. First, we consider

a special case, where there is only one power constraint involved in the problem, i.e.,

max
p, γ

γ

s.t. γi = µiγ, i = 1, · · · , n

p ≥ 0∑
i∈Ω

pi ≤ p
Ω
,

(5)

whereΩ ⊆ {1, . . . , n}. Later, we show how to obtain the solution of (4) by utilizing the solution

of (5).

By defining the normalized gain matrixA as

A = [aij]n×n, aij =





gij

gii

i 6= j

0 i = j
(6)

the constraintγi = µiγ in (5) is rewritten as

pi

ηi +
∑n

j=1 µiaijpj

= γ, ∀i ∈ {1, . . . , n}, (7)

where

ηi =
µiσ

2
i

gii

, η = [ηi]n×1. (8)

After reformulating (7) in a matrix form, we have
(

1

γ
I− diag(µ)A

)
p = η. (9)

This is a system of linear equations inp. The objective is to find the maximumγ such that the

solution for this system of linear equations satisfies the power constraints of (5).

When there is no constraint on the power vector (other than the trivial constraint ofp ≥ 0),

it is a well-known result [12] that an SINRγ is achievable if and only if

0 ≤ γ <
1

λ∗
(
diag(µ)A

) . (10)
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whereλ∗(·) is the Perron-Frobenius eigenvalue1 of the associated matrix [21]. We aim to obtain

the range of achievable SINRs under the additional constraint
∑

i∈Ω pi ≤ p
Ω
.

Let us defineF as

F = I− γdiag(µ)A. (11)

Then, the system of linear equations in (9) is reformulated as

Fp = γη, (12)

whereη is defined in (8). According to the Cramer’s rule, the solution to (12) is obtained by

pi =
det(H(i))

det(F)
, (13)

where H(i) = ψ (F, γη − fi, {i}). Note that the numerator and the denominator in (13) are

polynomials inγ. Therefore, the constraint
∑

i∈Ω pi ≤ p
Ω

can be written as
∑

i∈Ω det(H(i))

det(F)
≤ p

Ω
. (14)

Defining u
Ω
(γ) = p

Ω
det(F) − ∑

i∈Ω det(H(i)) and f(γ) = det(F), the inequality (14) is

equivalent to
u

Ω
(γ)

f(γ)
≥ 0. (15)

Let ν(u
Ω
) andν(f) denote the smallest positive real simple root ofu

Ω
(γ) andf(γ), respectively.

To proceed with the problem of finding the feasible range ofγ, we should first find these values.

The following lemma states one of the properties of matrices that will help us through the

problem analysis.

Lemma 2 If square matricesX and Y differ only in columni, i.e.,





xj 6= yj j = i

xj = yj j 6= i
, then

det (X) + det (Y) = det (ψ (X,yi, {i}))

= det (ψ (Y,xi, {i})).

Lemma 3 The polynomialu
Ω
(γ) can be described as

u
Ω
(γ) = p

Ω
det

(
ψ

(
F,−γη

p
Ω

, Ω

))
.

1See Theorem 4 for the definition of the Perron-Frobenius eigenvalue.
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Proof: Without loss of generality, we assume thatΩ = {1, . . . , k}, i.e., the firstk users are

subject to the total power constraint. From the definition ofu
Ω
(γ) andH(i), we have

u
Ω
(γ) = p

Ω

(
det (F)−

k∑
i=1

det
(
Ĥ(i)

))
, (16)

whereĤ(i) = ψ

(
F,

γη

p
Ω

− fi, {i}
)

. Equation (16) is rewritten as

u
Ω
(γ) = p

Ω

(
det (F)− det

(
Ĥ(1)

)
−

k∑
i=2

det
(
Ĥ(i)

))
. (17)

SinceF andĤ(1) are the same except for the first column, using Lemma 2 , we have

det (F)− det
(
Ĥ(1)

)
= det

(
ψ

(
F,−γη

p
Ω

, {1}
))

. (18)

On the other hand, using the fact that adding a multiple of a column to another does not change

the value of the determinant, we have

det
(
Ĥ(i)

)
= det

(
ψ

(
Ĥ(i),−ĥ

(i)
i , {1, . . . , i− 1}

))
. (19)

Then, using (18) and (19) and regardingĥ
(i)
i =

γη

p
Ω

, we can rewrite (17) as

u
Ω
(γ) = p

Ω

(
det

(
ψ

(
F,−γη

p
Ω

, {1}
))

(20)

−
k∑

i=2

det

(
ψ

(
Ĥ(i),−γη

p
Ω

, {1, . . . , i− 1}
)))

.

