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Abstract

The error probability of Maximum-Likelihood (ML) soft-dexsion decoded binary block codes rarely accepts
nice closed forms. In addition, for long codes ML decodingdrees prohibitively complex. Nevertheless, bounds on
the performance of ML decoded systems provide insight ineoeffect of system parameters on the overall system
performance as well as a measure of goodness of the subwoptolecoding methods used in practice. Using the
so-called Gallager’s first bounding technique (involvingacalled Gallager region) and within the framework of
Tangential Sphere Bound (TSB) of Poltyrev, we develop a ggrmund referred to as the Generalized Tangential
Sphere Bound (GTSB). The Gallager region is chosen to be argeHyper-Surface of Revolution (HSR) which
is optimized to tighten the bound. The search for the opti@allager region is a classical problem dating back
to Gallager’s thesis in the early 1960's. For the random gdiase, Gallager provided the optimal solution in a
closed form while for the non-random case the problem has bheeactive area of research in information theory
for many years. We prove that for a sphere code the optimum Wit the proposed GTSB is a hyper-cone. This
will climax to the TSB of Poltyrev, one of the tightest bourelser developed for binary block codes, and therefore
terminates the search for a better Gallager region in tharghwork of the GTSB.
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. INTRODUCTION

HE problem of performance evaluation of linear binary blatkles with soft decision Maximum-Likelihood

(ML) decoding in Additive White Gaussian Noise (AWGN) irfenence has long been a central problem in
coding theory and practice. In most of the cases, the darivaf a closed-form expression for the bit or word error
probabilities is intractable. Thus, one usually resortbaanding techniques for the aforementioned probabilities

The most commonly used upper bound on the error probability digital communication system is thaion
bound. Union bound is in fact an inequality from the classBainferroni-type [1] inequalities in probability theory.
These are inequalities that are universally true regasdbdéghe underlying probability space and for all choices
of the basic events. There are various Bonferroni-type uppevell as lower bounds exploited in communication
theory such as KAT bound by Kuai et al. [2] (also see refergricg2]). For the calculation of the union bound on
the error probability of a binary block code, one only neezlhidve the weight enumerating function (spectrum)
of the code which results in much simplicity of calculatiarhe union bound is quite accurate for high SNR’s
while for other SNR’s, it is a very poor upper bound. For sorppligations such as concatenated coding schemes
where the inner code is a binary block code, the low-SNR apdiin of the code is needed for the performance
evaluation of the overall scheme which explains the needate tighter bounds at low SNR regions.

Also, for longer binary block codes ML decoding becomes floitiiely complex. Within this context, tighter
upper bounds on the ML decoding performance of binary blazles used in conjunction with Binary Phase Shift
Keying (BPSK) modulation will provide means of assessirg prerformance of these codes.

The recent overwhelming attention given to the boundindnnegues for performance evaluation of codes is
mainly due to the introduction of some near-Shannon-lireitfgrming schemes. Turbo codes, invented by Berrou
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et al. [3] in 1993, Repeat-Accumulate (RA) codes of Divsaaal. [4], and Low Density Parity Check (LDPC)
codes of Gallager [5], resurrected by MacKay et al. [6] in @2%e the best examples. In addition to simulations,
the aforementioned schemes can be analyzed using the umimtd bvhich is a very loose measure of performance
for rates above the cutoff rate of the channel [7]. Thereftrere is an increasing demand for tighter bounds on
the ML decoding of such codes above the cutoff rate.

The complexity of the calculation of error probability forlMlecoded BPSK-modulated binary codes is mainly
due to the complexity of the so-called Voronoi or decisiogioas [8]. In order to find the probability of correct
decision, one needs to integrate a multidimensional Ganghstribution over the Voronoi region of the transmitted
codeword. One of the first works devoted to the performandarary codes at low signal-to-noise ratios is that of
Posner [9] which mainly revolves around quantized chariree|, with hard decision. A belated continuation to the
work of Posner for the un-quantized channel output (softsile) is that of Chao et. al [10]. In this work, a power
series expansion of the probability of correct decisioruatbzero SNR is used to compute a relatively accurate,
albeit complex, approximation to the word error probapilifthe complexity of their result is due to the fact that
their expression for the error probability is a function oparameter which depends on the “global” geometrical
properties of the code.

