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Statistical Decision Making in Adaptive Modulation
and Coding for 3G Wireless Systems
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Abstract—In this paper, we address the application of adaptive
modulation and coding (AMC) for 3rd-generation (3G) wireless
systems. We propose a new method for selecting the appropriate
modulation and coding schemes (MCS) according to the estimated
channel condition. In this method, we take a statistical decision
making approach to maximize the average throughput while main-
taining an acceptable frame error rate (FER). We use a first order
finite state Markov model to approximate the time variations of the
average channel signal to noise ratio (SNR) in subsequent frames.
The MCS is selected in each state of this Markov model (among the
choices proposed in the 3G standards proposals) to maximize the
statistical average of the throughput in that state. Using this deci-
sion making approach, we also propose a simplified Markov model
with fewer parameters, which is suitable in systems where changes
in the fading characteristics need to be accounted for in an adaptive
fashion. Numerical results are presented showing that both of our
models substantially outperform the conventional techniques that
use a memoryless threshold based decision making.

Index Terms—Adaptive modulation and coding (AMC), first-
order finite-state Markov model, 3rd-generation (3G) code division
multiple access (CDMA), lognormal shadowing, spectral efficiency,
turbo coding.

I. INTRODUCTION

THE USE of adaptive modulation and coding (AMC) is
one of the key enabling techniques in the standards for

3rd-generation (3G) wireless systems that have been developed
to achieve high spectral efficiency on fading channels [1]–[5].
The core idea of AMC is to dynamically change the modulation
and coding schemes (MCS) in subsequent frames with the ob-
jective of adapting the overall spectral efficiency to the channel
condition. The decision about selecting the appropriate MCS is
performed at the receiver side according to the observed chan-
nel condition, with the information fed back to the transmitter
in each frame. Adaptation schemes may aim to adapt to the
variations in the channel quality due to multipath fading (fast
fading), or variations in the average signal to noise ratio (slow
fading). An excellent review of various adaptation methods used
in practice is given in [6]. In the following, we provide a brief
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description of some of the AMC techniques reported in the lit-
erature that are more relevant to the current article. Readers are
referred to [6] and [7] for a more detailed list of references on
this topic.

In [8] and [9], various rate and power adaptation schemes
are investigated. The power adaptation policy found is essen-
tially a water filling formula in time. In [9], a variable power
variable rate modulation scheme using m-ary quadrature ampli-
tude modulation (MQAM) is proposed. The presented results
show that the proposed technique provides a 5–10 dB gain over
variable rate fixed power modulation using channel inversion
and truncated channel inversion techniques (where the received
power is maintained constant), and up to 20 dB gain over the
nonadaptive modulation.

In [10], the channel capacity of various adaptive transmission
techniques is examined. The performance of these techniques
employed with space diversity is also investigated. It is shown
that the spectral efficiency for a fading channel can be improved
by adaptive transmission techniques in conjunction with space
diversity. It is also found that when the transmission rate is
varied continuously according to the channel condition, varying
the transmit power at the same time has minimal impact.

In [11], the adaptation technique from [8] and [9] is modified
to take into account the effect of constrained peak power. Simu-
lation results show that with a reasonable peak power constraint,
there is a small loss in spectral efficiency as compared to the
unconstrained case.

In [12], an AMC scheme is proposed based on the variable
power variable rate technique from [8] and [9]. This technique
superimposes a trellis code on top of the uncoded modulation.
Simulation results show that with a simple four state trellis code,
an effective coding gain of 3 dB can be realized.

In [13], a variable rate adaptive trellis coded QAM is dis-
cussed, offering lower average bit error rate (BER) as compared
to fixed rate schemes.

In [14], another AMC technique is proposed using m-ary
phase shift keying (MPSK) modulation, which offers 3–20 dB
gain in BER performance.

In [15], an AMC scheme which utilizes a set of trellis codes
originally designed for additive white gaussian noise (AWGN)
channels is proposed. This scheme is applied to a model of
fully loaded microcellular network for spectral efficiency com-
parisons against nonadaptive coded modulation. The results ob-
tained show that the AMC schemes provide significant advan-
tages over a traditional nonadaptive coded modulation scheme
in terms of the average spectral efficiency and decoding delay.

