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Abstract: We present a method for maximum likelihood decoding of the (48,24, 12) quadratic
residue code. This method is based on projecting the code onto a subcode with an acyclic
Tanner graph, and representing the set of coset leaders by a trellis diagram. This results in
a two level coset decoding which can be considered a systematic generalization of the Wagner
rule. We show that unlike the (24,12,8) Golay code, the (48,24,12) code does not have a
Pless-construction which has been an open question in the literature. It is determined that the
highest minimum distance of a (48,24) binary code having a Pless-construction is 10, and up

to equivalence there are three such codes.

1 Introduction

In the application of error-correcting codes to communication systems, one of the most impor-
tant problems is to develop and implement an efficient decoding algorithm for a given code.
Ideally, one would also like the algorithm to be universal or applicable over a wide range of
code structures. It is well known that soft decision decoding results in a saving in required
energy of about 25-50% over that for hard decision decoding. The main approaches for soft de-
cision maximum likelihood (ML) decoding can be divided into two categories: (i) Trellis based
decoding methods using Viterbi algorithm, and (ii) Coset decoding.

The Viterbi algorithm [10] provides a solution for decoding convolutional codes using the
trellis diagram associated with the code. Bahl et al. [2] and Wolf [27] showed that one could also
employ the Viterbi algorithm to decoding a block code. Forney [14] later gave a procedure for
constructing minimal trellis diagrams (MTD) for Reed-Muller codes and the extended Golay
code. Since then, there has been considerable interest in the minimal trellis of linear block
codes [8, 15, 17, 19, 24]. Trellis based approaches have also been applied to the decoding of
array codes [4, 16].



The work of Conway and Sloane [5] has addressed the decoding of binary codes containing
geometrically simple subcodes such as the universe code F,, and the even weight code &,. A
slightly different language and perspective has been independently applied to decoding of the
extended Golay codes by Pless [21] using the hexacode Hg and the (4,2,3) tetracode. These
approaches have been employed by several authors [22, 25, 26, 28] to produce many of the
best known techniques for decoding linear block codes including the (24,12) Golay code [26],
the (32,16) extended quadratic residue (QR) code [28], and the second order Reed-Muller
codes [22]. The method of coset decoding has been also used in [11, 12, 13] in conjunction with
other decoding techniques to provide a variety of tradeoffs between bit error performance and
decoding complexity.

Coset decoding of the extended Golay codes has been addressed by Conway and Sloane [5]
using subcodes with desirable properties such as even weight and universal codes, and by
Pless [21] using the structure of the hexacode Hg and the (4,2,3) tetracode. The work of
Pless was improved substantially first by Snyders and Be’ery [25] using the Wagner rule [23]
together with coset decoding, and then by Vardy and Be’ery [26] applying the Wagner rule and
Pless-construction of these codes.

The main techniques presented in [26] were later used in [28] to decode the extended
(32,16,8) QR code. The common approach in [26, 28] is the projection of these two extended
QR codes onto quaternary codes. In these papers, it is left as a question whether the Pless-type
projection can be applied to other block codes, particularly to the (48,24,12) QR code.

It has been shown [7] that the decoding method used in [26, 28] lies in the framework of
a systematic approach whose main ingredients, when decoding a code (', consist of an acyclic
Tanner graph (ATGQG) of a subcode Cy together with a trellis diagram of C'//Cy. Here, we extend
this method to the ML decoding of the (48,24,12) QR code. This results in a decoding method
which is 15% less complex than the best decoding method known for this code using a trellis
based approach [20]. Note that codes with cycle-free TGs were completely characterized in [9].

We also show that unlike the (24,12,8) Golay code, the (48,24,12) code does not have a
Pless-construction, which has been an open question in the literature [26, 28]. More generally,
we show that the largest minimum distance of a (48,24) binary code with a Pless-construction
is 10, and there are exactly three such codes up to equivalence.

A code C' is said to be the sum of (] and (5, denoted C' = (7 + Cy, if (7 and (5 are
subcodes of €' and C;NCy = {0}, and C = {¢; + 3| ¢4 € Crand ¢; € C3}. The direct product
(also called Kronecker product or simply product) operation is denoted by '®@’. The direct sum
of two codes (7 and (s, denoted C; s, is defined to be C1 B Cy := {c1¢a| ¢ € Crand ¢y € Oy},
where ¢y ¢y is the concatenation of ¢; and ¢3. The standard product of two matrices My and M,

is denoted by M;M;.



2 Background

In this section necessary results on the Tanner-graph trellis (TGT) representation, the Pless-

type projection and their connection are given from [7, 21, 26, 28].

