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Abstract—In this paper, the problem of reducing the peak-to-
average-power ratio (PAPR) in an orthogonal frequency-division
multiplexing system is considered. We design a cubic constellation,
called the Hadamard constellation, whose boundary is along the
bases defined by the Hadamard matrix in the transform domain.
Then, we further reduce the PAPR by applying the selective-map-
ping technique. The encoding method, following the method intro-
duced in the work of Kwok, is derived from a decomposition known
as the Smith normal form. This new technique offers a PAPR that is
significantly lower than those of the best-known techniques without
any loss in terms of energy and/or spectral efficiency, and without
any side information being transmitted. Moreover, it has a low
computational complexity.

Index Terms—Hadamard constellation, orthogonal fre-
quency-division multiplexing (OFDM), peak-to-average-power
ratio (PAPR), selective mapping (SLM), Smith normal form
(SNF).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) is a multicarrier transmission technique which

is widely adopted in different communication applications.
OFDM prevents intersymbol interference by inserting a guard
interval, and mitigates the frequency selectivity of a multipath
channel by using a simple equalizer. This simplifies the design
of the receiver and leads to inexpensive hardware implemen-
tations. Also, OFDM offers some advantages in higher order
modulations and in networking operations. These advantages
position OFDM as the technique of choice for the next genera-
tion of wireless networks. However, OFDM systems suffer from
a large peak-to-average-power ratio (PAPR) of the transmitted
signals, requiring power amplifiers with a large linear range.

Fig. 1 shows a basic block diagram of an OFDM transmitter
and its receiver. Let denote a vector
of -dimensional ( -D) constellation points. This vector
is selected from a set of identical 2-D subconstellations

, and it is transmitted by using one OFDM vector
of size ; namely, .
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Fig. 1. Basic OFDM transmitter and receiver.

The discrete-time samples of the OFDM signal can be ex-
pressed as

(1)

The matrix representation of this signal is

(2)

where , , and is the
inverse fast Fourier transform (IFFT) matrix
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(3)

The 2-D constellation points may add con-
structively and produce a time-domain signal with a large am-
plitude. Thus, the output signal may have high output levels,
which leads to the requirement of an expensive analog front end.

Usually, the level of the amplitude fluctuation of the discrete-
time OFDM signal is measured in terms of the ratio of the peak
power to the average envelope power of the signal as

PAPR (4)

The continuous-time PAPR is typically estimated by the dis-
crete-time PAPR by employing the IFFT of length for the
zero-padded sequence of length derived from the sequence

in (1) [1]–[3]. Therefore

(5)
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where

for
for

(6)

and is the oversampling factor.
In the following, we concentrate on matrices and equations

with real entries, and complex equations like (2) are represented
by real matrices as

(7)

where and , respectively, denote the real and the imag-
inary parts of a matrix or vector. In [4], this model is used for
representing the OFDM signal by real matrices.

A large number of methods for the PAPR reduction have
been proposed [3], [4]–[20]. In [5] and [6], coding techniques
are used for PAPR reduction; however, codes offering a low
PAPR can be constructed only at the cost of sacrificing the
data rate. Clipping the OFDM signal before amplification is a
simple and typical method for the PAPR reduction [7]–[9]. The
effects of oversampling and clipping for an OFDM signal are
analyzed in [3], [7], and [9]. The authors in [15] propose a new
lattice-based multicarrier modulation technique for digital sub-
scriber line (DSL) applications with a low PAPR; however, this
technique is not based on a sinusoidal modulation that is usually
employed for OFDM systems.

Another type of PAPR reduction methods are the probabilistic
schemes. These schemes are classified in two known groups.
One is the partial transmit sequence (PTS) [11], in which each
subblock of subcarriers is multiplied by a constant phase factor,
and these phase factors are optimized to minimize the PAPR.
The other scheme is selective mapping (SLM), in which mul-
tiple sequences are generated from the same information, and
the sequence with the lowest PAPR is transmitted [12]–[14].
Typically, the receiver needs to know which sequence is selected
in order to recover the data. However, the methods introduced in
[11]–[14] eliminate the need for this explicit side information.

