
A Sequential Search Approach to Fixed-rate

Entropy-coded Quantization ∗

Sasan Nikneshan and Amir K. Khandani

Dept. of Elec. and Comp. Engineering

University of Waterloo

Waterloo, Ontario N2L 3G1

Tel. (519) 885-1211 x5324, Fax. (519) 888-4338

Abstract: This paper describes a new Fixed-rate Entropy-constrained Vector Quantization

(FEVQ) scheme for stationary memoryless sources based on a sequential search procedure. It

is shown that the proposed algorithm results in a substantial reduction in the complexity while

the degradation in performance is negligible.

1 Introduction

To improve the performance of a scalar quantizer, one could use variable-length entropy coding

of the quantizer output. To take advantage of entropy coding, while avoiding the dis-advantages

associated with using variable rate codes (including error propagation and buffering problems),

one can use Fixed-rate Entropy-coded Vector Quantization (FEVQ). The pyramid vector quan-

tizer (PVQ), introduced by Fischer (for Laplacian sources) [2], is an example of FEVQ in which

the code-vectors are located on the intersection of a cubic lattice and a pyramid. Another class

of FEVQ schemes are based on using a subset of points from a lattice bounded within the

Voronoi region around the origin of another lattice [3]. The dominant technique for FEVQ is

based on selecting the N -fold symbols with the lowest additive self-information. In this case,

the selected subset has a high degree of structure which can be used to reduce the complexity.

∗This work was financially supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC) and by Communications and Information Technology Ontario (CITO).

A method for exploiting this structure based on using dynamic programming with the states

corresponding to integer numbers proportional to the additive self information (cost) of the

code-words is used in [1]. The core idea in [1] is to use a trellis where states s and s+ c in two

successive stages are connected by a link corresponding to the one-D symbol(s) of cost c. Then,

the Viterbi algorithm is used to find the path of the minimum overall distortion through the

trellis.

In this paper, we introduce a reduced-complexity method for FEVQ. The algorithm starts

from an initial point with lowest quantization noise and then moves towards a feasible point

(satisfying the rate constraint) in a number of subsequent steps. Numerical simulations show

that the proposed quantizer offers a performance very close to the optimum method (using

dynamic programming) with a substantial reduction in the complexity.

2 Sequential Search Algorithm (SSA) to FEVQ

Consider a subset of quantizer points along each dimension which can potentially become a

component in the final solution. We refer to these subsets as the candidate sets, denoted by Ci,

i = 0, . . . , N − 1. Note that the cardinality of Ci satisfies ci = |Ci| ≤M where M is the number

of threshold points along each dimension. We assume that the elements of each candidate set

are ordered according to their distance from the input with the nearest point indexed by zero.

The reconstruction level and the cost corresponding to the jth element of the candidate set for

the ith dimension are denoted as, rji and lji , i = 0, . . . , N − 1, j = 0, . . . , ci − 1, respectively.

Define dji = (rji − ai)
2, where ai is the ith input sample. Note that if two points α and β

satisfy, dαi ≤ dβi and lαi ≤ lβi , then α can be always selected as a better or comparable choice as

compared to β, and consequently, β /∈ Ci. As a result, for the ith candidate set, we have,

d0
i < d1

i . . . < dcii
l0i > l1i . . . > lcii

We refer to ∆j
i = lji − lj+1

i > 0, j = 0, . . . , ci − 2, i = 0, . . . , N − 1, as the cost increments. We

assign a shadow price to the element of each candidate set, defined as,

sji =
dj+1

i − dji
∆j

i

, j = 0, . . . , ci − 2

The optimization problem is said to be concave if the shadow prices sji , i = 0, . . . , N − 1, are

non-increasing for j = 0, . . . , ci − 2 [5].

2

Using these notations, the SSA is formulated as follows,

1. Start from an initial solution for which the partition selected along each dimension is the

element with the minimum distance.

2. Compute the overall cost of the current solution, namely L̂k, where k is the iteration

index.

3. If L̂k ≤ Lmax, quit, otherwise find the dimension for which the current selected point has

the smallest shadow price, change the current selected point along this dimension to the

next element in the corresponding candidate set, and go to step 2.

Theorem: Assuming a concave quantizer, the kth iteration of the SSA results in the

optimum solution for a problem with Lmax = L̂k.

Proof: Refer to [4] for proof.