2.1 Tanner-graph Trellis Representation

A Tanner graph (TG) representing a linear block code C' with parity check matrix H = [h;;] is
a bipartite graph with parity nodes representing the rows of H and symbol nodes representing
the columns of H. A symbol node v; is adjacent to a parity node u; iff h;; # 0. The number
of edges associated with a parity check matrix H is the number of nonzero entries in H. A
TG representing C' is referred to as the minimal Tanner graph (MTG) if it has the minimum
number of edges among all such graphs. Although such a graph is not unique, all MTGs of €'
have the same cycle-space rank [6]. A cycle-free TG is called an acyclic Tanner graph (ATGQG)
and a connected ATG is referred to as a Tree Tanner graph (TTG).

Example 1 Let C be the (12,7) binary linear code with generator and parity check matrices
M and H, respectively, given below

111100000000
001111000000 101010101010
000011110000 111100000000
M = | 000000111100 |, H =] 000000001111 1|. (1)
000000001111 000000110000
101010110000 110011001100

000010111010

The TG associated with H is given in Fig. 1. This is a MTG since the check matrix H cannot

be replaced by another check matrix with fewer nonzero entries.
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Figure 1: The minimal Tanner graph of linear block code C' speccified by the generator and
check matrices M and H, respectively, given by (1).



As the Wagner rule can only be applied to acyclic TGs, we choose the subcode Cy of C' with

the following generator and parity check matrices My and Hy, respectively

101010101010 |
111100000000 110000000000
001111000000 001100000000
My = | 000011110000 |, Hy = | 000011000000 | . (2)
000000111100 000000110000
000000001111 000000001100
| 000000000011 |

The corresponding TG is shown in Fig. 2a. Following the method of [7], the code C' is repre-
sented by four copies of this TTG with parity node values determined by the generator matrix
M, H} denoted by

101010101010 |
110000000000

101010110000 ] 001100000000 { Pr PL P2 Ps Pi P p6]

000010111010

000011000000 | =
000000110000
000000001100
000000000011

Mpg = MlHé = [

which is the generator of the parity space.

Figure 2: A- The minimal Tanner graph of linear block code Cy with generator and check
matrices My and Hy, respectively, given by (2). B- The minimal 3-section trellis diagram of the
parity space with generator matrix Mps given by (3).

Ignoring the root parity p,, this parity space is a (6,2) linear code and is represented by the
3-section minimal trellis diagram shown in Fig. 2b. This trellis together with the TG in Fig. 2a
is called a Tanner-graph trellis (TG-T) representation of C.

The TG and the trellis should be in forms that allow low complexity implementation of the
Wagner rule and the Viterbi algorithm, respectively. In this regard, the TTG should be similar
to the MTG of the code (n,n — 1,2) @ (m,1,m) for some m and n. The MTG of the code
(n,n—1,2) @ (m, 1, m) has n branches each of length m. Due to this property, these codes are
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called uniform generalized single parity (UGSP) codes [7]. The TG in Fig. 2 is the MTG of the
(6,5,2) ® (2,1,2) UGSP code.

A block code with a MTD such as the trellis shown inFig. 2b is called a multilevel parity
code. To be precise, if A;,2 =1,...,n is a sequence of matrices of rank r over I}, then the code

C with the following generator matrix M is called an r-level parity check code,
A Ay

Ay As
M= . (4)

For instance, the previous (6,2) parity space code is a 1-level binary parity code. Although
the Viterbi decoding algorithm is usually applied when decoding a code using its MTD, the
multilevel parity codes can be decoded more efficiently by applying some elimination techniques

on their MTDs [7, 22].

2.2 The (24,12,8) and (32,16,8) quadratic codes

In [26], the (24, 12,8) Golay Code Ga4, represented by generator matrix Mayy = [(6,5,2)® (4, 1,4)]+

[ 1100 1100 1100 1100 0000 0000 ]
1010 1010 1010 1010 0000 0000
0000 0000 1100 1100 1100 1100
M, = | 0000 0000 1010 1010 1010 1010 (5)
0110 0000 0110 0000 1100 1010
0000 1100 0000 1100 0101 0110

1000 1000 1000 1000 1000 0111

was decoded by projecting Go4 on the quaternary hexacode Hg given by

] : (6)

The 5-dimensional UGSP code (6,5,2) @ (4,1,4) is a maximal acyclic subcode of Gy and
has the MTG shown in Fig. 3a. The 3-section MTD of the corresponding parity space Mpg
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consists of eight structurally identical parallel trellises, one of which is given in Fig. 3b.
Following the work of Vardy and Be’ery [26], a similar two level decoding technique was
presented by Yuan et al. [28] for decoding the (32,16,8) QR code by projecting the code onto



Figure 3: a. 5-dimensional acyclic subcode (6,5,2) @ (4,1,4) of the Golay code Ga4. b. One
of the 8 parallel 3-section regular subtrellises of the trellis associated with the corresponding
parity space Mps.