Constellation shaping is another important technique in
PAPR reduction. In the method proposed in [16], the outer
constellation points are extended to minimize the PAPR of
the OFDM symbol. The idea of applying the trellis-shaping
technique to reduce PAPR in OFDM systems is introduced
in [17]. This line of research is further investigated in [18]
by exploiting the property that the autocorrelation of the data
sequence in the frequency domain and the power spectrum in
the time domain form a Fourier transform pair. Therefore, min-
imizing the sidelobe of the autocorrelation of the data sequence
is equivalent to reducing the PAPR of the OFDM signal. We
will later provide a comparison with [18]. In [4], [19], and [20],
another constellation-shaping technique is proposed to reduce
the PAPR of the OFDM signals. The encoding and decoding
algorithms of this method are based on the relations and gen-
erators in a free Abelian group. Due to the large complexity
of this algorithm, its practical implementation, in the case of
Fourier transformation in OFDM systems, is very challenging.

In this paper, we propose a constellation-shaping method
in an OFDM system with a considerable PAPR reduction.

The boundary of this cubic constellation, called the Hadamard
constellation, is along the bases defined by the Hadamard
matrix in the transform domain. In addition, this constellation
can be employed in conjunction with another PAPR-reduction
method. Here, an SLM method is applied in conjunction with
the proposed Hadamard constellation to further reduce the
PAPR. The encoding method for this shaping technique, fol-
lowing the method introduced in [4], is derived from the Smith
normal form (SNF) decomposition, and has a minimal com-
plexity. This new technique offers a PAPR that is significantly
lower than those of the best-known techniques reported in the
literature without any loss in terms of the energy and/or spectral
efficiency, and without any side information being transmitted.

The rest of the paper is organized as follows. In Section II,
the constellation-shaping technique is introduced. A brief de-
scription of the work in [4] is also given. Section III describes
the Hadamard constellation as a shaping method in OFDM
systems. Some issues regarding the encoding and decoding
algorithms are also investigated. An SLM method is applied to
the Hadamard constellation in Section IV. Section V is devoted
to some numerical results and a comparison of the proposed
method with some recent works. The paper is concluded in
Section VI.

II. CONSTELLATION SHAPING

In the constellation-shaping technique, a constellation in the
frequency domain must be found such that the resulting shaping
region in the time domain has a low PAPR. A new constellation-
shaping method is introduced in [4], [19], and [20] by Kwok and
Jones. Based on the encoding algorithm introduced in [4], [19],
and [20], we propose a cubic constellation, along with an SLM
method to reduce the PAPR in an OFDM system.

In a PAPR-reduction problem, the peak value of the signal
vector is bounded by a specified value (without
loss of generality, we assume ). If the time-domain signal
is related to the frequency-domain constellation point by

, this inequality on the time-domain boundary translates to
a parallelotope1 in the frequency domain, defined by . In-
deed, the constellation boundary is a parallelotope, defined by

, where denotes rounding. The parameter
is the smallest value that guarantees the number of points in the
shaped constellation is the same as the number of points in the
unshaped constellation. The rounding operation is required to
impose the constraint that the parallelotope corners lie in an
integer lattice. The main challenge in constellation shaping is
to find a unique way to map the input data to the constellation
points, such that the mapping (encoding) and its inverse (de-
coding) can be implemented by a reasonable complexity. Kwok
in [4] proved that the shaped constellation for an OFDM system
is the points inside the quotient group , where
is the -D integer space and is the lattice defined by

, which is based on rounding off the scaled version of the
IFFT matrix. The points inside this parallelotope are used as the
constellation points in transmitting the OFDM signals. Using
the relations and generators in a free Abelian group, the points

1The parallelotope bases are defined along the columns ofA .
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inside this constellation are encoded (labeled) in [4]. The fol-
lowing theorem provides the mathematical tool for the encoding
procedure of these points [4].

Theorem 1: Any relation matrix can be decomposed into
, where is diagonal with the entries

such that , and and are unimodular
matrices.2

The decomposition of the relation matrix is performed
via column and row operations [4], which is impractical for an
OFDM system.