Accurate prediction of channel coefficients is essential to re-
alize the gain promised by adaptive schemes. Due to this reason,
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channel prediction in the context of adaptive transmission has
been the subject of some excellent research work (see [16] and
its references). Although channel coefficients can be predicted
with higher accuracy using these methods, there will still be
some prediction error present and, consequently, one would
benefit by including the possibility of such prediction errors in
the corresponding decision in an adaptive scheme. This is the
main motivation behind the current article.

Turbo codes [17], which can achieve near-capacity perfor-
mance on AWGN channels, have also been proposed in adap-
tive transmission systems to further improve performance [18].
Results show that a gain of about 3 dB can be obtained over an
AMC scheme using trellis coded modulation.

For packet data in the 3G standards, turbo codes are speci-
fied as the channel coding technique; throughout this paper, we
follow the guidelines provided in one of the 3G standards pro-
posals [1]–[4]1. The MCSs considered include 16QAM with
turbo code rate Rc = 1/2, 8PSK with Rc = 1/2, and BPSK
with Rc = 1/3, where all of these MCSs have equal average
symbol energy, Es . Data is transmitted in successive frames.
Each frame of bits has a constant duration of 5 ms, and consists
of 384 coded symbols. This provides a constant data rate of 76.8
ksymbols/s regardless of the choice of MCS [1]–[4]. A common
constituent code is used for the turbo code of different rates. The
transfer function for the constituent code is:

G(D) =
[
1
n0(D)
d(D)

n1(D)
d(D)

]

where d(D) = 1+ D2 + D3, n0(D) = 1 + D + D3, and
n1(D) = 1 + D+ D2+ D3.

A key factor determining the performance of an AMC scheme
is the method used at the receiver to estimate the channel condi-
tion [in order to decide for the appropriate] MCS to be used in
the next frame. The performance of turbo code in AMC systems
depends heavily on the accurate prediction of the channel con-
dition, which is usually a difficult task given the time-varying
nature of the mobile environment. This is due to the fact that
turbo codes operate close to the channel capacity and thus have
steep performance curves. The sensitivity of turbo codes to pre-
diction errors may cause the system to produce much less favor-
able results than expected. With much of the industry interest
in 3G development, it is essential to overcome this shortcoming
and find methods for using turbo codes in AMC systems under
a more realistic environment, where prediction errors can often
occur.

In the literature, many articles present AMC schemes without
considering the effect of prediction errors in decision making;
such is the case in [14]. In other research, authors have studied
the effect of such errors on the resulting performance. This is
the case with [9], where the effect of channel estimation errors is
addressed for the first time. In some other articles, authors have

1Note that this work started before the last release of the 3G standards and is
based on the specifications outlined in the following proposals [1]–[4]. In the
last release of the 3G standards [5], there are some slight changes with respect
to the configurations considered in the current article. These changes do not
affect the results reported in this article.

employed more sophisticated predictors to improve the predic-
tion accuracy. An example is [13], where the proposed scheme
uses pilot symbols to estimate channel state at the receiver, and
utilizes both an interpolation filter and a linear prediction filter
to interpolate and predict channel conditions, respectively.

In other studies, authors have included the effect of prediction
errors in the decision making. For example, in [19], the effect of
fading channel variations is formally addressed, and the defini-
tion of strongly robust signaling is introduced. This is based on
the idea of designing an adaptive signaling scheme that meets the
BER requirements for a set of fading autocorrelation functions.
This idea is applied to both uncoded modulation as well as trellis
coded modulation. Results show that the proposed schemes pro-
vide a significant improvement in performance over the scheme
that assumes a static channel. Reference [19] assumes that the
random process of fading values follow a probability model
for which the joint PDF of subsequent samples is captured in
correlation values; specifically, a Raleigh or a Rician model
with known Rician factor. This assumption allows the authors
to capture the statistical dependency between subsequent sam-
ples in a single parameter, namely the corresponding correlation
coefficient. This means the method proposed in [19] estimates
a single parameter only if the underlying probability model is
Raleigh or a Rician where the Rician factor is known; other-
wise, it would first need to estimate the underlying probability
model. Note that although we have used a correlated Gaussian
probability model to generate the test data, the proposed method
is not limited to this model and can be applied to any other fad-
ing process observed in practice. It should also be added that
even if one follows the approach of [19] in modeling the statis-
tical dependencies in time, one would still need to partition the
space of decision variables into disjoint subsets corresponding
to various modulation schemes as our proposed method does
(without making any assumption on the underlying conditional
probability models).