the (8,4,4) quaternary code with generator matrix

1000 @ w 0 1
01000 o 1 w

Gb_OOlOwle (7)
0001 @ 0 @ 1

In [28] the representation of the code specified by the generator matrix Msy := [(8,7,2) @ (4,1,4)]+

M, was employed where

[ 0101 0000 0110 1010 1100 0000 0000 0000 7
0011 0000 0101 0011 0110 0000 0000 0000
0000 0101 1111 1001 1010 1100 0000 0000
0000 0011 0000 1010 1100 0110 0000 0000
0000 0000 0110 0000 1100 0110 1100 0000 (8)
0000 0000 0011 0000 1010 0011 1010 0000
0000 0000 0000 0101 1100 0000 0011 1010
0000 0000 0000 0011 0110 0000 1001 1100
0001 1000 1000 0001 1000 1011 1101 1000

M,

The UGSP code (8,7,2) @ (4,1,4) is a maximal acyclic subcode of the (32,16,8) QR code.

2.3 Pless-type projection

As mentioned previously, the (24,12,8) and (32, 16,8) codes have been decoded by projecting
them onto quaternary codes [21, 26, 28].
Each element of Fy = {0, 1, w, @}( where w? = ©, ©* = w, and w+® = 1) can be expressed

in four distinct ways as binary linear combinations of the elements of Fy. For instance

w = 0x040x1+1xw+0xw
Ix04+1x14+0xw+1xb
Ox04+1x14+0xw+1xw
Ix04+0x14+1xw+0xo.
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Table 1: Even and odd interpretations of the elements of Fj.

001 10 10 10 010 01 01 o1
1101 10 01 01 1101 10 01 01
w |01 01 10 01 w |01 01 10 01
w|01 01 01 10 w|01 01 01 10

0 1 w 0 1 w

Even Interpretations Odd Interpretations

This induces an equally sized partition of Fy which is shown below. A representations is called
even or odd depending on the number of nonzero components of the associated binary 4-tuple.
Each element of F; has two even interpretations and two odd, as shown in Table 1. In this way

a binary sequence of length 4m may be considered as a quaternary sequence of length m.

Definition 1 (Pless-type projection) Let C; and C4 be binary and quaternary linear codes
of lengths 4m and m, respectively. According to [21, 26, 28], (4 is called the Pless-type
projection of the binary linear code C if:

(1) The quaternary expression of any codeword of (5 is a codeword of Cly;

(2) The components of any projection are all even or all odd interpretations;

(3) In the quaternary projection of a codeword of Cy, the number of nonzero coefficients of 0 € Fy

is even (odd) if the components of the corresponding projection are even (odd) interpretations.

For instance in the matrix M; given by (5) the last row is a quaternary sequence of length
6 all of whose components are odd, while the other rows are sequences of length 6 with even
components. As for the third condition, the number of components starting with ‘1’ in the last
row is 5 (odd number) and for the other rows this number is even.

The projection of Gy4 on the hexacode Hg satisfies the properties of Definition 1, but the
projection of the (32,16,8) QR code [28] on the quaternary code with generator matrix (7} does
not satisfy the third condition. This can be noticed from the last row of matrix M; given by (8)
derived from Theorem 1 of [28]. This does not significantly affect the decoding process. Due
to this failure the root parity of the associated TG-T takes only ‘0’ in contrast with that of Goy
in which the root parity is ‘1" for half of the cosets and ‘0’ for the other half.

As the first two conditions of Definition 1 are enough for implementation of the decoding

method given in [21, 26, 28], we may remove the third condition and use the following definition.

Definition 2 (Projection) A linear code C,, ¢ a power of 2, over F} is called the projection

of the binary linear code (s if:



(1) The expression of any codeword of C in terms of sequences over Fj is a codeword of Cl;

(2) The components of any projection are all even or all odd interpretation.

2.4 The Connection between the TG-T representation and
the Pless-type projection

It has been shown in [7] that the decoding methods given in [21, 26, 28] lie in the framework
of efficient use of the TG-T representation of the codes. When decoding using a TG-T rep-
resentation of the code, both the maximal acyclic subcode and the MTD of the associated
parity space have crucial roles. As shown in [7], the existence of the UGSP (6,5,2) @ (4,1,4)
and (8,7,2) @ (4,1,4) codes in the (24,12,8) and (32,16,8) codes, respectively, have made it
possible to define their Pless-type projections and to decode them efficiently.

The existence of a Pless-type projection for the (48,24,12) QR code code has been an open
problem in the literature [26, 28]. The remainder of this paper will consider the structure of

this code and solve this problem.