SinceF and Ĥ(i) are the same except for the columni, we can easily see that the matrices

ψ

(
F,−γη

p
Ω

, {1, . . . , i− 1}
)

and ψ

(
Ĥ(i),−γη

p
Ω

, {1, . . . , i− 1}
)

are the same except for the

ith column. Therefore,

det

(
ψ

(
F,−γη

p
Ω

, {1, . . . , i− 1}
))

− det

(
ψ

(
Ĥ(i),−γη

p
Ω

, {1, . . . , i− 1}
))

= det

(
ψ

(
F,−γη

p
Ω

, {1, . . . , i}
))

.

By successively applying this procedure to (20), the claim is proved.

The representation ofu
Ω
(γ) in Lemma 3 lends itself to finding the smallest positive simple root

of u
Ω
(γ). To this end, we need the Perron-Frobenius theorem for irreducible matrices. A square
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non-negative matrixX is said to be irreducible if for every pairi, j of its index set, there exists

a positive integerm ≡ m(i, j) such thatx(m)
ij > 0, wherex

(m)
ij is the (i, j)th element ofXm

[21].

Theorem 4 [21] (The Perron-Frobenius Theorem for irreducible matrices) SupposeX is an

m×m irreducible non-negative matrix. Then there exists an eigenvalueλ∗(X) (Perron-Frobenius

eigenvalue or PF-eigenvalue) such that

(i) λ∗(X) > 0 and it is real.

(ii) λ∗(X) ≥ |λ(X)| for any eigenvalueλ(X) 6= λ∗(X).

(iii) If X ≥ Y ≥ 0, thenλ∗(X) ≥ |λ(Y)| for any eigenvalue ofY.

(iv) λ∗(X) is a simple root of the characteristic polynomial ofX.

Lemma 5 The smallest positive root ofu
Ω
(γ) and f(γ), respectively, are

ν(u
Ω
) =

1

λ∗
(

ψ

(
diag(µ)A,

η

p
Ω

, Ω

)) ,

ν(f) =
1

λ∗(diag(µ)A)
. (21)

Proof: From Lemma 3, we have

u
Ω
(γ) = p

Ω
det

(
ψ

(
F,−γη

p
Ω

, Ω

))

= p
Ω

det

(
ψ

(
I− γdiag(µ)A,−γη

p
Ω

, Ω

))

= p
Ω
γn det

(
ψ

(
1

γ
I− diag(µ)A,− η

p
Ω

, Ω

))

= p
Ω
γn det

(
1

γ
I− ψ

(
diag(µ)A,

η

p
Ω

, Ω

))
.

Consequently,
u

Ω
(γ)

p
Ω

is the reciprocal of the characteristic polynomial ofψ

(
diag(µ)A,

η

p
Ω

, Ω

)
.

Therefore, the roots ofu
Ω
(γ) are equal to the inverse of the eigenvalues ofψ

(
diag(µ)A,

η

p
Ω

, Ω

)
.

Assuming all channel gainsgji and all weighting coefficientsµi are positive, it can be verified

that all elements ofψ2

(
diag(µ)A,

η

p
Ω

, Ω

)
are positive. This meansψ

(
diag(µ)A,

η

p
Ω

, Ω

)

is an irreducible matrix. Hence, according to Theorem 4, the PF-eigenvalue of this matrix is

real and positive and has the largest norm among all eigenvalues. Also, it is a simple root of
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the characteristic polynomial of the aforementioned matrix. Therefore, the inverse of the PF-

eigenvalue ofψ

(
diag(µ)A,

η

p
Ω

, Ω

)
gives the smallest positive simple root ofu

Ω
(γ) and the

first part of the claim is proved.

To find ν(f), note that

f(γ) = det (F) = det (I− γdiag(µ)A)

= γn det

(
1

γ
I− diag(µ)A

)
, (22)

where the definition ofF in (11) has been used. Therefore,f(γ) is the reciprocal of the

characteristic polynomial ofdiag(µ)A. Hence, with the same argument as foru
Ω
(γ), it can

be shown that the inverse of the PF-eigenvalue ofdiag(µ)A gives the smallest positive simple

root of f(γ). This completes the proof.