In most works [8]–[15], [18], the decision of which MCS to
use for the next frame is based on the basic idea of partitioning
the estimated channel signal-to-noise ratio (SNR) into regions
using a set of threshold values. Each such region is associated
with a particular MCS while the threshold values are optimized
to maximize the overall throughput. This is what we refer to
as the memoryless threshold method. In this paper, we take a
different approach for selecting MCS with the objective of max-
imizing the statistical average of the channel throughput when
there may exist an error in predicting the channel SNR. A sim-
plified model with fewer parameters is also proposed, which can
be used to account for the changes in the fading characteristics
by updating the model parameters in an adaptive manner. Nu-
merical results show that our method substantially outperforms
the conventional memoryless threshold method. Reference [19]
is the only other paper that includes the effect of channel varia-
tions in the decision making. However, since its decision making
approach considers meeting the BER requirements for a set of
fading autocorrelations, it only provides performance compar-
isons against the non adaptive scheme that assumes a static
channel (it makes no comparisons with the memoryless thresh-
old method). Therefore, unfortunately, we are not able to provide
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an appropriate comparison between our proposed method and
the scheme in [19] using the results presented in [19].

The remainder of this paper is organized as follows. In Sec-
tion II, we describe our system setup and channel model. In
Section III, we discuss the conventional memoryless thresh-
old method and its shortcomings. Our proposed method is pre-
sented in Section IV. Numerical results are presented in Section
V, including throughput comparisons between the memoryless
threshold method and our proposed method, as well as results
obtained from some studies on the robustness of our proposed
model. Finally, we conclude in Section VI.

II. SYSTEM SETUP AND CHANNEL MODEL

For our channel model, we consider a fading channel with
time varying lognormal distributed complex gain, λκ where κ is
the time index, and additive white Gaussian noise. This is similar
to the model used in several other related papers including [9]
and [12]. The lognormal complex gain represents the lognormal
shadowing effect in the channel and is implemented by the
following autoregressive model [20]

R(τ) = e−v |τ |/d (1)

where v is the speed of the vehicle, τ is the sampling period,
and d is the effective decorrelation distance. This distance is in
the order of 10–100 m as reported in [22].

Using (1), the lognormal values can be generated by low-pass
filtering of a discrete white Gaussian random process. With this
model, we have [20]

λκ+1 = ξλκ + (1 − ξ)θκ (2)

where λκ is the mean fading level (in dB) that is experienced
at time κ, ξ is a parameter that controls the correlation of the
lognormal shadowing, and θκ is a zero mean Gaussian random
variable, which is independent of λκ . Note that although the
above probability model is used to generate the test data, the
proposed method is not limited to this model and can be applied
to any other fading process observed in practice.

The variance of θκ , σ2
θ , is related to the variance of the log-

normal shadowing, σ2
λ , and the parameter, ξ, through [20]

σ2
λ =

1 − ξ

1 + ξ
σ2

θ . (3)

By selecting appropriate values for σ2
λ and ξ, lognormal shad-

owing with any desired standard deviation and correlation can
be generated. In our simulations, we have chosen values for
these parameters such that the correlation between subsequent
fading values follow the results reported in [22] for reasonable
values of vehicle speed. Note that a different fading value is
generated for each symbol of duration 13 µs (a frame of 384
symbols corresponds to 5 ms resulting in a symbol duration of
approximately 13 µs).