We observe that this decomposition is known as the SNF de-
composition of an integer matrix [21] in the mathematical litera-
ture, and the matrix is called the SNF of the matrix . The
SNF decomposition is a diagonalization of a matrix in the in-
teger domain. Introduced by Smith [22], this concept has been
used in many applications, such as solving linear diophantine
equations, finding the permutation equivalence and similarity
of matrices, determining the canonical decomposition of the
finitely generated Abelian groups, integer programming, com-
puting additional normal forms, including Frobenius and Jordan
normal forms, and separable computing of the discrete Fourier
transform (DFT). For more historical remarks and applications
of the SNF, see [23]–[25].

Themajorcontributions to thecomputationalcomplexity in[4]
arethedecompositionofthematrix ,theofflineprocedure,and
the encoding algorithm for this constellation, the online proce-
dure. The interpretation of the column and row operations as SNF
ofanintegermatrix links theproblemtoarichbodyofknowledge,
developed in the context of SNF decomposition. Unfortunately,
computing the SNF decomposition for an OFDM system is im-
practical, due to the rapid growth in the size of the intermediate
integer values. Moreover, in [4], it is shown that the complexity
of the encoding procedure is , i.e., for a realistic OFDM
system, the online complexity remains very high, as well.

If the SNF decomposition of the matrix is given, the en-
coding algorithm for the shaped constellation can be represented
by [4]

(8)

where , is the canonical representation of an integer
which represents the data to be sent, and is the constellation

point corresponding to . The time-domain signal is computed
using the IFFT operation. The canonical representation of an
integer can be calculated by the recursive modulo operation;
namely

(9)

where .

2The condition � j � j � � � j � in Theorem 1 is defined for finding a
unique decomposition and can be ignored in the encoding procedure.

Also, the reverse operation for finding from the -D vector
is [4]

(10)

In [19], it is shown that if the matrix is replaced by the
Hadamard matrix, , the corresponding encoding and de-
coding algorithms for the constellation can be implemented by
a butterfly structure that uses only bit shifting and logical AND.
This simplicity is due to the following recursive formula for the
Hadamard matrix:

where (11)

The SNF decomposition of (11) can be easily computed as
, where

(12)

and .

III. HADAMARD CONSTELLATION IN OFDM SYSTEMS

As mentioned in Section II, in OFDM systems, the boundary
of the constellation that leads to a low PAPR is along the bases
of the IFFT matrix. However, the corresponding SNF decompo-
sition required in the encoding procedure cannot be computed.
If the IFFT operation is replaced by the Hadamard operation, a
simple encoding algorithm results. However, this type of multi-
carrier modulation is not very popular, because it does not offer
the advantages of the conventional OFDM [26].

We propose to replace the conventional constellation in
OFDM systems by a cubic constellation, called the Hadamard
constellation, whose boundary is along the bases defined by the
Hadamard matrix in the transform domain. Fig. 2 shows the
boundaries of these two constellations. The solid line represents
the boundary of the constellation which is based on the IFFT
matrix. The dashed line shows the boundary of the Hadamard
constellation. The IFFT and the Hadamard are both orthogonal
matrices, and therefore, the constellation boundaries along
these orthogonal bases are a rotated version of each other. As a
result, it is expected that a large number of points within these
boundaries will be the same, as shown in Fig. 2. Therefore,
by substituting the constellation along the IFFT matrix with a
constellation along the Hadamard matrix, the resulting PAPR
is reduced. Moreover, the encoding of this new constellation,
based on the SNF decomposition of the Hadamard matrix, is
simple and practical.

Note that in this paper, the time-domain signal is obtained
by the IFFT transformation of the constellation point . This re-
sults in a traditional OFDM signal based on IFFT/fast Fourier
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Fig. 2. N -D signal constellation for IFFT and Hadamard matrix.

transform (FFT) operation. In other words, only the constella-
tion boundary is determined using the Hadamard matrix, i.e.,

in (8).
To further reduce the PAPR, the Hadamard constellation

can be concatenated with other methods for PAPR reduction.
This motivates us to apply an SLM technique [27], [28] to the
Hadamard constellation. In typical SLM methods [27], [28], the
major PAPR reduction is achieved by the first few redundant
bits. Employing more redundant bits necessitates a high level of
complexity to obtain modest improvements in the PAPR. How-
ever, in the proposed SLM method, employing the Hadamard
constellation causes a considerable PAPR reduction by itself.
As a result, by using just one or two redundant bits in SLM, this
method significantly outperforms the other PAPR-reduction
techniques reported in the literature. Note that it is also possible
to apply a PTS method [12] to the Hadamard constellation.

