
Generalized Tangential Sphere Bound on the ML
Decoding Error Probability of Linear Binary Block

Codes in AWGN Interference
Shahram Yousefi,Member, IEEE, and Amir K. Khandani,Member, IEEE

Abstract

The error probability of Maximum-Likelihood (ML) soft-decision decoded binary block codes rarely accepts
nice closed forms. In addition, for long codes ML decoding becomes prohibitively complex. Nevertheless, bounds on
the performance of ML decoded systems provide insight into the effect of system parameters on the overall system
performance as well as a measure of goodness of the sub-optimum decoding methods used in practice. Using the
so-called Gallager’s first bounding technique (involving aso-called Gallager region) and within the framework of
Tangential Sphere Bound (TSB) of Poltyrev, we develop a general bound referred to as the Generalized Tangential
Sphere Bound (GTSB). The Gallager region is chosen to be a general Hyper-Surface of Revolution (HSR) which
is optimized to tighten the bound. The search for the optimalGallager region is a classical problem dating back
to Gallager’s thesis in the early 1960’s. For the random coding case, Gallager provided the optimal solution in a
closed form while for the non-random case the problem has been an active area of research in information theory
for many years. We prove that for a sphere code the optimum HSRwithin the proposed GTSB is a hyper-cone. This
will climax to the TSB of Poltyrev, one of the tightest boundsever developed for binary block codes, and therefore
terminates the search for a better Gallager region in the groundwork of the GTSB.

Index Terms

Block codes, maximum-likelihood decoding, upper bounds, Gallager bounds, union bound.

I. INTRODUCTION

T HE problem of performance evaluation of linear binary blockcodes with soft decision Maximum-Likelihood
(ML) decoding in Additive White Gaussian Noise (AWGN) interference has long been a central problem in

coding theory and practice. In most of the cases, the derivation of a closed-form expression for the bit or word error
probabilities is intractable. Thus, one usually resorts tobounding techniques for the aforementioned probabilities.

The most commonly used upper bound on the error probability of a digital communication system is theunion
bound. Union bound is in fact an inequality from the class ofBonferroni-type [1] inequalities in probability theory.
These are inequalities that are universally true regardless of the underlying probability space and for all choices
of the basic events. There are various Bonferroni-type upper as well as lower bounds exploited in communication
theory such as KAT bound by Kuai et al. [2] (also see references in [2]). For the calculation of the union bound on
the error probability of a binary block code, one only needs to have the weight enumerating function (spectrum)
of the code which results in much simplicity of calculation.The union bound is quite accurate for high SNR’s
while for other SNR’s, it is a very poor upper bound. For some applications such as concatenated coding schemes
where the inner code is a binary block code, the low-SNR coding gain of the code is needed for the performance
evaluation of the overall scheme which explains the need to have tighter bounds at low SNR regions.

Also, for longer binary block codes ML decoding becomes prohibitively complex. Within this context, tighter
upper bounds on the ML decoding performance of binary block codes used in conjunction with Binary Phase Shift
Keying (BPSK) modulation will provide means of assessing the performance of these codes.

The recent overwhelming attention given to the bounding techniques for performance evaluation of codes is
mainly due to the introduction of some near-Shannon-limit performing schemes. Turbo codes, invented by Berrou
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et al. [3] in 1993, Repeat-Accumulate (RA) codes of Divsalaret al. [4], and Low Density Parity Check (LDPC)
codes of Gallager [5], resurrected by MacKay et al. [6] in 1996 are the best examples. In addition to simulations,
the aforementioned schemes can be analyzed using the union bound which is a very loose measure of performance
for rates above the cutoff rate of the channel [7]. Therefore, there is an increasing demand for tighter bounds on
the ML decoding of such codes above the cutoff rate.

The complexity of the calculation of error probability for ML-decoded BPSK-modulated binary codes is mainly
due to the complexity of the so-called Voronoi or decision regions [8]. In order to find the probability of correct
decision, one needs to integrate a multidimensional Gaussian distribution over the Voronoi region of the transmitted
codeword. One of the first works devoted to the performance ofbinary codes at low signal-to-noise ratios is that of
Posner [9] which mainly revolves around quantized channel,i.e., with hard decision. A belated continuation to the
work of Posner for the un-quantized channel output (soft decision) is that of Chao et. al [10]. In this work, a power
series expansion of the probability of correct decision around zero SNR is used to compute a relatively accurate,
albeit complex, approximation to the word error probability. The complexity of their result is due to the fact that
their expression for the error probability is a function of aparameter which depends on the “global” geometrical
properties of the code.