In this paper, we follow the guidelines provided in one of the
3G standards proposals[1]–[4] in terms of modulation schemes,
code rates, and frame structure as outlined in the last section.
Each coded symbol in a frame has a different lognormal gain,
λκ , generated by (2), and the channel SNR of a coded symbol

is defined, in decibel scale, as

γ = λκ + 10 log
(

Es

No

)
(4)

where No is the one sided noise spectral density, Es is the
average symbol energy, and λκ is as defined in (3). The per-
frame average channel SNR, which is the basis of the MCS
selection criterion for the subsequent frames, is the average of
the channel SNR of all the coded symbols in the frame.

It is assumed that the average channel SNR is accurately
estimated at the receiver and that no delay or transmission errors
can occur in the feedback channel, so any discrepancy between
the predicted and the actual SNR of the next frame can only
result from channel SNR prediction errors caused by the time
varying nature of the channel. The effects of transmission delay
and transmission errors are beyond the scope of this paper.

The performance criterion used for evaluation of the memory-
less threshold method and our proposed method is the statistical
average of throughput per transmitted frame. This is determined
by the corresponding probability of frame error rate (FER) and
the spectral efficiency of the MCS selected in the frame. The
use of FER for determining throughput instead of BER is due
the fact that if errors are detected in a frame after decoding, the
entire frame is retransmitted and thus any correctly decoded bits
in that frame should not be included in the average throughput
calculation.

III. THRESHOLD METHOD

Conventionally, in what we call the memoryless threshold
method, the AMC system has a set {M0, . . . ,Mn−1} of n
MCSs. This MCS set has a corresponding throughput versus
average channel SNR, denoted by {Ti(γ), i = 0, . . . , n − 1},
where γ is the per-frame average channel SNR as defined
earlier. These throughput values can be graphically repre-
sented, where the curves intersect with each other. The av-
erage channel SNR values corresponding to the intersec-
tion points are chosen as the threshold values, denoted by
{γ0 = −∞, γ1, . . . , γn−1, γn = ∞}. These threshold points
partition the range of SNR into n regions, denoted by [γi, γi+1]
for i = 0, . . . , n − 1. The kth MCS, namely Mk , is assigned to
the region [γi, γi+1] if the following condition is satisfied

Tk (γ) ≥ Tj (γ), ∀j �= k, ∀γ ⊂ [γi, γi+1]. (5)

This can be interpreted as quantizing the received SNR where
a specific MCS is assigned to each quantization partition to
maximize the expected throughout conditioned on falling in
that partition.

With this correspondence between the MCSs and the channel
SNR, Mk is selected for the next frame if the average channel
SNR in the current frame lies in the region [γi, γi+1].

Since it is assumed in the memoryless threshold method that
the fading is slow enough such that the average channel SNR
remains in the same region from the current frame to the next, the
estimated channel SNR of the current frame is simply taken as
the predicted channel SNR for the next frame. This simplifying
assumption, however, is often not true in a mobile environment.
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Fig. 1. FER versus SNR for turbo coded modulation schemes.

In such a case, an error in the estimation of average channel
SNR can cause inappropriate selection of MCS, resulting in a
degradation in FER performance.

As mentioned, turbo codes are specified as the channel cod-
ing technique for packet data in the 3G standards. One of the
main characteristics of turbo codes is that they operate close
to the channel capacity and the corresponding FER vs. SNR
curves have a steep slope (Fig. 1). This means that even a small
prediction error in the average channel SNR can result in a large
degradation in FER. Therefore, it is essential to take into ac-
count the possible prediction errors when designing an AMC
system where turbo codes are employed.

IV. MARKOV MODEL

Markov modeling has been successfully applied in some
earlier works to capture time variations in wireless channels
(see [21] as an example). In this work, noting that the exponen-
tial autocorrelation function in (1) decays very fast for practical
values of its parameters motivates us to consider a first order
finite state Markov model to approximate the time variations in
the average channel SNR. The states in this model represent the
average channel SNR of a frame (in dB) uniformly quantized
(in dB scale) with a given step size ∆, and they form a set
{S0, . . . , Sm−1} of m states.