Lemma 6 The smallest positive root ofu
Ω
(γ) and f(γ) satisfyν(u

Ω
) ≤ ν(f).

Proof: Since ψ

(
diag(µ)A,

η

p
Ω

, Ω

)
≥ diag(µ)A ≥ 0 and both are irreducible, using

Theorem 4, we have

λ∗
(

ψ

(
diag(µ)A,

η

p
Ω

, Ω

))
≥ λ∗(diag(µ)A).

According to Lemma 5, this inequality can be rewritten as

1

ν(u
Ω
)
≥ 1

ν(f)
. (23)

This completes the proof.

Theorem 7 In a system ofn interfering links and the normalized gain matrixA, under the

power constraints,

p ≥ 0,
∑
i∈Ω

pi ≤ p
Ω
, Ω ⊆ {1, . . . , n}

an SINRγ is feasible if and only if

0 ≤ γ ≤ 1

λ∗
(

ψ

(
diag(µ)A,

η

p
Ω

, Ω

)) . (24)

To prove the theorem, we need the following lemma.
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Lemma 8 Consider two SINR vectorsγ and γ̂, which correspond to the power vectorsp and

p̂, respectively. A necessary condition for the inequalityγ ≤ γ̂ to hold is thatp ≤ p̂.

Proof: See the Appendix.

Proof of Theorem 7:According to Lemma 5, (24) is equivalent to

0 ≤ γ ≤ ν(u
Ω
). (25)

Also, recall that the total power constraint is equivalent to (15).

For the achievability part, we should show that anyγ satisfying (25) corresponds to an

admissible power vector. Recall that the condition for the positivity of the power vector is given

in (10) and the total power constraint is equivalent to (15). The positivity constraint is guaranteed

due to the fact that the right-hand-side of (10) equalsν(f) and ν(u
Ω
) ≤ ν(f) (see Lemma 6).

To prove that inequality (15) holds, note thatu
Ω
(0) > 0 and f(0) > 0. Sinceν(u

Ω
) ≤ ν(f) (see

Lemma 6), both polynomialsu
Ω
(γ) andf(γ) are non-negative forγ ≤ ν(u

Ω
), which means their

ratio is non-negative as well. This completes the proof for achievability.

For the converse, we should show that anyγ, γ > ν(u
Ω
), is not feasible. From (10), the

constraintp ≥ 0 guarantees thatγ ≥ ν(f) is not feasible. Ifν(u
Ω
) = ν(f), the proof is complete.

For the case thatν(u
Ω
) < ν(f), we should prove that the values ofγ in the rangeν(u

Ω
) < γ <

ν(f) are not feasible. First, note that
u
Ω

(γ)

f(γ)
is a continuous function ofγ andν(u

Ω
) is its smallest

positive simple root. Hence, there exists anε > 0, such that forν(u
Ω
) < γ < ν(u

Ω
)+ ε, we have

u
Ω

(γ)

f(γ)
< 0 and the constraint (15) is violated. Hence, these values ofγ are not achievable. Now,

assume by contradiction that âγ satisfyingν(u
Ω
) + ε < γ̂ < ν(f) is achievable and corresponds

to the power vector̂p. From (10), anyγ that satisfiesγ < γ̂, corresponds to a power vector

p > 0. Due to Lemma 8, we havep ≤ p̂. Since p̂ is an admissible power vector, according

to Proposition 1,p is admissible as well. This means anyγ, γ < γ̂, is achievable. This is in

contradiction to the fact thatν(u
Ω
) < γ < ν(u

Ω
) + ε is not achievable.

Theorem 7 describes the feasible SINR region when there is only one power constraint as

shown in problem (5). The next theorem shows how to utilize the result of Theorem 7 to obtain

the solution of the original problem (4), where multiple power constraints exist.

Theorem 9 Assumeγ∗ is the solution of(4) and γ∗m is the solution of the same problem when
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only themth power constraint of(4) exists. Then, we have

γ∗ = min
m

γ∗m. (26)

Proof: For a general maximization problem withM constraints, it is obvious that the solution

is at most equal to the minimum of the solutions of the same problems with single constraints,

i.e.