3 The (48,24, 12) quadratic residue code

In this section we show that the (48,24,12) QR code does not have a Pless-type projection
and that there are three, up to equivalence, (48,24, 10) codes having this property. A decoding
method for the (48,24, 12) code is provided which shows a 15% improvement compared to the
trellis based decoding method presented in [20].



The (48,24,12) QR code, denoted by C4s, has a generator matrix Mys, given by

111111 111111 000000 000000 | 000000 000000 000000 000000
000000 111111 111111 000000 | 000000 000000 000000 000000
000000 000000 111111 111111 |000000 000000 000000 000000
000000 000000 000000 000000 | 111111 111111 000000 000000
000000 000000 000000 000000 | 000000 111111 111111 000000
000000 000000 000000 000000 | 000000 000000 111111 111111
000111 111000 000111 111000
100001 111001 | 010111 010010
010010 111010 { 100111 100100
000111 111000 000111 111000
011100 011111 011010 011001 | 011000 000000
001110 110111 010011 110010 | 110000 000000 (9)
000011 011011 010001 001100 | 000011 000000
000001 001110 001101 101001 | 000110 000000
000000 010111 000101 100111 |101110 110000
000000 001111 000110 010111 | 110011 011000
001001 010111 [ 010100 010100 011000 000000
000011 011110 [ 001001 110011 010111 000000
000000 110000 | 001100 010100 011011 110000
000000 011000 [ 011010 110010 001110 100000
000000 000101 | 001010 110011 101000 010010
000000 000011 | 010100 010001 001111 100100
000000 000110 001010 010111 | 100111 000110 010100 000000
000000 000011 100111 100111 |111100 010111 000110 000000

where the blank spaces denote zeros. The (48,6, 12) code C'{y with generator M, given by the
first six rows of Mg, has parity matrix HY := H & H where

H = (4,1,4) @ [100000] + T @ (6,5,2).

Mg is divided into two halves by the vertical line, and each half generates the same (24, 20, 2)
code. It is clear that the 4 six-bit sections of any codeword of the (24,20,2) code are either
all of even weight or all of odd weight. Therefore, the (24,20,2) satisfies the conditions of
Definition 2. Accordingly, the structure of M,s is suitable for decoding Cyg in a way similar to
that given for the (24,12,8) and (32,16,8) QR codes. However, instead of Fy, we require Fig
generated by a* + a4+ 1 = 0. The set FY is partitioned into 16 sets, each of which contains 4
elements, and each set is associated with an element of Fig, as shown below. Each element of
Fi¢ has four distinct representations as binary combination of the elements 0, 1, a, o?, o, and
a'?. Each element has two odd and two even interpretations, as shown in Table 2.

Let M,? denote the matrix with rows consisting of the last 18 rows of Mys. The parity space



Table 2: Even and odd interpretations of the elements of Fig.

0 (10 01 01 01 01 10 10 10 10 10 10 O1 10 10 01 10

1 (01 10 01 01 01 10 01 01 01 10 01 10 10 10 10 10

« (01 01 10 01 01 10 10 01 01 01 10 10 01 10 01 oO1

o |01 01 01 10 01 01 10 10 10 10 01 10 01 10 10 01
o® |01 01 01 01 10 01 01 10 01 01 10 01 01 10 10 10
o101 01 01 01 01 01 01 01 10 01 01 01 10 01 01 01
0 1 o & o ol o8 o o &f o ald ol gz o8 o

Odd Interpretations

0 (01 10 10 10 10 01 01 01 01 01 01 10 01 01 10 O1

1 (01 10 01 01 01 10 01 01 01 10 01 10 10 10 10 10

« (01 01 10 01 01 10 10 01 01 01 10 10 01 10 01 oO1

o |01 01 01 10 01 01 10 10 10 10 01 10 01 10 10 01
o® |01 01 01 01 10 01 01 10 01 01 10 01 01 10 10 10
o101 01 01 01 01 01 01 01 10 01 01 01 10 01 01 01
0 1 o & o ol o8 o o &f o ald ol gz o8 o

Even Interpretations
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HEMJS is given by

Pl Pux Peg Pt Pugr | Po| Paua Pas Pss  Phuag
0 (00100 00100 00100 o0010014 O

0 10001 00101 0 [11100 11011

1 11011 00111 0 [10100 10110

0 0 (00100 00100 00100 00100
0 [10010 10000 10111 10101 0 | 10100 00000

0 (01001 01100 11010 01011 1 | 01000 00000

0 (00010 10110 11001 010101 O {00010 00000

1 | 00001 01001 01011 11101 0 (00101 00000

1 | 00000 11100 00111 10100 | O | 11001 01000 . (10)
0 (00000 01000 00101 11100 1 | 01010 10100

0 01101 11100 0O |11110 11110 10100 00000
0 00010 10001 1 01101 01010 11100 00000
1 00000 01000 1 {01010 11110 10110 01000
0 00000 10100 O (10111 01011 01001 10000
0 00000 00111 0 (01111 01010 11100 11011
0 00000 00010 1 | 11110 11001 01000 10110
0 (00000 00101 O1111 11100 1 {10100 00101 11110 00000
0 (00000 00010 10100 10100 1 | 00010 11100 00101 00000

The MTG of C% is given in Fig. 4. P,y and P, are the values of the two root parities, while
the binary length 5 sequence P, ; gives the values of the check nodes on the sth branch of the
gth tree. In the decoding process, a Gray code with 32 elements is employed.