One important improvement to the union bound is that of Hsglié¢]. Hughes represented the complement of
the Voronoi region (all Voronoi regions are congruent toreather for Slepian codé$12], [13]) as the union of a
set of truncated polyhedral cones and then cleverly uppended the error probability by replacing those truncated
cones by truncated right circular cones with the same salgleafor which the corresponding probabilities are
larger but can easily be evaluated. Since the codewords dafiaybcodé used with binary modulation are not
spread uniformly on the Euclidean sphere, Hughes' boundatame asymptotically tight. Hughes work launched
a number of similar works with applications from linear bipdlock codes to coded modulation and concatenated
codes both in AWGN and fading environments [15]-[17].

Il. BOUNDS BASED ONGALLAGER’S FIRST BOUNDING TECHNIQUE

Many other bounds, as noted by Divsalar [18], “essentiallg @ general bounding technique developed by
Gallager [5]". In this method, Gallager bisects the erraskyability to joint probability of error and noise residing
in a regiont (referred to as th&allager region) plus joint probability of error and noise residing in thenggement
of ®; where is a volume around the transmitted codeword. Divsalar [@&]rs to this as “Gallager’s First Bounding
Technique” (GFBT). In original Gallager's work is a complicated region ilR".

For instance, the well-known Tangential Bound (TB) of Beamp [19] uses Gallager’s first bounding technique
combined with union bound to provide a significantly tigredrbound than the conventional union bound at low
SNR'’s. This is achieved by separating the radial and tamgesdmponents of the Gaussian noise with a half-space
as the underlying Gallager region.

Herzberg and Poltyrev [15] use GFBT to derive one of the @ghtipper bound$t is chosen to be a hyper-sphere
with radiusr and then the bound is tightened overThis is referred to as the Sphere Bound (SB) of Herzberg et
al. They also apply their method to Block-Coded ModulatiBEM) schemes communicated over AWGN channel.
BCM schemes involving MPSK (M-ary Phase Shift Keying) ceifiations are analogous to binary codes along with
BPSK modulation as both are sphere signal sets, i.e., abitiral points reside on the surface of a hyper-sphere
and therefore have the same energy.

The Tangential Sphere Bound (TSB) proposed for binary cogeRoltyrev [16] and for MPSK BCM schemes
by Herzberg et al. [17] also uses GFBT whétas a conical region. It is proven in [17] that the BerlekampB
is not tighter than TSB and de facto TSB is one of the tightesinids to-date.

The tightening of the upper bounds on the ML decoding errobability of binary block codes within the format
of the GFBT has been an evolutionary process: an evolutiaieiGallager region from a half-space in the TB
(Fig. 1-a) to a sphere in the SB (Fig. 1-b) and eventually t@mecin the TSB (Fig. 1-c). As it can be seen from
Fig. 1, the common point between all of these regions is thgimuthal symmetry along the radial axis, namely
z1 here. For sphere codes, this is essentially the axis joitliegiransmitted signal on the surface of a sphere to
the center of the sphere at the orighs a result, the cross sections of the Gallager region along the symmetry

1A Slepian signal set is a Geometrically-Uniform (GU) [14]daequi-energy (sphere) signal set.
2In this correspondence by a binary code we mean a linearybbiack code.
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Fig. 1. Gallager regions: a) a half-space in the TB, b) a hgpéere in the SB, c) a hyper-cone in the TSB, and d) a hypéacsuof
revolution in the GTSBz; is the azimuthal symmetry axis.

axis are spheres. The difference between these regions, however, stemstfrerfact that the aforementioned cross
sections radii are different functions ef; the best of which being a linear function ef in the TSB. However,
the question still remained unanswered as to what boundarggion would result in the tightest bound in this
formulation.