As in the memoryless threshold method, assume that there
are n MCSs. We denote Ni as the number of information bits
in a frame of 384 coded symbols that uses the ith MCS, namely
Mi . Table I shows the values of Ni for the three MCSs used
in this paper as specified in the 3G standards proposals. The
turbo code interleaver acts on Ni information bits as given in
Table I and the resulting coded bits are mapped via a separate
interleaver to the constellation points. We also define Fij as the
FER of Mi in state j, and Tij as the expected throughput of Mi

in state j.
In the following, we propose a method for selecting the ap-

propriate MCS based on the states of a first order Markov model,

TABLE I
VALUES OF Ni FOR THE THREE MCSs USED IN THE 3G STANDARDS

and evaluate its expected throughput. The basic strategy is to
assign an MCS to each state such that the expected throughput
is maximized in that state.

A. Full-Scale Model

We simulate a channel with lognormal shadowing according
to (1)–(3) where the average SNR corresponding to each frame
is uniformly quantized with a given step size ∆. We have se-
lected appropriate values for ξ and σ2

λ in (1)–(3) such that the
correlation between subsequent fading values follow the results
reported in [22] for reasonable values of vehicle speed, e.g.,
between 60 km/hr and 100 km/hr (a different fading value is
generated for each symbol of duration 13 µs). An appropriate
offset is added to the fading values so that they result in an
acceptable FER performance.

The calculation of the expected throughput for each MCS
in each state of the Markov model requires the knowledge of
the corresponding transitional probabilities between the Markov
states. For a given number of states, m, and a given ∆, the tran-
sitional probabilities can be obtained by simulating the trans-
missions of a large number of frames of bits. These transitional
probabilities form a set {Pαβ , 0 < α, β < m − 1}, where Pαβ

is the transitional probability from state α to state β.
The stationary probabilities of the states, denoted by

{Πβ , 0β < m − 1}, can be computed using the following well
known system of equations [23],

Πβ =
m−1∑
α=0

ΠαPαβ , 0 ≤ β ≤ m − 1,

m−1∑
β=0

Πβ = 1. (6)

The expected throughput of Mi in state j, namely Tij , is
therefore

Tij =
m−1∑
k=0

NiPjk (1 − Fik ) (7)

where Ni is the number of information bits in a frame of 384
coded symbols using the ith MCS, Pjk is the transitional proba-
bility from state j to state k, and (1 − Fik ) is the probability of
correct transmission if the ith MCS is selected when the Markov
chain is in state k.

For each state, we assign the MCS that has the highest ex-
pected throughput in that state according to (7) and select this
MCS for the next frame if the estimated channel SNR falls in
this state. In other words, Mi is assigned to Sj , if

Tij≥Tkj , ∀k �= i. (8)
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Fig. 2. Simplified Markov model.

We denote the expected throughput in state j as T̄j . The
expected throughput averaged over all states is computed using

m−1∑
j=0

Πj T̄j . (9)

B. Simplified Model

A drawback of the full scale model is that it involves many
parameters (m2 transitional probabilities) and, consequently, it
is difficult to train the model on the fly to adapt to the changes in
the fading characteristics (for example, caused by the variations
in vehicle speed). To accommodate such an adaptation, we need
a simplified Markov model with fewer parameters, which allows
us to dynamically recalculate the transitional probabilities over
a window of past symbols of a reasonable size.

As in the full scale model, the set {S0, . . . , Sm−1} represents
the m states in the simplified model with a step size ∆ between
neighboring states. We assume that the connectivities between
states are as shown in Fig. 2, where

1) The maximum number of transitions from a given state
is determined by r = 2l + 1, where r ≤ m. The choice
of the value of r provides a tradeoff between achievable
throughput and the complexity of the model. An appro-
priate value of r is given in our numerical results.

2) α = min{m − 1, j + l} reflecting the fact that states
above Sm−1 do not exist; transitional probabilities to those
states are added to the transition probability to Sm−1.