One important improvement to the union bound is that of Hughes [11]. Hughes represented the complement of
the Voronoi region (all Voronoi regions are congruent to each other for Slepian codes1 [12], [13]) as the union of a
set of truncated polyhedral cones and then cleverly upper-bounded the error probability by replacing those truncated
cones by truncated right circular cones with the same solid angle for which the corresponding probabilities are
larger but can easily be evaluated. Since the codewords of a binary code2 used with binary modulation are not
spread uniformly on the Euclidean sphere, Hughes’ bound cannot be asymptotically tight. Hughes work launched
a number of similar works with applications from linear binary block codes to coded modulation and concatenated
codes both in AWGN and fading environments [15]–[17].

II. B OUNDS BASED ONGALLAGER ’ S FIRST BOUNDING TECHNIQUE

Many other bounds, as noted by Divsalar [18], “essentially use a general bounding technique developed by
Gallager [5]”. In this method, Gallager bisects the error probability to joint probability of error and noise residing
in a regionℜ (referred to as theGallager region) plus joint probability of error and noise residing in the complement
of ℜ; whereℜ is a volume around the transmitted codeword. Divsalar [18] refers to this as “Gallager’s First Bounding
Technique” (GFBT). In original Gallager’s workℜ is a complicated region inRn.

For instance, the well-known Tangential Bound (TB) of Berlekamp [19] uses Gallager’s first bounding technique
combined with union bound to provide a significantly tightened bound than the conventional union bound at low
SNR’s. This is achieved by separating the radial and tangential components of the Gaussian noise with a half-space
as the underlying Gallager region.

Herzberg and Poltyrev [15] use GFBT to derive one of the tightest upper bounds.ℜ is chosen to be a hyper-sphere
with radiusr and then the bound is tightened overr. This is referred to as the Sphere Bound (SB) of Herzberg et
al. They also apply their method to Block-Coded Modulation (BCM) schemes communicated over AWGN channel.
BCM schemes involving MPSK (M-ary Phase Shift Keying) constellations are analogous to binary codes along with
BPSK modulation as both are sphere signal sets, i.e., all thesignal points reside on the surface of a hyper-sphere
and therefore have the same energy.

The Tangential Sphere Bound (TSB) proposed for binary codesby Poltyrev [16] and for MPSK BCM schemes
by Herzberg et al. [17] also uses GFBT whereℜ is a conical region. It is proven in [17] that the Berlekamp’sTB
is not tighter than TSB and de facto TSB is one of the tightest bounds to-date.

The tightening of the upper bounds on the ML decoding error probability of binary block codes within the format
of the GFBT has been an evolutionary process: an evolution ofthe Gallager region from a half-space in the TB
(Fig. 1-a) to a sphere in the SB (Fig. 1-b) and eventually to a cone in the TSB (Fig. 1-c). As it can be seen from
Fig. 1, the common point between all of these regions is theirazimuthal symmetry along the radial axis, namely
z1 here. For sphere codes, this is essentially the axis joiningthe transmitted signal on the surface of a sphere to
the center of the sphere at the origin.As a result, the cross sections of the Gallager region along the symmetry

1A Slepian signal set is a Geometrically-Uniform (GU) [14] and equi-energy (sphere) signal set.
2In this correspondence by a binary code we mean a linear binary block code.
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Fig. 1. Gallager regions: a) a half-space in the TB, b) a hyper-sphere in the SB, c) a hyper-cone in the TSB, and d) a hyper surface of
revolution in the GTSB.z1 is the azimuthal symmetry axis.

axis are spheres. The difference between these regions, however, stems fromthe fact that the aforementioned cross
sections radii are different functions ofz1; the best of which being a linear function ofz1 in the TSB. However,
the question still remained unanswered as to what boundary or region would result in the tightest bound in this
formulation.

In this article, we extend the TSB to the so-called Generalized Tangential Sphere Bound (GTSB) by generalizing
the Gallager region to a generic one encompassing all of the above cases. This will be a so-called Hyper Surface
of Revolution (HSR) [20], [21] shown in Fig. 1-d and explained in the following section.