Figure 4: The minimal Tanner graph of the code with generator matrix MJ,.

Since the two root parities P,y and P,; are not independent, the decoding process becomes
complex when dealing with the parity space given by (10). As a result, we get only about a
15% improvement in complexity compared with trellis decoding of [20].

At this stage, we consider another interesting generator matrix of the (48,24,12) code. The
theory of tail-biting trellises has been given in [3]. A tail-biting 16-state trellis representation
for the (24,12,8) Golay code Gz4 was given in [3], and this can be used to construct a Type II

convolutional code. Following this work, Koetter and Vardy constructed a tail-biting generator
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matrix Gy for the (48,24,12) code which appeared in [18]. This generator matrix has been
used to construct a Type II convolutional code [18]. Although Gy is important to the con-
struction of Type II convolutional codes and tail-biting trellises, it is not better than M,s as far
as decoding complexity is concerned. A 3-section trellis diagram representing G'xy consists of
256 distinct structurally identical subtrellises, each of which has 256 states at time indices 1 and
2. A 3-section trellis corresponding to generator Myg consists of only 64 structurally identical
subtrellises each having 256 states at time indices 1 and 2. Thus the state complexity of Mg
1s less than that of Gxy. Another difference between these two matrices 1s that Gy does
not have a large subcode with a uniform acyclic Tanner graph. This is necessary for efficient
decoding using the technique given in [7].

Suppose a version of the (48,24,12) QR code includes the UGSP code Cjg := (8,7,2) ®
(6,1,6) with generator matrix denoted by My. Denote the code given by this representation as
C. Further, suppose that the projection of C' on F¥ produces a length 8 linear code B over Fig
such that B is the projection of C' in the sense of Definition 2. We show that B is an (8,4,5)
MDS code and the projection is not a Pless-type projection, in the sense of Definition 1. In

other words, C' does not have a Pless-type projection on F¥,.
Lemma 1 The base code B has minimum Hamming distance 5.

Proof We show that the existence of a codeword of weight 4 results in a contradiction. Assume
C has a generator matrix Mo+ M, where M, generates (8,7,2) @ (6,1,6). To show that B has
minimum Hamming distance 5, it is enough to show that no row of M. may contain more than
3 blocks of zeros of length 6, considering the rows as sequences of blocks of length 8 with each
block having 6 bits. Suppose there is a row, say r, in M. consisting of 4 nonzero and 4 zero
blocks. Since B has been assumed to be the projection of C' (in the sense of Definition 2), the
4 nonzero blocks of r must have even binary Hamming weight. On the other hand, it follows
from the minimum Hamming distance of C' and the structure of My that the row r must have

Hamming weight 12. Therefore, the nonzero blocks of r have one of the 3 combinations
{(6,2,2,2), (6,4,2), (4,4,2,2)},

in terms of their Hamming binary weights. However, all these combinations result in a contra-
diction considering the structure of My and the minimum Hamming distance of €. The same

argument rejects the existence of any nonzero vector of weight w < 4 in the base code 5. m
Theorem 1 The base code B over Fig is an (8,4,5) code.

Proof since Fig is a vector space of dimension 4 over Fy with basis {1, a, o?, o?}, any row

of a generator matrix of B corresponds to 4 rows of M.. The matrix M. has 17 rows. One row

12



is left to produce the codewords with blocks of odd binary Hamming weight. The remaining
16 rows have to be partitioned into groups of 4 rows, with each group associated with a row of
the generator matrix of B. Therefore, B has dimension 4. m

From Theorem 1, the base code B is an MDS code and hence has a generator matrix of the
form M = [I4]A4x4], where any square sub-matrix of the 4 x 4 matrix A y4 is nonsingular. We
have already assumed that B is the projection of C' in the sense of Definition 2. It is shown

below that B is not the Pless-type projection of C'.
Theorem 2 The base code B is not a Pless-type projection of C'.