3) β = max{0, j − l} reflecting the fact that states below S0

do not exist; transitional probabilities to those states are
added to the transition probability to S0.

4) The transitional probabilities are averaged over all states,
and consequently are independent of the state index.

The transitional probabilities in the simplified model are spec-
ified by P = {Pa,−l ≤ a ≤ l}. Note that the transitional prob-
abilties exist in pairs, and this allows us to set Pa equal to
P−a , where 0 ≤ a ≤ l (each state is symmetrically connected
to 2l + 1 states), further reducing the number of parameters in
the model. We have observed (through numerical simulations)
that in the full scale model these probabilities are almost equal
for the majority of the states. This has motivated us to further
reduce the complexit of the Markov model by seetting these
probabilities equal to each other. This approximation is justified

as here we are concerned with maximizing throughput. Note that
although there will be cases (occuring with a small probability)
in which the above approximation behaves poorly; however, as
such cases occur with a small probability, the final impact on the
average throughput is negligible. This observation is supported
through simulation results.

The calculation of expected throughput in each state follows
a relation similar to (7), slightly modified according to the struc-
ture of the simplified model shown in Fig. 2.

Since the average and approximated probabilities are now
used instead of the true probabilities, this model is expected to
yield smaller throughput than the full scale model. However, as
will be seen in our numerical results, a very good performance
can be achieved (at an appropriate step size) while substantially
reducing the number of parameters in the model.

As there are fewer parameters in this simplified model (max-
imum of m transitional probabilities in P), it requires a window
of past symbols of a much smaller size for on-the-fly adaptation
to the changes in the fading characteristics.

We call this model the simplified model with parameters
{P, r,∆}.

C. Robustness of Simplified Model

Setting Pa to equal to P−a and/or using a smaller window
size of past frames results in approximation errors in the com-
putation of the transitional probability set, P. Since the MCS is
selected from a finite set of candidates, a small error in the transi-
tional probability values does not necessarily result in selecting
a suboptimal MCS. The robustness of the simplfied model is,
therefore, determined by how much error in the transitional
probability values can be tolerated before a suboptimal MCS is
selected.

Assuming that Pa is set to equal to P−a , then the elements of
P is the set {Pa, a = 0, . . . , l}. Suppose that the corresponding
approximation errors are denoted by {εa , a = 0, . . . , l}. Then,
the approximated P is {Pa + εa , a = 0, . . . , l}. Note that since
{Pa + εa , a = 0, . . . , l} is a probability set, the following holds

1)
∑

a εa = 0,
2) 0 ≤ Pa + εa ≤ 1.
Suppose that for the jth state, Sj , the two MCSs that offer the

highest expected throughput based on P are Mi and Mk , where
Tij > Tkj , meaning Mi is selected for Sj . The difference be-
tween these two expected throughputs is equal to Tij − Tkj . Us-
ing {Pa + εa , a = 0, . . . , l} in a relation similar to (7) (modified
according to the structure of the simplified model), we can easily
find the change in Tij − Tkj due to an error {εa , a = 0, . . . , l}
as follows

δ(Tij − Tkj ) =
∑

a

εaKa (10)

where Ka = Ni(1 − Fij+a) − Nk (1 − Fkj+a), denotes the
difference between the expected throughput of Mi and Mk

in state j + a. Therefore, we can readily identify all the
{εa , a = 0, . . . , l} that decreases Tij − Tkj such that it results
in Tij − Tkj = 0, beyond which point Tkj > Tij , meaning a
suboptimal MCS, Mk , will be selected instead of Mi .
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D. Algorithm for Implementation of Simplified Model

The goals of using the simplified model is to take into account
the changes in fading characteristics of the mobile channel in an
adaptive fashion. Such a model with parameters {P, r,∆} can
be implemented using the following algorithm:

1) FER versus SNR curves are obtained for each MCS (of-
fline). An example of such curves is shown in Fig. 1.

2) A sufficient number of frames are passed through the
channel with the average SNR recorded for each frame.
As will be seen in our numerical results, using 500 frames
results in a very good performance.