Reference [5] discusses a special case of this optimization procedure for which ∆j
i = 1, ∀i, j,

in which case it is shown that the sequential search procedure results in the optimum solution for

a concave function. An important special case of our analysis, satisfying the above optimality

condition, occurs when the quantizer points are labeled by a Huffman tree where the code-

word lengths are either equal, or change in unity increments (with the cost defined as the

binary length of the code-words).

3 Numerical Results

Numerical results are generated for an i.i.d. Gaussian source. The quantization is measured in

terms of the mean square distance. In all comparisons, the memory size is in byte (8 bits) per

N dimensions and the computational complexity is the number of additions/comparisons per

dimension. A quantizer with a search mechanism based on a Dynamic Programming Algorithm

(DPA) is used as the benchmark for comparison.

Table 1 shows the results at two different bit rates. For R = 2.5, M = 8, the codeword

lengths (costs) are {4, 4, 3, 2, 2, 3, 4, 4}, and for R = 3.5, M = 16, the codeword lengths are

{7, 7, 6, 5, 4, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 7}. These are the lengths associated with the Huffman code

designed in the last iteration of the employed iterative (LBG type [6]) design algorithm. Note

3

that both cases have unity cost increments. We have observed that the quantizer is also concave,

and consequently, satisfies the optimality conditions.

In Table 2, we have a comparison in terms of SNR and complexity between SSA and DPA

for a quantizer with unity cost increments. As Table 2 shows, the proposed algorithm offers a

substantial reduction in the complexity.

The lexicographic indexing and using DPA for codebook search has been presented in [1].

We have tested the SSA with the lexicographic indexing where the cost associated with each

point is defined as, [−B log2(p)] where [.] denotes rounding, p is the probability and B is a

scaling factor used to reduce the effects of round-off error [1]. Larger values of B improve the

quantizer performance at the price of an increase in the complexity. In this case, the quantizer

does not have unity cost increment, however, the numerical results shown in Table 3 indicates

that the SSA algorithm performs very close to DPA.

References

[1] R. Laroia and N. Farvardin, “A structured fixed-rate vector quantizer derived from

variable-length scalar quantizer—Part I: Memoryless sources,” IEEE Trans. Inform. The-

ory, vol. IT-39, pp. 851–867, May 1993.

[2] T. R. Fischer, “A pyramid vector quantizer,” IEEE Trans. Inform. Theory, vol. IT-32,

pp. 468–583, Nov. 1986.

[3] M. V. Eyuboglu and G. D. Forney, “Lattice and trellis quantization with lattice- and

trellis- bounded codebooks—high-rate theory for memoryless sources,” IEEE Trans. In-

form. Theory, vol. IT-39, pp. 46–59, Jan 1993.

[4] S. Nikneshan, Lattice/Trellis based Fixed-rate Entropy-constrained Quantization, Ph.D.

thesis, E&CE Dept., Univ. of Waterloo, Oct. 2001.

[5] B. Fox, “Discrete optimization via marginal analysis,” Management science, vol. 13, no.

3, pp. 210–216, Nov. 1966.

[6] Y. Lindo, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE

Trans. Communication, vol. COM-28, pp. 84–95, Jan. 1980.

4

R = 2.5, M = 8 R = 3.5, M = 16

N SSA/DPA (dB) SSA/DPA (dB)

32 11.93 18.06

64 12.26 18.50

128 12.46 18.79

256 12.58 18.99

512 12.64 19.10

1024 12.71 19.17

Table 1: SNR of SSA/DPA (in dB) vs. dimension.

R = 3.5 bits/dimension M = 16, N = 32

Method Add/dimension Multiplies/dimension Memory SNR (dB)

SSA 3 3 96 byte 18.06

DPA 688 16 3.6 k-byte 18.06

Table 2: Performance/complexity comparison of SSA vs. DPA.

N = 32 N = 64

B SSA (dB) DPA (dB) SSA (dB) DPA (dB)

4 12.06 12.11 12.08 12.16

8 12.50 12.60 12.59 12.64

16 12.71 12.83 12.89 12.91

32 12.81 12.96 12.96 13.02

64 12.91 13.05 13.11 13.14

128 12.92 13.07 13.13 13.17

Table 3: SNR vs. dimension of SSA in comparison with DPA, cost is computed as [−B log2(p)]

where p is the probability.

5