Proof Suppose to the contrary that B is a Pless-type projection. To determine the 4 x 4

matrix Ayy4 consider the codewords of weight 5. Let
S = {1,@,@2,0z3,0z12},

and

_ [ 4 5 113 14
SQ—{oz,oz,---,oz ,aT oty

Consider a codeword ¢ of weight 5 in the base code B with nonzero components S(¢) =
{ay,ay,a3,a4,as}. Applying the even interpretation on this set and considering each com-
ponent as a binary vector of length 6 and weight 2 (see the even and odd interpretations), the
projection of ¢ is a binary sequence of length 48 and Hamming weight 10, which is a contradic-

tion. Therefore from Statement 3 of Definition 1, a necessary condition for ¢ to be a codeword
of C is
1S(e)(Si]=2k+1, 0<k<2. (11)

Under this condition, any binary representation of ¢ satisfying statements 2 — 3 of Definition 1
will result in a binary sequence of Hamming weight at least 12. Conversely, if |S(¢) (N 51| = 2k
then there exists a binary representation for ¢ of Hamming weight 10 that satisfies statements
2 — 3 of Definition 1.

Each row of the matrix M = [I4] A4x4] has Hamming weight 5. It follows from the condition
given by (11) that a row r of the matrix M with the set of nonzero components S(v) =

{1, a1, az, as, as} must satisfy the condition
|S(Bo)(VSi] =2k +1, 0<k <2 (12)

where 3 is a nonzero element of Fig and S(fv) = {3, Bay, Bas, Bas, Bas}. Under the condition

given by (12), a computer search shows that the set {ay,as,as, a4} is precisely one of the

13



following sets

1. {a, o? 13}

2. {a, a® a't}

3. {a? o* o at, all}

4. {a?, o g %, al?l (13)
5. {a*, o o, &}

6. {a’, ozl , ol alt}.

The best (48,24) code obtained with this restriction has minimum Hamming distance 10, and
hence B is not a Pless-type projection of C'. =

We now provide a combinatorial definition for the sets given by (13). Let X be a set with
v elements, called points, and let Y be a set of subsets of X, called blocks. Following [1], the
pair (X,Y) is called a t — (v, k, ) design if
(a) Every block in Y is of size k;

(b) Every t-subset of X is contained in precisely A blocks.

According to this definition, the set X := Fig — Fy (the set of points), together with the six
sets given by (13) (the set of blocks), form a 1 —(12,4,2) design. Note that Fy = {0,1,a”, o'%}.
A 1 —(v,k, ) design is called tactical configuration [1]

There are precisely forty-three (8,4,5) codes, up to equivalence, over Fis generated by
[14] Aax4], where the rows of Ayuy are from 1 — (12,4,2) design given by (13). Three of these
codes generate (48,24) binary codes of minimum dlstance 10, and the rest produce (48,24)
codes of minimum distance 8. These codes are the Pless-type projection of the corresponding
(48,24) binary codes. The generator matrices of the (8,4,5) codes producing (48,24, 10) codes

are [I; B;] where

o’ all o3 g a o o'z oM a2 o ot alt
all o7 ot o3 o ot al? ad o all! ot
By = a3 a4 o7 Qlt By = a2 ot o a® Bs = ot ol a2 ol
all 13 gt o7 alt o2 o8 o all ot o ol

(14)

The corresponding codes are MDS self-dual codes. The weight distributions of the correspond-

ing binary codes are given in Table 3.
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Table 3: Weight distributions of the (48,24,10) self-dual codes.

By By, Bs

Weight  Count Weight  Count
0,48 1 0,48 1
10, 38 576 10, 38 768
12,36 10000 12,36 8848
14,34 52416 14,34 54528
16,32 283959 16,32 284727
18,30 822336 18,30 814848
20,28 2116464 20,28 2123760
22,26 3056832 22,26 3062016

24 4092048 24 4078224

The (48,24) code associated with By has generator matrix My + My, where M; is given by

010001
001111
000101
000011
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000001

001111
011000
010001
010010
010010
001010
000101
000011
000000
000000
000000
000000
000000
000000
000000
000000
011111

011011
000110
001001
010111
011101
001001
010001
010010
010111
001111
000110
000011
000000
000000
000000
000000
100000

011101
000101
101101
100100
001001
010100
000110
001010
001100
011000
000011
010010
010100
001010
000101
000011
111000

011000
010100
110000
100010
001010
100111
100100
110011
001010
010100
010010
011101
000101
010100
000110
001010
100101

15

000000
000000
000000
000000
001100
110000
110110
101000
101101
001001
100111
010100
000110
000101
001100
010100
101111

000000
000000
000000
000000
000000
000000
000000
000000
111100
001010
110000
011000
100111
110011
011101
111001
010011

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
110000
101000
010010
100100
100000

(15)



For this code, the corresponding parity space is given by

Mps =

R O O OO OO oo oo oo o oo oo

11001
01000
00111
00010
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00001