γ∗ ≤ min
m

γ∗m. (27)

By definingm∗ = arg minm γm, (27) can be rewritten as

γ∗ ≤ γ∗m∗ . (28)

Assumep∗m is the power vector corresponding toγ∗m for all m ∈ {1, · · · , M}. According to

Lemma 8, we havep∗m∗ ≤ p∗m for all m ∈ {1, · · · , M}. Hence,p∗m∗ is an admissible power

vector for problem (4). As a result, we have

γ∗ ≥ γ∗m∗ . (29)

The theorem is proved by comparing (28) and (29).

In the common scenario when the power of individual users and the total power are constrained,

Theorems 7 and 9 yield the following result on the maximum achievable SINR .

Corollary 10 The maximum achievableγ in (4), where power vector is subject to the following

constraints,

p ≥ 0, p ≤ p,

n∑
i=1

pi ≤ pt

is equal to

γ∗ = min





1

λ∗
(

ψ

(
diag(µ)A,

η

pt

, {1, . . . , n}
)) ,

1

λ∗
(

ψ

(
diag(µ)A,

η

p1

, {1}
)) ,

1

λ∗
(

ψ

(
diag(µ)A,

η

p2

, {2}
)) ,

. . . ,
1

λ∗
(

ψ

(
diag(µ)A,

η

pn

, {n}
))





.
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Fig. 2. The SINR region for2 interfering links with the following constraints on the power, A:p1 ≥ 0, p2 ≥ 0,

B: p1 + p2 ≤ p̄t, p1 ≥ 0, p2 ≥ 0 C: 0 ≤ p1 ≤ p̄1, p2 ≥ 0, D: 0 ≤ p2 ≤ p̄2, p1 ≥ 0

The boundary of the SINR region in any direction can be obtained by choosingµ, accordingly.

Due to the explicit relationship between the SINR and the rate in Gaussian channels, obtaining

the SINR region in these channels amounts to the rate region characterization. As an example,

Fig. 2 and Fig. 3, respectively, depict the SINR region and the rate region of a system with the

gain matrixG as

G =


 0.6791 0.0999

0.0411 0.6864


 ,

while the power of individual users and the total power are upper-bounded byp1 = 0.8, p2 =

1, pt = 1.4, andσ2
1 = σ2

2 = 10−1.

IV. T IME-VARYING CHANNEL

So far, we have assumed that the channel gains are fixed with time. However, in practice,

channel gains vary with time due to the users movement or environment changes.

In this section, we consider a communication system withn interfering links whose channel

gain matrix is randomly selected from a finite set{G1, . . . ,GL} with probabilitiesρ1, . . . , ρL
,

respectively. The goal is to characterize the SINR regionF which is achievable regardless of

the channel state.
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Fig. 3. The rate region for a2-interfering-link system with the following constraints on the power, A:p1 ≥ 0,

p2 ≥ 0, B: p1 + p2 ≤ p̄t, p1 ≥ 0, p2 ≥ 0 C: 0 ≤ p1 ≤ p̄1, p2 ≥ 0, D: 0 ≤ p2 ≤ p̄2, p1 ≥ 0

If the transmitters are subject to instantaneous power constraints, as in the previous section, the

achievable SINR region is the intersection of the achievable regions in each channel realization.

In other words, assumingFl denotes the achievable region in statel, we have

F =
L⋂

l=1

Fl. (30)

A more common scenario for time-varying channels is the case where the average transmit

powers are constrained. In this case, the transmitters enjoy the flexibility of using less power

when the channel conditions are good and save the power for unfavorable channel states. Fig. 4

provides a comparison for the two scenarios with an example of a system with two interfering

links. It is observed that the feasible region in the instantaneous power constrained scenario is

a subset of the feasible region in the average power constrained scenario.