Using variational calculus, we obtain the optimal Gallagerregion within the resulting framework. This is shown
to be a a right circular hyper-cone which coincides with the TSB of Poltyrev. This has long been an important
open problem going back to Gallager’s thesis since early 1960’s where within his first bounding technique, GFBT,
he introduced a function of observation space (denoted byf(y) in the original work) to be optimized to tighten the
bound [5], [7]. All other versions of the upper bounds based on GFBT (even those with one or more optimization
parameters) are only asymptotically tight for random codes(as they achieve the capacity limits asn → ∞). For
nonrandom codes, as the underlying Gallager regions (whichare optimized for random codes) are not optimum,
the proposed bounds are not tight [18]. Using variational calculus, Gallager found the optimumf(y) which was
not in a closed form but reduced to a closed form for random codes. Divsalar [18] shows that the optimization of
the Gallager region within the GFBT is equivalent to that off(y).

Albeit classically deemed an important problem, there has not been any mathematical proof for the optimality
of the cone in the framework of the TSB. This proof is doubly important thanks to the wide spread applications
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of the TSB in various schemes. The convenience of relying solely on the code spectrum besides its extra tightness
for lower rate codes, has made the TSB a good candidate for longer codes such as Turbo codes and LDPC codes.

Sason and Shamai [22] elaborated on TSB and applied it to parallel and serial concatenated Turbo codes using
their ensemble spectrum and also extended the bound from word error probability to bit error probability. Their
contribution to the TSB of Poltyrev is three-fold. First, they reestablished the validity of the bound by showing that
for all instances of practical interest the probability of the lower half cone or lower nappe (i.e., when the radial
component of the noise is smaller than negative of the root square of the signal energies) is negligible compared
to the upper nappe and the overall error probability. Second, they provided rigorous proof for the existence and
uniqueness of a solution for the optimization equation involved. And third, they prove that it is advantageous to
apply the TSB to the whole codebook as opposed to the partitioned codebook as any partitioning of the signal set
will yield looser results.

TSB has also been applied to LDPC codes [23] as well as to blockcodes communicated over interleaved fading
channels [24].

III. PRELIMINARIES

Consider a binary codeC = {c0, c1, ..., c2k−1} with parameters(n, k, dmin), to be used along with BPSK
modulation (antipodal signaling) on an AWGN channel. The resulting signal set will be

S = {s0, s1, ..., s2k−1}

wheresi = m(ci) ∈ R
n. For ci = (ci1, ci2, ..., cin),

m(ci) = (m(ci1),m(ci2), ...,m(cin))

wherem(α) =
√

Es(2α − 1), α ∈ {0, 1}, andEs is the symbol energy3. The resulting signal set is a sphere and
Slepian signal set.

As binary codes and binary modulation arematched in the sense of Loeliger [25], Euclidean distance which is
the performance measure in the AWGN case will be proportional to Hamming distance4. In particular for BPSK,
denoting the Euclidean distance between two signal pointssi andsj by δ(si, sj) or simply δij , we have:

δ2
ij = δ2(si, sj) = ‖si − sj‖2 = 4Esd(ci, cj) = 4REbd(ci, cj) (1)

whereR = k/n is the binary code rate,‖.‖ is the usual Euclidean norm,Eb is the information bit energy, and
d(, ) is Hamming distance. Assuming AWGN interference, the output of the channel will be a vectorr = si + n,
wheren is ann-dimensional vector whose elements are independent zero-mean Gaussian random variables with a
variance ofσ2. Probability of word error for communicating one of2k messages inS through an AWGN channel,
Pw(E), will be:

Pw(E) =
2k−1
∑

i=0

P (E | si)P (si). (2)

whereP (E | si) is the word error probability given the transmission ofsi. If the resultingGeometrically-Uniform
(GU) signal set [14] is equi-probable, the ML optimum decoding rule will actually reduce to minimum Euclidean
distance decoding strategy and

Pw(E) = P (E | si) (3)

wheresi can be any signal point. We assume thats0, signal corresponding to the all-zero codeword,c0, has been
transmitted.

The difficulty in calculatingP (E | si) is due to the complexity of thedecision or Voronoi regions [8] of the
signal points which are convex polytopes inR

n [26].