01000
10100
11001
11011
11011
01111
00111
00010
00000
00000
00000
00000
00000
00000
00000
00000
10000

10110
00101
01101
11100
10011
01101
11001
11011
11100
01000
00101
00010
00000
00000
00000
00000
10000

10011
00111
11011
10110
01101
11110
00101
01111
01010
10100
00010
11011
11110
01111
00111
00010
00100

10100
11110
01000
10011
01111
10100
10110
01010
01111
11110
11011
10011
00111
11110
00101
01111
10111

00000
00000
00000
00000
01010
01000
01101
11100
11011
01101
10100
11110
00101
00111
01010
11110
11000

00000
00000
00000
00000
00000
00000
00000
00000
00010
01111
01000
10100
10100
01010
10011
00101
11010

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
01000
11100
11011
10110
10000

(16)

Now we define a particular trellis form [7] which is useful in analyzing the structure of the

parity space given above. Let {Ai}?zl be matrices of the same rank r such that

Ay | As
rank[AEi] —ranklAE)]

rank l

and

Ay A
As As

Consider the linear code ' with generator matrix

[Al

Ay As
As As

|-
)

(17)

A 4-section MTD T of this code is a 3-section trellis as all rows of the generator are active at

time index 2. All three sections of T are complete bipartite graphs and T" has 2" vertices at

time indices 1 and 2. At section 1 <1 <4, the edge labels of the trellis form < A; >, the space

generated by A;. The main property of T'is that any two distinct elements from any two spaces

< A;>and < A; >, 1 <1 # 5 <4, determine a unique path of T'. Let T be a 4-section trellis

whose edge labels at the i-th section, 1 < < 4, form the set 5;. If any two distinct elements

from any two sets S; and S;, 1 <1 # j <4, define a unique path of 7' then we refer to 1" as a

3-section semi-regular trellis.

Considering the (48,24) codes constructed previously, it is obvious from the parity space

generator Mps given in (16) that the space generated by the parities of any of the eight branches
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of the TG has dimension 5. Further, all eight spaces associated with P, = 0 are identical and

generated by
10001
01000
00101
00010

Inspection of Mps with P. = 0 shows that the parity space of any ¢« < 4 consecutive branches
of the TG is @M. The MTD of the parity space consists of two parallel 3-section semi-regular
sub-trellises, one for P, = 0 and the other for P, = 1.

Any generator matrix of the (48,24,12) QR code which contains Cjy can be represented by
a uniform ATG with P. = 0, as with the (32,16,8) QR code [7]. It would have a parity space
with an MTD consisting of two disjoint 3-section semi-regular trellises, precisely as described
above for the (48,24,10) codes. This is because according to Lemma 1 the base code will be
an (8,4,5) code. This together with the rich structure of the edge spaces of the parity space
of the (48,24,10) codes suggests that the decoding process and the decoding complexity of
the three (48,24,10) codes given previously would be precisely the same as for any version of
the (48,24,12) QR code which includes C7, when the TG of C; is applied. Due to the size
and 3-section semi-regular structure of the MTD of the parity space, the worst case decoding
complexity of these (48,24,10) codes is about 399000 real operations. This is a 27% improvement

over trellis decoding using optimal sectionalization [20].

4 Summary

We have presented a method for ML decoding of the (48,24,12) Quadratic Residue Code
based on projecting this code onto a subcode with an Acyclic Tanner Graph [7]. Using this
projection, the code is represented by a combination of a trellis and a Tanner graph. The best
maximum likelihood techniques applied to date in decoding the Hamming codes, Reed-Muller
codes, hexacode, and the extended Golay codes are indeed based on this approach [7]. Unlike
the (24,12,8) Golay code, the (48,24,12) code does not have a Pless-construction which has
been an open question in the literature [26, 28]. More generally, an optimal (48,24) binary
code having a Pless-type construction has minimum distance 10 and up to equivalence there

are only 3 such codes.

Acknowledgment: We would like to thank Mr. A. R. Fazel for his valuable assistance in the

computer programming required in Theorem 2.

17



References

1]

[10]

[11]

E. F. Assmus Jr, and J. D. Key, “Designs and Their Codes,” Cambridge University Press,
1993.

L.R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding of linear codes for mini-
mizing symbol error rate,” IEEFE Trans. Infor. Theory, Vol. 20, Mar. 1974, pp. 284-287.

A. R. Calderbank, G. D. Forney, Jr., and A. Vardy, “Minimal tail-biting trellises: The
Golay code and more,” IEEE Trans. Infor. Theory, Vol. 45, July 1999, pp. 1435-1455.