In [16], it is shown that in a point-to-point system, the maximumzero-outage SINRis equal

to
p

El[1/gl]
, wherep is the average transmit signal power andgl is the power gain of the channel

in the lth realization. In accordance with the concept of zero-outage SINR, in this section we

consider thezero-outage SINR regiondefined as the set of SINRs which are achievable regardless

of the channel realization. The objective is to characterize the zero-outage SINR region when we

haven interfering links with finite number of channel realizations and the average transmitter
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Fig. 4. The SINR region for a two-interfering-link systemρ1 = 0.3, ρ2 = 0.7, pt = 1

powers are subject to some linear constraints. Following the same discussions as in the previous

sections, it is concluded that this problem is equivalent to finding the maximumγ which is

achievable by all users in all channel states, while the average power of the users are constrained.

In mathematical notations, we have the following optimization problem

maxp
i, l

, γ γ

s.t. γi, l ≥ µiγ, ∀i, l, i ∈ {1, . . . , n}, l ∈ {1, . . . , L}
pi, l ≥ 0, ∀i, l, i ∈ {1, . . . , n}, l ∈ {1, . . . , L}
El

[∑
i∈Ω pi, l

] ≤ p
Ω
,

(31)

whereγi, l andpi, l are respectively the SINR and the power of transmitteri, when the channel

gain matrix isGl. Note that the constraintγi, l ≥ µiγ guarantees that the SINR of useri is

greater thanµiγ, regardless of the channel statel. If there were more power constraints in (31),

similar to the previous section, the solution would be equal to the minimum solution of the same

problems with separate single power constraints. Hence, in this section we solely concentrate

on the above problem with a single power constraint.

We define an expanded system includingnL users with block diagonal matrices̃G and Ã

as the channel gain matrix and the normalized gain matrix, respectively. LetAl denote the

normalized gain matrix in the statel ∈ {1, . . . , L}. Matrices G̃ and Ã are block diagonal

matrices, where thelth submatrix on the diagonal isGl and Al, respectively. It is clear that
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block diagonal format of these matrices reflects the fact that there is no interference between

the virtual links associated with different states. In the new system,pi+(l−1)n denotes the power

of transmitteri, when the channel gain matrix isGl. Similar to the previous discussions, the

requirements on these links form a system of linear equations with the following formulation in

a matrix form,

(
1

γ
InL×nL − diag(1L×1 ⊗ µ)Ã

)
p = η, (32)

where

ηi+(l−1)n =
µiσ

2
i

gi+(l−1)n,i+(l−1)n

, i ∈ {1, . . . , n}, l ∈ {1, . . . , L}.

Similar to (11), we defineF as

F =
1

γ
InL×nL − diag(1L×1 ⊗ µ)Ã.

Then, we have

Fp = γη.

Using Cramer’s rule, we have

pi+(l−1)n =
det

(
H(i+(l−1)n)

)

det(F)
,

whereH(i+(l−1)n) = ψ
(
F, γη − fi+(l−1)n, {i + (l − 1)n}). The average of the total power of the

users inΩ is equivalent to

El

[∑
i∈Ω

pi+(l−1)n

]
=

L∑

l=1

ρl

∑
i∈Ω

pi+(l−1)n

=
L∑

l=1

ρl

∑
i∈Ω

det
(
H(i+(l−1)n)

)

det(F)

=
1

det(F)

L∑

l=1

ρl

∑
i∈Ω

det
(
H(i+(l−1)n)

)
. (33)

Based on (33), we define

u
Ω
(γ) = p

Ω
det(F)−

L∑

l=1

ρl

∑
i∈Ω

det
(
H(i+(l−1)n)

)
,

and

f(γ) = det(F).
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Therefore, the constraint inEl

[∑
i∈Ω pi, l

] ≤ p
Ω

is equivalent to

u
Ω
(γ)

f(γ)
≥ 0.

Like before, it is easy to show that the maximum achievable SINR satisfying the power constraints

of (31) is

γ∗ = min {ν(f), ν(u
Ω
)}. (34)

To simplify u
Ω
(γ), we have

u
Ω
(γ) = p

Ω
det(F)−

L∑

l=1

ρl

∑
i∈Ω

det
(
H(i+(l−1)n)

)

= p
Ω

(
det(F)−

L∑

l=1

∑
i∈Ω

det
(
Ĥ(i+(l−1)n)

))
,

whereĤ(i+(l−1)n) is H(i+(l−1)n) whose columni + (l− 1)n is multiplied by
ρl

p
Ω

. Using the same

procedure as before, we obtain

u
Ω
(γ) = p

Ω
det (F−D),

where

D =
L∑

l=1

ψ

(
0nL×nL,

ρlγη

p
Ω

, {i + (l − 1)n : i ∈ Ω}
)

According to Theorem 4, it is easy to see that

ν(u
Ω
) =

1

λ∗

(
diag(1L×1 ⊗ µ)Ã +

L∑

l=1

ψ

(
0nL×nL,

ρlη

p
Ω

, {i + (l − 1)n : i ∈ Ω}
)) .

and

ν(f) =
1

λ∗
(
diag(1L×1 ⊗ µ)Ã

) .