In this article, we extend the TSB to the so-called Genegdlizangential Sphere Bound (GTSB) by generalizing
the Gallager region to a generic one encompassing all of lbgeacases. This will be a so-called Hyper Surface
of Revolution (HSR) [20], [21] shown in Fig. 1-d and expladhi& the following section.

Using variational calculus, we obtain the optimal Gallagggion within the resulting framework. This is shown
to be a a right circular hyper-cone which coincides with tHeBTof Poltyrev. This has long been an important
open problem going back to Gallager’s thesis since earl0’s98here within his first bounding technique, GFBT,
he introduced a function of observation space (denoted(lpy in the original work) to be optimized to tighten the
bound [5], [7]. All other versions of the upper bounds based=#-BT (even those with one or more optimization
parameters) are only asymptotically tight for random co@esthey achieve the capacity limits as— o). For
nonrandom codes, as the underlying Gallager regions (wdiehoptimized for random codes) are not optimum,
the proposed bounds are not tight [18]. Using variationddutas, Gallager found the optimurfi(y) which was
not in a closed form but reduced to a closed form for randonesoBivsalar [18] shows that the optimization of
the Gallager region within the GFBT is equivalent to thatfof).

Albeit classically deemed an important problem, there hatsbeen any mathematical proof for the optimality
of the cone in the framework of the TSB. This proof is doublyportant thanks to the wide spread applications



of the TSB in various schemes. The convenience of relyinglgan the code spectrum besides its extra tightness
for lower rate codes, has made the TSB a good candidate fgetarodes such as Turbo codes and LDPC codes.

Sason and Shamai [22] elaborated on TSB and applied it tdlglasad serial concatenated Turbo codes using
their ensemble spectrum and also extended the bound from eroor probability to bit error probability. Their
contribution to the TSB of Poltyrev is three-fold. Firstethreestablished the validity of the bound by showing that
for all instances of practical interest the probability bétlower half cone or lower nappe (i.e., when the radial
component of the noise is smaller than negative of the rooarggof the signal energies) is negligible compared
to the upper nappe and the overall error probability. Sectmly provided rigorous proof for the existence and
uniqueness of a solution for the optimization equation iwed. And third, they prove that it is advantageous to
apply the TSB to the whole codebook as opposed to the pasriicodebook as any partitioning of the signal set
will yield looser results.

TSB has also been applied to LDPC codes [23] as well as to ldodks communicated over interleaved fading
channels [24].

I11. PRELIMINARIES

Consider a binary cod€ = {cg,cy,...,cor_1} with parametergn, k,d,.;»), to be used along with BPSK
modulation (antipodal signaling) on an AWGN channel. Theuténg signal set will be

S= {So,Sl, ...,SQk_l}
Whel’eSZ' = m(cz) € R". Forc; = (Cil,cz'z, ...,Cm),
m(c;) = (m(ci1), m(ciz), -, m(Cin))

wherem(a) = VE;(2a — 1), a € {0,1}, and E, is the symbol energy The resulting signal set is a sphere and
Slepian signal set.

As binary codes and binary modulation amatched in the sense of Loeliger [25], Euclidean distance which is
the performance measure in the AWGN case will be proportitmédamming distanck In particular for BPSK,
denoting the Euclidean distance between two signal paingds; by d(s;,s;) or simply §;;, we have:

52‘23' = 52(51'753') = ||si — Sj”2 = 4E.d(c;, ¢j) = AREyd(c;, c;) 1)

where R = k/n is the binary code rate|.|| is the usual Euclidean nornk;, is the information bit energy, and
d(,) is Hamming distance. Assuming AWGN interference, the ougiihe channel will be a vectar = s; + n,
wheren is ann-dimensional vector whose elements are independent zeemiG@aussian random variables with a
variance ofo2. Probability of word error for communicating one 2f messages i through an AWGN channel,
P,(E), will be:
2k 1
Py(E) =Y P(E|s)P(s:). 2)

i=0
where P(E | s;) is the word error probability given the transmissionsgf If the resultingGeometrically-Uniform

(GU) signal set [14] is equi-probable, the ML optimum decmdrule will actually reduce to minimum Euclidean
distance decoding strategy and

Py(E) = P(E|si) ®3)

wheres; can be any signal point. We assume thgtsignal corresponding to the all-zero codewatg, has been
transmitted.