3) The average SNR values are uniformly quantized based
on a given step size, ∆, to set up a first order finite state
Markov model of m states.

4) The transitional probability set P of the Markov model is
computed based on a given r.

a) Set Pa = P−a (optional).
b) The transitions which are not allowed are deleted,

and the corresponding Pas are modified as explained
earlier.

5) The expected throughput in each state of the Markov
model for each MCS is calculated using a relation similar
to (7), modified according to the structure of the simplified
model.

6) MCSs are assigned to each of the states in the Markov
model according to (8).

7) Steps 2) through 6) are repeated for every 500 frames
(corresponding to 2.5 s) for the adaptive case.

We have not addressed the issue of the training of the Markov
chain in this article. Instead, we have selected the number
of frames used for such training large enough to guarantee a
very good estimate of the underlying transitional probabilities.
Specifically, our simulations indicate that one could obtain a
good approximation of the underlying transitional probabilities
using far fewer than 500 frames (as used in the reported numer-
ical results). A practical method to implement such a training
algorithm would be based on using a sliding window to update
the probabilities. Note that similar training problems exist in
any alternative method one chooses to use. The main contribu-
tions of our work are: 1) to use a model with a small number
of parameters (a model which is easier to compute as compared
to other alternative techniques involving a larger number of pa-
rameters), and 2) demonstrating through computer simulations
that such a simple model performs well in practice and is able
to track the channel variations with required precision. Also,
note that unlike [19], our proposed approach does not make any
assumption on the underlying conditional probability models.

V. RESULTS AND DISCUSSIONS

A. Performance of Full Scale and Simplified Models

The expected throughput per frame computed using (7) and
(9) for both the memoryless threshold method and our proposed
method based on the full scale model and the simplified model
are shown in Fig. 3 for typical values of ∆, r, ξ (corresponding

Fig. 3. Throughput versus step size for ξ = 0.999, ξ = 0.995, ξ = 0.99, and
(Es /No ) = 4.75 dB (note that for the simplified model Pa �= P−a ).
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to different fading characteristics2). The value of ∆ determines
the number of states in the model. A typical value for the number
of states is on the order of 10–20.

From Fig. 3, it can be seen that both the full scale model
and the simplified model outperform the memoryless thresh-
old method. These results, therefore, prove that our proposed
method accomplishes the goal of capturing the transitional be-
havior of the average channel SNR that is lacking in the memo-
ryless threshold method, and in doing so it increases the average
throughput.

Referring to Fig. 3 for both the full scale model and the
memoryless threshold method, the expected throughput reaches
a saturation point at approximately ∆ = 0.5 dB, below which it
stays relatively constant. It is observed that the simplified model
also reaches this saturation point (corresponding to ∆ = 0.5 dB)
when r = m. When r � m, the maximum expected throughput
occurs at step size of 1 dB, below which the expected throughput
decreases as ∆ decreases due to the fact that when r � m, using
a smaller ∆ means a bigger portion of state transitions is ignored.
In particular, when r = 3 and ∆ < 0.2 dB, the simplified model
yields the same throughput as the memoryless threshold method.

It is easy to observe from Fig. 3 that by setting ∆ = 1 dB
and r = 7 in the simplified model, we can achieve a throughput
that is very close to the maximum value while using far fewer
parameters than needed in the full scale model. Note that the
value of m does not affect the implementation complexity of
the model, while the value of r determines the window size of
past symbols for on-the-fly adaptation.

Numerical results show that for the case of Pa = P−a ,∆ = 1
dB and r = 7, using a window of 500 past frames (correspond-
ing to 2.5 s) to recompute the transitional probabilities results in
only 0.5% loss in the expected throughput as compared to using
100000 past frames for this purpose. This shows that the sim-
plified model can be easily adapted to the changes in the fading
characteristics with a reasonable delay. Also, by only requir-
ing 500 frames, the simplified model significantly reduces the
memory requirement for buffering average channel SNR values
of past frames.