Therefore, using Theorem 4 and equation (34), we have the following theorem.

Theorem 11 The maximum achievableγ in a time-varying communication system withn inter-

fering links and probability vectorρL×1, with the power constraints
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pi, l ≥ 0, ∀i, l, i ∈ {1, . . . , n}, l ∈ {1, . . . , L}

El

[∑
i∈Ω

pi, l

]
≤ p

Ω
,

is equal to

γ∗ =
1

λ∗

(
diag(1L×1 ⊗ µ)Ã +

L∑

l=1

ψ

(
0nL×nL,

ρlη

p
Ω

, {i + (l − 1)n : i ∈ Ω}
)) ,

whereÃ is an nL× nL block diagonal matrix whoselth diagonal submatrix is the normalized

gain matrix at the statel.

V. REMOVAL ALGORITHM

The solution of problem 4 forµ1 = µ2 = . . . = µn corresponds to a specific point on the SINR

region, where all users have the same SINR. Sometimes the required SINR is above this point

and accordingly it is not achievable. Therefore, like any opportunistic scheduling problem, a

subset of users should be serviced and the rest are serviced in a later time-slot when the channel

gains are changed. This approach exploits the channel variations and schedules the users that

are in a better channel condition for transmission to improve the performance.

To find the largest set of active users satisfying the SINR requirement, we have to examine all

the combinations of the users and select a feasible subset with the maximum cardinality. Clearly,

this scheme is computationally exponential. As a suboptimum alternative scheme, we propose a

greedy removal algorithm. The main idea behind the presented algorithm is as follows. At each

step, if the active users do not satisfy the required SINR, one user is removed. This user is the

one which provides the highest increase in the maximum achievable SINR if it is removed. We

call this user theworst user. The proposed algorithm is presented for different sorts of power

constraints.

According to (10) and Theorem 7, in general, the maximumγ is equal to the inverse of the

PF-eigenvalue of a matrixX, i.e., γ∗ =
1

λ∗(X)
. In a system with a large number of users,

computing the PF-eigenvalue is computationally extensive. In this case, it is beneficial to use
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an approximation of the PF-eigenvalue as follows. According to [24], the eigenvalues of the

matricesXq andX are related as

λ(Xq) = λq(X).

Furthermore, we have

Tr(Xq) =
∑

i

λq
i ,

whereλi = λi(X) is theith eigenvalue of the matrixX. Since the PF-eigenvalue of an irreducible

matrix has the largest norm among all the eigenvalues of that matrix [24], we can approximate

λ∗q(X) with the Tr(Xq), i.e., λ∗q(X) ≈ Tr(Xq). This approximation is stronger if the powerq

is larger. However, the simulation results show thatq = 2 yields a very good approximation of

the exact value in our problem. Therefore, we use

γ∗ ≈ 1√
Tr(X2)

(35)

as an approximate value forγ∗. In what follows, we investigate the problem of user removal for

two more common cases of power constraints and present an efficient algorithm for each case.

Case One: Constraints on the Power of Individual Transmitters

Assume there is a constraint on the power of individual transmitters. We design an efficient

suboptimal algorithm to find the maximum cardinality subset of the users satisfying a minimum

SINR requirement. We define the matrixψi−
(
A,

η

pj

, {j}
)

as the matrixψ

(
A,

η

pj

, {j}
)

whose

ith column and row are removed. Therefore, the worst link is

î = arg max
i

γ∗i
−
, (36)

where

γ∗i
−

= min
j

j 6=i

1

λ∗
(

ψi−
(
A,

η

pj

, {j}
)) (37)

is the maximum achievable SINR when useri is removed. Equation (37) is obtained from (26).