3Without loss of generality,Es is chosen to be unity.
4This proportionality does not hold in general for other signal sets.
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IV. GENERALIZED TANGENTIAL SPHEREBOUND USING A HYPER-SURFACE OFREVOLUTION

GTSB is primarily based on the Gallager’s first bounding technique. Given a transmitted signal, the word error
probability can be decomposed as in

Pw(E) = P{E, r ∈ ℜ} + P{E, r /∈ ℜ}
= P{E, r ∈ ℜ} + P{E | r /∈ ℜ} · P{r /∈ ℜ}
≤ P{E, r ∈ ℜ} + P{r /∈ ℜ}

(4)

wherer is the received signal vector andℜ, referred to as the Gallager region, is an appropriate region around
the transmitted signal point. The choice of regionℜ is of utmost significance in this bounding method. Different
choices of this region have resulted in various different tight bounds in different ranges of signal-to-noise ratio.
Examples of the Gallager region which have resulted in the tightest bounds include spheres [15] and right circular
cones [16]. Motivated by the sensitivity of the bounds on thechoice of Gallager region, we seek to find an optimum
volume within the discussed playground while keeping the bound analytically tractable. In general, to have a tight
bound for all ranges of signal-to-noise ratio, one would like to choose a regionℜ which is as close as possible-in
geometrical sense-to the Voronoi regions. Our general bound is primarily for a sphere code of which all of the
Voronoi regions are polyhedral cones having a single vertexat the origin of then-space and extending infinitely
in some direction [13], [26].
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Fig. 2. Geometry of a surface of revolution:x = r(y) rotates about the y axis to produce a surface with azimuthal symmetry along y.

At this point, as GTSB is developed geometrically, we start with an introduction to the geometry (analytic)
required for the bound to transpire. GTSB, similar to TSB, isstructured based upon the premise of multiple levels
of separation of noise components from the rest of the noise vector, the first of which being the radial component
of the noise. This is the projection of the noise vector alongthe−→

s0o (see Fig. 2). The simplicity of the TB, SB, and
TSB (and as we will see GTSB) is in fact due to the shape and properties of the underlying Gallager regions. For
this, only geometrical bodies with azimuthal symmetry along this radial vector are sought (as in the aforementioned
bounds). In this fashion, the spherical symmetry of the Gaussian noise would lend itself to the simplicity of the
calculation of the bound.

Definition: A surface of revolution is a surface generated by rotating a 2-dimensional curve about an axis [27].
Examples of surfaces of revolution include cone, cylinder,hyperboloid, paraboloid, and sphere. The important

characteristic trait of all these-consequential in our work-is their azimuthal symmetry [20]. This translates to having
sphere cross sections along the symmetry axis. This last property can be easily extended algebraically to higher
dimensions.

In n-dimensional space, the following expression algebraically describes a body with azimuthal symmetry along
the xn axis in Cartesian coordinates:

x2
1 + x2

2 + · · · + x2
n−1 = r2(xn) (5)

wherer(.) is an arbitrary function characterizing the cross sections[21].
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The body defined in (5) will be referred to as a Hyper Surface ofRevolution (HSR) whose azimuthal
(symmetry/rotation) axis isxn [28]. For a simpleright circular5 n-cone, with xn as its axis and its apex at
the origin,r(xn) = αxn; whereα is a constant scaling the solid angle of then-cone6 [17], [22]. r(xn) = α (α a
constant) corresponds to a hyper-cylinder. A paraboloid isa surface of revolution of a parabola with the general
r(xn) =

√

|αxn| (α a constant). Sphere accepts the formulation in (5) with

r(xn) =
√

α2 − x2
n, |xn| ≤ |α|, α a constant.

Many of the other tight bounds developed for binary codes also use geometrical bodies fitting into the general
framework of the (5) such as those in [15]–[17] which use conical or spherical regions.

V. EXPANSION OF THEBOUND

Separating the radial component of noisez1 (noise in the direction−→s0o) from the rest of the noise vector, one
can expand the word error probabilityPw(E) as such:

Pw(E) =

∫ +∞

−∞
P (E|z1)fz1

(z1)dz1 (6)

wherefz1
(z1) is the zero-mean Gaussian probability density function (pdf) with a variance ofσ2.