G. Charbit, H. Manoukian and B. Honary, “Array codes over rings and their trellis decod-
ing,” IEE Proc. Commun., Vol. 143, No. 5, Oct. 1996, pp 241-246.

codes,”

J. H. Conway and N. J. A. Sloane, “Decoding techniques for codes and lattices, including
the Golay code and the Leech lattice,” IEEE Trans. Infor. Theory, Vol. 32, Jan. 1986, pp.
41-50.

R. Diestel, “Graph Theory, Second Edition” Springer 2000.

M. Esmaeili and A.K. Khandani, “Acyclic Tanner graph and maximum-likelihood decoding
of linear block codes,” IEFE Proc. Commun., Vol. 147, No. 6, Dec. 2000, pp. 322-332.

M. Esmaeili, T.A. Gulliver and N.P. Secord, “Quasi-cyclic structure of Reed-Muller codes
and their smallest regular trellis diagram,” IEFE Trans. Inform. Theory, Vol. 43, No. 3,
May 1997, pp. 1040-1052.

T. Etzion, A. Trachtenberg and A. Vardy, “Which codes have cycle-free Tanner graphs?,”
IEEFE Trans. Inform. Theory, Vol. 45, Sept. 1999, pp. 2173-2181.

G. D. Forney Jr.,“The Viterbi algorithm,” Proc. IEEFE, Vol. 61, 1973,pp. 268-278.

M. Fossorier and S. Lin, “Computationally efficient soft decision decoding of linear block
codes based on ordered statistics,” IFEE Trans. Inform. Theory, Vol. 42, 1996, pp. 738—
750.

M. Fossorier and S. Lin, “Generalized coset decoding,” IEEFE Trans. Commun., Vol. 45,
1997, pp. 393-395.

M. Fossorier and S. Lin, “Chase-type and GMD coset decodings,” IKEE Trans. Commun.,
Vol. 48, 2000, pp. 345-350.

18



[14]

[15]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

G.D. Forney, Jr., “Coset codes part II: binary lattices and related codes,” IFEE Trans.
Inform. Theory, Vol. 34, Sept. 1988, pp. 1152-1187.

B. Honary, G. Markarian and M. Darnell, “Low-complexity trellis decoding of linear block
codes,” IKE Proc. Commun., Vol. 142, Aug. 1995. pp. 201-209.

B. Honary, L. Kaya, G. Markarian, and M. Darnell, “Maximum-likelihood decoding of
array codes with trellis structure,” IEFE Proc. Commun, Vol. 140, Oct. 1993, pp. 340-346.

G.B. Horn and F.R. Kschischang, “On the intractability of permuting a block code to
minimize trellis complexity,” IEEE Trans. Inform. Theory, Vol. 42, Nov. 1996, pp. 2042—
2047.

R. Johannesson and P. Stahl, “A note on type Il convolutional codes,” IEEE Trans. Inform.
Theory, Vol. 46, July 2000, pp. 1510-1514.

F.R. Kschischang and V. Sorokine, “On the trellis structure of block codes,” IEFE Trans.
Inform. Theory, Vol. 41, Nov. 1995, pp. 1924-1937.

A. Lafourcade and A. Vardy, “Optimal sectionalization of a trellis,” IEEE Trans. Inform.
Theory, Vol. 42, May 1996, pp. 689-703.

V. Pless, “Decoding the Golay code,” IEEFE Trans. Inform. Theory, Vol. 32, July 1986,
pp. H61-567.

M. Ran and J. Snyders, “Constrained designs for maximum likelihood soft decod-
ing of RM(2,m) and the extended Golay codes,” [EEFE Trans. Commun., Vol. 43,
Feb./March/April 1995, pp. 812-820.

R.A. Silverman and M. Balser, “Coding for a constant data rate source,” IRFE Trans.

Inform. Theory, Vol. 4, 1954, pp. 50-63.

V. Sidorenko, G. Markarian and B. Honary, “Minimal trellis design for linear codes based

on the Shannon product,” IEEE Trans. Inform. Theory, Vol. 42, Nov. 1996, pp. 2048-2053.

J. Snyders and Y. Be’ery, “Maximum likelihood soft decoding of binary block codes and
decoders for the Golay codes,” IFEE Trans. Inform. Theory, Vol. 35, Sept. 1989, pp.
963-975.

A. Vardy and Y. Be’ery, “More efficient soft decoding of the Golay codes,” IEEFE Trans.
Inform. Theory, Vol. 37, May 1991, pp. 667-672.

1996.

19



[27] J.K. Wolf, “Maximum likelihood decoding of linear block codes using a trellis,” [EFEE
Trans. Inform. Theory, Vol. 24, Jan. 1978, pp. 76-80.

[28] J. Yuan, C.S. Chen and S. Ma, “Two-level decoding of (32,16, 8) quadratic residue code,”
IEE Proc. I, Vol. 140, Dec. 1993, pp. 409-414.

20