The users are removed one by one based on (36) until all of the active users satisfy the rate

requirement. We call this algorithm theRemoval Algorithm II-A.
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To reduce the complexity of this algorithm, which is due to the calculation of the PF-

eigenvalue, we use the following approximation scheme. According to (35) and (37), we have

γ∗i
− ≈ min

j
j 6=i

1√
Tr

(
ψi−2

(
A,

η

pj

, {j}
))

By some straightforward calculations, this approximation can be rewritten as

γ∗i
− ≈ min

j

1√
wij

,

where

wij =





(
ηj

pj

)2

+
n∑

k=1
k 6=i

n∑

l=1
l 6=i

aklalk + 2
n∑

k=1
k 6=i

ηk

pj

ajk j 6= i

0 j = i

According to [25], equation (36) can be simplified to

î = arg min
i

max
j

wij.

Based on this result, the following algorithm is developed when the required SINR isγth.

Removal Algorithm II-B

1) SetA as in (6),p = [pi], m = n, R = ∅, andv = [1, 2, . . . , n].

2) Find the maximum achievable SINR as

γ∗ = min
j∈v

1

λ∗
(

ψ

(
A,

η

pj

, {j}
)) .

3) If γ∗ ≥ γth, v is the set of active users, stop.

4) Update the coefficientswij as

wij =





(
ηj

pj

)2

+
m∑

k=1
k 6=i

m∑

l=1
l 6=i

aklalk + 2
m∑

k=1
k 6=i

ηk

pj

ajk j 6= i

0 j = i

.

5) Determine the worst link aŝi = arg min
i

max
j

wij.

6) SetR← R∪ {vî}, A ← Aî−, v ← vî−, p ← pî−, η ← η î−, andm ← m− 1, and go to

step 2.
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Case Two: Total Transmit Power Constraint

When the total power is constrained bypt, the worst user is determined as

î = arg max
i





1

λ∗
(

ψi−
(
A,

η

pt

, {1, 2, . . . , n}
))





. (38)

We call this algorithm theRemoval Algorithm III-A. Similar to the previous discussions, we

propose the following low-complexity algorithm for the user removal with total power constraint

(see [25] for details) .

Removal Algorithm III-B

1) SetA as in (6),m = n, R = ∅, andv = [1, 2, . . . , n].

2) Find the maximum achievable SINR as

γ∗ =
1

λ∗
(

ψ

(
A,

η

pt

, {1, . . . ,m}
)) .

3) If γ∗ ≥ γth, v is the set of active users, stop.

4) Update the coefficientswi as

wi = a2
ii + 2

m∑
j=1
j 6=i

aijaji + 2
ηi

pt

m∑
j=1

aji + 2
m∑

j=1

ηj

pt

aij + 2
ηi

pt

m∑
j=1
j 6=i

ηj

pt

+

(
ηi

pt

)2

.

5) Determine the worst link aŝi = arg max
i

wi.

6) SetR← R∪ {vî}, A ← Aî−, v ← vî−, η ← η î−, m ← m− 1, and go to step 2.

A. Numerical Results

The simulation results are presented for a Rayleigh fading channel withn = 8. For the results

in a cellular network see [25]. The parametersgij follow an exponential distribution with mean

and variance one for the forward gains, and mean10−2 and variance10−4 for the cross gains.

We defineOutage Probabilityas the ratio between the number of the inactive users to the

total number of the users. This probability shows the percentage of the users that fail to attain

the required SINR. We use this function as a metric to compare different algorithms, as it is

used in [13], [26].

In [19], a number of removal algorithms when the power of transmitters are individually

constrained are proposed. We selected centralized GRN-DCPC to compare it with our results
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Fig. 5. Constraints on the Power of Individual Transmitters,σi
2 = 10−2, pi = 1w ∀i

since according to [19], it outperforms the other presented algorithms in that work. The simulation

results in Fig. 5 show a significant improvement in the outage probability of the algorithms II-A

and II-B compared to GRN-DCPC. As depicted in Fig. 6, when the total power is bounded, the

performance of algorithms III-A and III-B is very close to the optimum result (which is obtained

by exhaustive search). To the best of our knowledge, there are no alternative algorithms for the

case that the total power is bounded.

VI. CONCLUSION

In this paper, a communication system includingn interfering AWGN links is considered.