We choose the Gallager regionℜ to be an HSR with an azimuthal axisz1 (see Fig. 3) and a general function
r(.) to be optimized shortly. Within this groundwork with a euclidean weight enumerating (ewe) function

ewe(w) =

n
∑

j=1

Ajw
δj (7)

whereAj is the number of signal points at a Euclidean distance ofδj = 2
√

dj from s0. Thus, we have:

P (E|z1) ≤ min
r(z1)







∑

k:βk(z1)<|r(z1)|

Ak · P (Ek|z1, y ≤ r2(z1)) + P (y > r2(z1))







(8)

wherey =
∑n

i=2 z2
i is a random variable with Chi-square distribution with(n − 1) degrees of freedom [29], i.e.,

fy(y) =
1

2
n−1

2 Γ(n−1
2 )σn−1

· e− y

2σ2 y
n−1

2
−1U(y) (9)

whereΓ(.) andU(.) are the complete gamma function and unit step function, respectively, Ek is the error event
that the received vectorr is closer tosk (assumingdk = d(ck, c0)), than the transmitteds0, that is,

Ek = {‖r − sk‖ ≤ ‖r− s0‖|s0} (10)

andβk(z1), as seen in Fig. 3, is the projection of the perpendicular bisector hyper-plane betweens0 and sk onto
the z1 − z2 plane, that is, the straight line

βk(z1) =

√
n − z1

√

n
dk

− 1
. (11)

βk(z1) is in fact the only entity in the development of the bound thatsolely applies to sphere constellations, hence,
making the bound limited to the equi-energy signal sets.

Now, by further separating the tangential component of noise z2 (z2 ⊥ z1) from the complete noise vector we
have,

P (Ek|z1, y ≤ r2(z1)) = P (βk(z1) < z2 < |r(z1)|, y1 ≤ r2(z1) − z2
2) (12)

5As opposed to other types of cones such as elliptic etc. For anelliptic cone, the cross sections are ellipses instead of spheres (circles).
Right, as the apex is right above the center of the base.

6From this point on, by cone we mean a right circular cone.
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z2

z1

r(z1)

√
no

βj(z1)

δj0/2

s0

sj

Fig. 3. Geometry of the general tangential sphere bound. Thez1 − z2 plane is defined by the three points: origino, s0, andsk.

wherey1 is a Chi-square distribution with(n − 2) degrees of freedom

fy1
(y1) =

1

2
n−2

2 Γ(n−2
2 )σn−2

· e−
y1
2σ2 y

n−2

2
−1

1 U(y1). (13)

Therefore, the overall bound in (6) can be written as

Pw(E) ≤ min
r(z1)

{

+∞
∫

−∞

[

∑

k:βk(z1)<|r(z1)|

(

Ak ·
|r(z1)|
∫

βk(z1)

fz2
(z2) ·

r2(z1)−z2
2

∫

0

fy1
(y1)dy1 · dz2

)

+

+∞
∫

r2(z1)

fy(y)dy
]

fz1
(z1)dz1

}

(14)

wherez2 as well asz1 is a zero-mean Gaussian random variable with a varianceσ2.
Theorem 1: The bound in (14) is minimum for anr(z1) which is a linear function of(z1 −

√
n).

Proof: Defining:

F [r(z1)] =

+∞
∫

−∞

[

∑

k:βk(z1)<|r(z1)|

(

Ak ·
|r(z1)|
∫

βk(z1)

fz2
(z2) ·

r2(z1)−z2
2

∫

0

fy1
(y1)dy1 · dz2

)

+

+∞
∫

r2(z1)

fy(y)dy
]

fz1
(z1)dz1

(15)

the functional in (15) will yield a stationary point if∂F [r(z1)+ǫh(z1)]/∂ǫ|ǫ=0 is zero for all choices ofh(z1) [30].
Using [31]

d

dx

v(x)
∫

u(x)

f(t, x)dt = f(v(x), x)
dv

dx
− f(u(x), x)

du

dx
+

v(x)
∫

u(x)

∂

∂x
f(t, x)dt (16)
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and straightforward manipulations we end up with the equation:

+∞
∫

−∞

( 1√
πΓ(n−2

2 )
·

∑

k:βk(z1)<|r(z1)|

{

Ak ·
|r(z1)|
∫

βk(z1)

(r2(z1) − z2
2)

n

2
−2dz2

}

− 1

Γ(n−1
2 )

· rn−3(z1)
)

·
[

2r(z1) exp

(

−r2(z1)

2σ2

)

h(z1)fz1
(z1)

]

dz1 = 0.