The difficulty in calculatingP(F | s;) is due to the complexity of theecision or Voronoi regions [8] of the
signal points which are convex polytopesRi [26].

Swithout loss of generalityF; is chosen to be unity.
“This proportionality does not hold in general for other sigsets.



IV. GENERALIZED TANGENTIAL SPHEREBOUND USING A HYPER-SURFACE OFREVOLUTION

GTSB is primarily based on the Gallager’s first bounding téghe. Given a transmitted signal, the word error
probability can be decomposed as in

P,(E) =P{E,rcR}+P{E,r ¢ R}
= P{E,;rcR}+P{E|r¢ R} P{r¢ R} (4)
< P{E,r e R} + P{r ¢ R}

wherer is the received signal vector aigl referred to as the Gallager region, is an appropriate negiound
the transmitted signal point. The choice of regifins of utmost significance in this bounding method. Different
choices of this region have resulted in various differeghttibounds in different ranges of signal-to-noise ratio.
Examples of the Gallager region which have resulted in tijletéist bounds include spheres [15] and right circular
cones [16]. Motivated by the sensitivity of the bounds oncheice of Gallager region, we seek to find an optimum
volume within the discussed playground while keeping thengbanalytically tractable. In general, to have a tight
bound for all ranges of signal-to-noise ratio, one woule Itk choose a regio®® which is as close as possible-in
geometrical sense-to the Voronoi regions. Our general thasirprimarily for a sphere code of which all of the
Voronoi regions are polyhedral cones having a single veatethe origin of then-space and extending infinitely
in some direction [13], [26].

Fig. 2. Geometry of a surface of revolution:= r(y) rotates about the y axis to produce a surface with azimugmahetry along y.

At this point, as GTSB is developed geometrically, we staithvan introduction to the geometry (analytic)
required for the bound to transpire. GTSB, similar to TSBstisictured based upon the premise of multiple levels
of separation of noise components from the rest of the naistov, the first of which being the radial component
of the noise. This is the projection of the noise vector althegs o (see Fig. 2). The simplicity of the TB, SB, and
TSB (and as we will see GTSB) is in fact due to the shape andeptiep of the underlying Gallager regions. For
this, only geometrical bodies with azimuthal symmetry gldmis radial vector are sought (as in the aforementioned
bounds). In this fashion, the spherical symmetry of the Giamsnoise would lend itself to the simplicity of the
calculation of the bound.

Definition: A surface of revolution is a surface generated by rotating a 2-dimensional curvatadro axis [27].

Examples of surfaces of revolution include cone, cylintgperboloid, paraboloid, and sphere. The important
characteristic trait of all these-consequential in ourksigrtheir azimuthal symmetry [20]. This translates to ngvi
sphere cross sections along the symmetry axis. This lagepsocan be easily extended algebraically to higher
dimensions.

In n-dimensional space, the following expression algebriadscribes a body with azimuthal symmetry along
the x,, axis in Cartesian coordinates:

o+ as o =1z (5)

wherer(.) is an arbitrary function characterizing the cross secti@i$.