Each transmitter uses a Gaussian codebook and each receiver only decodes the data of the

corresponding transmitter. We have obtained a closed-form solution for the maximum achievable

SINR in such a system, utilizing the Perron-Frobenious theorem, when the sum-power on any

subset of the users is constrained. This result leads to characterizing the boundary of SINR

region for the system. In addition, we consider a time-varying channel where channel gains are

selected randomly from a finite set with a certain probability and the average power of the users

are constrained linearly. We obtain the zero-outage SINR region for such a system. In addition,

we consider the scenario in which the required SINR is out of the SINR region. We develop a

user removal algorithm which maximizes the number of users which are active simultaneously
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2 = 10−3 ∀i, pt = 1w

and satisfy the SINR requirement. This algorithm is compared with other alternatives and it is

shown that it outperforms the other ones.

APPENDIX

PROOF OFLEMMA 8

First, we need the following lemma.

Lemma 12 Let p and p̂ be two power vectors with the corresponding SINR vectorsγ and

γ̂, respectively. Consider the non-empty index setI ⊆ {1, · · · , n}. Assume the power vectors

satisfy

p̂i = 1
α
pi, ∀ i ∈ I

p̂i ≥ pi, ∀ i ∈ Ic,
(39)

whereα > 1 is a constant andIc = {1, · · · , n} \ I. Then, we have

γ̂i < γi ∀ i ∈ I. (40)

It is noteworthy that the special case ofI = {1, · · · , n} corresponds to the case thatp̂ = 1
α
p.

In this case, we havêγ < γ.
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Proof: From the definition of SINR in (1), for anyi ∈ I, we have

γ̂i =
giip̂i

σ2
i +

∑n
j=1
j 6=i

gij p̂j

=
giip̂i

σ2
i +

∑
j∈Ic gij p̂j +

∑
j∈I
j 6=i

gij p̂j

(39)
≤

1
α
giipi

σ2
i +

∑
j∈Ic gijpj + 1

α

∑
j∈I
j 6=i

gijpj

(41)

<
giipi

σ2
i +

∑
j∈Ic gijpj +

∑
j∈I
j 6=i

gijpj

= γi,

where the last inequality is becauseα > 1 and the right-hand-side of (41) is a decreasing function

of α.

Now, we are ready to prove Lemma 8. Given thatγ ≤ γ̂, we should prove that the index set

J = {i : 1 ≤ i ≤ n, p̂i < pi} is empty. To this end, we show that ifJ is not empty then, there

exists somei ∈ J for which γ̂i < γi; this is a contradiction toγ ≤ γ̂.

For the special case thatp and p̂ satisfy condition (39) (withI = J ), Lemma 12 can be

applied and it is concluded thatγ̂i < γi for all i ∈ J . This completes the proof.

For the case that condition (39) is not satisfied, we prove the claim by induction on|J |
(cardinality ofJ ).

For |J | = 1, only one component, sayi, of p̂ is less than the corresponding component inp.

Thus, we havêγi < γi. Now, we should show that if our claim is true for any|J | ∈ {1, · · · , `},
i.e., if

1 ≤ |J | ≤ ` ⇒ ∃ i ∈ J : γ̂i < γi, (42)

then, it is true for|J | = ` + 1 as well, i.e.,

|J | = ` + 1 ⇒ ∃ i ∈ J : γ̂i < γi. (43)

Let us define

α∗ = min
i∈J

{
pi

p̂i

}
(44)

and choose a new power vectorp∗ = α∗p̂ with the corresponding SINR vectorγ∗. According to

the definition ofp∗, for the corresponding index setJ ∗ =
{
j : 1 ≤ j ≤ n, p∗j < pj

}
it is clear
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that |J ∗| < |J |, which means the cardinality ofJ ∗ is at most equal tò . Also, sincep and

p̂ do not satisfy condition (39),J ∗ is not empty. By utilizing the assumption of induction it is

concluded that there exists somej ∈ J ∗ for which γ∗j < γj. On the other hand, sinceα∗ > 1,

p∗ and p̂ satisfy condition (39) withI = {1, · · · , n}. According to Lemma 12,̂γj < γ∗j for all

j ∈ {1, · · · , n}. Hence, it is concluded that̂γj < γj for somej ∈ J ∗ and the proof is complete.
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