As an example, Table II shows the expected throughput
of the three MCSs in each state of the simplified model
along with the resultant MCS assignments for each state when
ξ = 0.999, (Es/No) = 6.75 dB, r = 7 and ∆ = 1 dB. It also
shows a comparison between the MCS assignments made by
the simplified model and the memoryless threshold method. As
shown, in some states, the MCS assignments made by these two
methods are the same, while in other states they are different.

B. Effects of Approximation Errors on the Robustness of the
Simplified Model

In the following, we use a simple example (based on some
simplifying assumptions) as an indication that the proposed
scheme has some degree of robustness against possible errors
in the calculation of the transitional probabilities.

2ξ = 0.999 corresponds to a fading level experienced by a vehicle travel-
ing at approximately 60 km/hr, while ξ = 0.99 corresponds to a fading level
experienced by a vehicle traveling at approximately 100 km/hr.

TABLE II
MCS ASSIGNMENT FOR ξ = 0.999, (Es /No ) = 6.75 dB USING SIMPLIFIED

MODEL AND THRESHOLD METHOD

Since it is suggested in the last section that the appropriate
selections for ∆ and r in the simplified model are ∆ = 1 dB and
r = 7, in the following, we examine the effect of approximation
errors (due to using a smaller window size of past frames for
calculating P and/or setting Pa = P−a ) on the overall expected
throughput for this particular case.

As can be seen in Table II, the difference between the two
highest calculated expected throughput in state 8 is the small-
est among all the states (8PSK with Rc = 1/2 is selected
over 16QAM with Rc = 1/2 for a difference of 4.1 bits, i.e.,
Tij − Tkj = 4.1 bits), and therefore this state has the lowest
error tolerance level, and thus determines the robustness of the
simplified model.

If Pa = P−a , then the corresponding errors for P are
{εa , a = 0, 1, 2, 3}. To simplify calculation, we assume that the
magnitude of εa is constant for a = 0, 1, 2, 3, say |εa | = εc , a =
0, 1, 2, 3. To find the maximum value for εa (denoted by εmax)
such that the optimal MCS is still selected, we solve the follow-
ing equation for εa

(Tij − Tkj ) + δ(Tij − Tkj ) = 0. (11)

To find εmax, we compute Kas and arrange them in de-
creasing order. Then, noting that (10) is a linear function of
{εa , a = 0, 1, 2, 3}, we simply associate εmax with the two
smaller values, and −εmax with the two larger values. This se-
lection results in the most negative value for δ(Tij − Tkj ) =∑

a εaKa while maintaining the condition that
∑

a εa = 0.
Then, we substitute the results in (11) and solve for εmax.

We find that there are six cases to consider. The results are
tabulated in Table III for all six cases. Note that ‘-’ denotes the
case where the particular error type cannot result in Tij − Tkj =
0, and consequently does not result in selection of a suboptimal



YANG et al.: STATISTICAL DECISION MAKING IN ADAPTIVE MODULATION AND CODING FOR 3G WIRELESS SYSTEMS 2073

TABLE III
MAXIMUM ERRORS ALLOWED FOR ERROR TYPES IN STATE 8

MCS; the last row in the table represents the worst case scenario
in this state for the system as described earlier.

By assuming that all errors have the same magnitude, this
approach finds the worst case scenario for the errors such that
(10) is reduced to zero with the least value of magnitude of εa .

VI. CONCLUSION

In this paper, we evaluated the performance of turbo code
based adaptive modulation and coding in 3G wireless systems.
We proposed a new method for selecting the appropriate mod-
ulation and coding schemes according to the estimated channel
condition where we use a first order finite state Markov model to
represent the average channel SNR. We take a statistical decision
making approach to address the potential problems caused by the
sensitivity of turbo code to the errors in predicting the channel
SNR. Numerical results are presented showing that our method
substantially outperforms the conventional techniques that use
a memoryless threshold-based decision making approach. We
also propose a simplified model with fewer parameters which is
suitable in systems where changes in the fading characteristics
need to be accounted for in an adaptive manner. It is shown
that the simplified model has some degree of robustness against
possible errors in the calculation of the transitional probabilities.
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