The body defined in (5) will be referred to as a Hyper SurfaceRefolution (HSR) whose azimuthal
(symmetry/rotation) axis is:, [28]. For a simpleright circular® n-cone, with z, as its axis and its apex at
the origin,»(z,) = ax,; Wherea is a constant scaling the solid angle of theoné [17], [22]. r(z,) = a (« a
constant) corresponds to a hyper-cylinder. A paraboloid @irface of revolution of a parabola with the general
r(x,) = \/|azy,| (o @ constant). Sphere accepts the formulation in (5) with

r(zy,) =va?—a2,  |z,| < |al, o a constant

Many of the other tight bounds developed for binary codes alse geometrical bodies fitting into the general
framework of the (5) such as those in [15]-[17] which use cahor spherical regions.

V. EXPANSION OF THEBOUND

Separating the radial component of noise(noise in the directiorsyo) from the rest of the noise vector, one
can expand the word error probabilify,(E) as such:

+oo
Py(E) = P(E|z1)f2 (21)d2 (6)

—00

where f, (1) is the zero-mean Gaussian probability density functiorf)(pith a variance ofo?.
We choose the Gallager regidhto be an HSR with an azimuthal axis (see Fig. 3) and a general function
r(.) to be optimized shortly. Within this groundwork with a edean weight enumerating (ewe) function

ewe(w) = Z Ajw5j )
j=1
where A; is the number of signal points at a Euclidean distancé;ef 2,/d; from sy. Thus, we have:

PEE) <min Y A P(Bilay < (1) + Pl > 13(0) ®
k:Br(z1)<|r(z1)|

wherey = Y7, z? is a random variable with Chi-square distribution with— 1) degrees of freedom [29], i.e.,

2

o) = —= ey U(y) )

whereI'(.) andU(.) are the complete gamma function and unit step function,ecsgly, F;. is the error event
that the received vectar is closer tos; (assumingd, = d(ck, cp)), than the transmitted,, that is,

By, = {|lr —si|| < |lr —sol[so} (10)

and f,(z1), as seen in Fig. 3, is the projection of the perpendiculaeddis hyper-plane betweesy ands; onto
the z; — 29 plane, that is, the straight line

Bil(z1) = M (11)
N
Bk (z1) is in fact the only entity in the development of the bound thalely applies to sphere constellations, hence,
making the bound limited to the equi-energy signal sets.

Now, by further separating the tangential component ofaejs(z; L z1) from the complete noise vector we
have,

P(Eg|z1,y < 1°(21)) = P(Br(21) < 22 < |r(z1)],y1 < rP(z1) — 23) (12)

SAs opposed to other types of cones such as elliptic etc. Fallimic cone, the cross sections are ellipses instead loérgs (circles).
Right, as the apex is right above the center of the base.
SFrom this point on, by cone we mean a right circular cone.
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Fig. 3. Geometry of the general tangential sphere bound.zThe 22 plane is defined by the three points: originsg, andsg.

wherey; is a Chi-square distribution witfin — 2) degrees of freedom
1 yi =21

S (y1) = T eyt Uy (13)
Therefore, the overall bound in (6) can be written as
Ir(z1)] r2(21)—23
e %{/ kﬁ(z;( >|(Ak' / fali2) / For ) - dza)
—00 k(z1) Br(21) (14)

+oo

[ ] st )
72(21)
wherez, as well asz; is a zero-mean Gaussian random variable with a variadce

Theorem 1. The bound in (14) is minimum for an(z;) which is a linear function ofz; — /n).
Proof: Defining:

Ir(21)] r%(21)—23
/ Z (Ak ’ / f22 (Zg) : / fy1 (yl)dyl : dZ2>
—00 k: ﬁk Z1 <|T(Zl | Bk(zl) 0

b [ ] 1 1)

72(21)

the functional in (15) will yield a stationary pointdfF'[r(z1)+¢eh(z1)]/0¢le=o is zero for all choices of(z;) [30].
Using [31]

(
& [ = re@0 % - @0+ [ s (16)



and straightforward manipulations we end up with the eguati

too Ir(21)]
! . 1
/ (ﬁr(n_—2) DY {Ak' / (r*(21) — Z%)Tzdza} ey -r"‘g(z1)>
h R R AC ? (17)

. [27“(21) exp (— 7‘22(0,221)> hz1) [z, (21)] dz; = 0.