(17)

By a change of variable in the integral overz2, the above can be further simplified to:

+∞
∫

−∞

( 1√
πΓ(n−2

2 )
·

∑

k:
βk(z1)

|r(z1)|
<1

{

Ak ·

cos−1(
βk(z1)

|r(z1)|
)

∫

0

sinn−3 θdθ
}

− 1

Γ
(

n−1
2

)

)

·
[

2rn−2(z1) exp

(

−r2(z1)

2σ2

)

h(z1)fz1
(z1)

]

dz1 = 0.

(18)

In the above, we seek a solution forr(z1) for which the equality is satisfied for any choice ofh(z1) (yielding
a stationary point). This dictates that the term inside the pair of parentheses be independent ofz1 and be brought
out of the external integral overz1. As a result, the equation in (18) will be satisfied for allh(z1) if the fraction
βk(z1)
|r(z1)|

is independent ofz1. Given the behavior ofβk(z1) given in (11), this will require the functionr(z1) to have
the linear formr(z1) = r0(z1 −

√
n) (wherer0 is a constant). The optimization equation in (18) will then reduce

to the term outside the integral overz1:

∑

k:dk≤⌊
r2
0

n

1+r2
0
⌋

Ak ·
θk
∫

0

sinn−3 θdθ =

√
πΓ
(

n−2
2

)

Γ
(

n−1
2

) (19)

where

θk = cos−1

(√

dk

r2
0(n − dk)

)

. (20)

In other words, the optimum Gallager region is a cone whose apex is at the origin and its main axis is along
the radial component of the noise. It should be noted that (19) corresponds to the result of Poltyrev [16]. Also,
the summation upper limit in the optimization equation (19)is only valid for the upper nappe of the cone. For
the lower nappe,βk(z1) is negative and, therefore, the inequalityβk(z1) < 0 < |r(z1)| is satisfied by all existing
Hamming weights of the code from1 to n. As the lower nappe probability has only marginal effect on the total
error probability, the optimization in (19) will be sufficient for all values ofz1.

For linear binary block codes, this is a mathematical proof for what intuition would suggest. The Voronoi region
of a transmitted codeword for a BPSK modulation binary code is the region surrounded by at most(2k − 1) hyper-
planes all going through the origin at least2

√
dmin apart from the communicated point of the constellation. This

is a polyhedral cone with a single vertex at the origin of then-space and unboundedly extending in one (radial)
direction. This provides an intuitive explanation as to whythe optimum Gallager region is a cone. This observation
is not as straightforward as it may seem for non-binary codes. We emphasize that the application of the GTSB
is not limited by any means to linear codes or binary alphabets or GU constellations. In fact, the only property
of the scheme necessary for the bound is its being equi-energy (sphere code) which is required to keep the value
of βk(z1) valid as provided in (11). The bound in (14) applies to any sphere constellation with a givenewe(w)
function (which may depend on the center under consideration). This includes codes over non-binary alphabets,
such as MPSK BCM schemes, as well as those which are not GU. In the latter, while the signal set is still equi-
energy, one can use the proposed method to evaluate the errorprobability given a particular transmitted signal
point; provided that the Euclidean spectrum centered at that point is available.
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VI. CONCLUSIONS

Tightening of the caps on the ML decoding error probability of binary codes from the TB of Berlekamp to the
TSB of Poltyrev has been an evolutionary process: an evolution of the Gallager region from a half-space in the TB
to a sphere in the SB and finally to a cone in TSB, essentially, closing the gap between the Gallager and Voronoi
regions.

The question still remained whether or not changing the boundaries of the Gallager region from a first-order
function of the radial component of noise to any other function would be beneficiary to the tightness of the cap.
This work extends the aforementioned boundary to any general one and proves that for a sphere code one cannot
do better than a cone. This terminates the search for a betterGallager region and therefore a tighter bound within
the format of the GTSB/TSB. The proposed bound and the methodof proof for the optimality of the underlying
Gallager region are also applicable to signal sets over non-binary alphabets and in general to any signal set as long
as the signal points are all of equal energy. The proposed method can also be used to provide tight upper bounds
in other applications such as mismatched decoding [32], [33] and nonuniform signaling [2].
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