By a change of variable in the integral over, the above can be further simplified to:

Br(z1) )

—1
cos ™ (R

—+00

1 e 1
_4 (7\/%1“("7_2) .k:%d {Ak- O/ sin 30d9} - F("—_1)> a8)
[2741@—2(21) exp (— 7”22(0221)> h(z1) [ (zﬁ}dzl =0.

In the above, we seek a solution fefz;) for which the equality is satisfied for any choice fofz;) (yielding
a stationary point). This dictates that the term inside thie pf parentheses be independentpfand be brought
out of the external integral over;. As a result, the equation in (18) will be satisfied for &fk;) if the fraction
ﬁ"((jll)? is independent of;. Given the behavior of}(z1) given in (11), this will require the function(z;) to have
the linear formr(z1) = ro(21 — /n) (Whererg is a constant). The optimization equation in (18) will theduce
to the term outside the integral over:

0,

T (2=2
S e [t = V(57 (19)

o r(%7%)

kidkSLf:TgJ 0
where
_ dy,

0, = cos™ ! - . 20
K ( r%(n—d;&) (20)
]

In other words, the optimum Gallager region is a cone whosx ap at the origin and its main axis is along
the radial component of the noise. It should be noted that ¢b&esponds to the result of Poltyrev [16]. Also,
the summation upper limit in the optimization equation (i®)nly valid for the upper nappe of the cone. For
the lower nappef;(z1) is negative and, therefore, the inequality(z1) < 0 < |r(z1)] is satisfied by all existing
Hamming weights of the code fromto n. As the lower nappe probability has only marginal effect ba total
error probability, the optimization in (19) will be suffigiefor all values ofz;.

For linear binary block codes, this is a mathematical proofwhat intuition would suggest. The Voronoi region
of a transmitted codeword for a BPSK modulation binary cadhé region surrounded by at m@st — 1) hyper-
planes all going through the origin at leasyd,,;, apart from the communicated point of the constellationsThi
is a polyhedral cone with a single vertex at the origin of thepace and unboundedly extending in one (radial)
direction. This provides an intuitive explanation as to whg optimum Gallager region is a cone. This observation
is not as straightforward as it may seem for non-binary coéss emphasize that the application of the GTSB
is not limited by any means to linear codes or binary alphalbetGU constellations. In fact, the only property
of the scheme necessary for the bound is its being equi-griephere code) which is required to keep the value
of Bx(z1) valid as provided in (11). The bound in (14) applies to anyesplconstellation with a giveawe(w)
function (which may depend on the center under consideratibhis includes codes over non-binary alphabets,
such as MPSK BCM schemes, as well as those which are not Gleltatter, while the signal set is still equi-
energy, one can use the proposed method to evaluate thepeotmability given a particular transmitted signal
point; provided that the Euclidean spectrum centered dtgbimt is available.



V1. CONCLUSIONS

Tightening of the caps on the ML decoding error probabilifybmary codes from the TB of Berlekamp to the
TSB of Poltyrev has been an evolutionary process: an ewoldf the Gallager region from a half-space in the TB
to a sphere in the SB and finally to a cone in TSB, essentidtygirng the gap between the Gallager and Voronoi
regions.

The question still remained whether or not changing the Hatias of the Gallager region from a first-order
function of the radial component of noise to any other fumttivould be beneficiary to the tightness of the cap.
This work extends the aforementioned boundary to any geépnemand proves that for a sphere code one cannot
do better than a cone. This terminates the search for a li&#tager region and therefore a tighter bound within
the format of the GTSB/TSB. The proposed bound and the metfigtoof for the optimality of the underlying
Gallager region are also applicable to signal sets overhioary alphabets and in general to any signal set as long
as the signal points are all of equal energy. The proposetiadatan also be used to provide tight upper bounds
in other applications such as mismatched decoding [32], 488 nonuniform signaling [2].
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