A. Complex Representation

As stated in Section I, (7) can be applied to change the com-
plex equations of an OFDM system to real equations. This leads
to the change of the constellation boundary. Generally, we can
distinguish between two classes of boundaries [29], [30]: 1) the
Cartesian boundary that results by viewing the real and imag-
inary parts of the signal as two separate real signals; and 2)
the Polar boundary that considers the envelope and phase of
the OFDM signal in a complex plane. The Cartesian boundary
limits each component of the complex signal within a square,
while the Polar boundary limits this component within a circle.
In this paper, we avoid the complex representation of the OFDM
signal by treating the real and the imaginary parts of the signal
separately, which is equivalent to using a Cartesian boundary.

B. Encoding Procedure

The points inside the Hadamard constellation are mapped
to the input data by the encoding procedure, introduced in

Fig. 3. Mapping between binary representation of the information and f� g.

(8)–(10). The number of these points inside the shaped con-
stellation is determined by the determinant of the Hadamard
matrix, [31].

Theorem 2: The size of the shaped constellation defined by
a Hadamard matrix is .

Proof: Based on (12), , because
the matrices and are unimodular and their determi-
nants are one. To prove this theorem, we use induction. For a

Hadamard matrix

(13)

It is assumed that the claim is valid for a Hadamard
matrix. Based on (12), for a Hadamard matrix

(14)

According to the large Hadamard constellation size, in (9), the
canonical representation of the large numbers should be com-
puted. The canonical representation of the integer numbers can
be simplified based on the fact that digital communication sys-
tems deal with binary input streams. Based on (10), an integer

can be represented by

(15)

where , and is the canonical representation of
, given in (9), with . According to (12), for a

Hadamard matrix, all are powers of 2, i.e.,

(16)

Let ; therefore

(17)

The representation of integer numbers corre-
sponding to the Hadamard constellation points necessitate that

bits represent these numbers. Thus, the
binary representation of is expressed as

(18)

A comparison of (17) and (18) is depicted in Fig. 3. Each
consists of bits of the input binary data. This rep-
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resentation will simplify the encoding algorithm. Moreover, the
problem of using large numbers in the encoding procedure will
be avoided.

Theorem 2 shows that the size of the Hadamard constellation
for a Hadamard matrix is . Therefore, the trans-
mission rate is related to the number of subcarriers in
the OFDM system.3 This rate is unacceptable, not only because
it depends on , but also because it is usually higher than the re-
quired value. Therefore, a subset of the points inside the shaped
constellation are selected for transmission such that they form
a constellation with the desired rate. Also, the selected points
should be uniformly distributed in the original Hadamard con-
stellation in order to maintain the same peak as well as average
energy values (assuming continuous approximation). Note that
the Hadamard constellation is called the root constellation for
the aforementioned set of the uniformly distributed points in the
following.

Noting (8) and (9), there is an isomorphism between the in-
teger set

(19)

and the set of the points within the Hadamard constellation.
Equivalently, the set can be considered as a label group
for the constellation points (refer to [32] for the definition).
A subgroup of the constellation points results in a uniformly
distributed subset of the Hadamard constellation points. Conse-
quently, this subgroup of constellation points is isomorphic to
a subgroup in the label group . This subgroup can be selected
such that its elements are congruent to zero modulo , namely

(20)

where is determined by the ratio of the size of the Hadamard
constellation and the size of the constellation , with
the desired rate . Employing (8) and (9), the labels in the sub-
group determine the set of uniformly distributed points in the
Hadamard constellation. By relying on the continuous approx-
imation, such a uniform distribution affects neither the proba-
bilistic behavior of the PAPR nor the average energy of the con-
stellation points.

The Hadamard constellation has almost the same average en-
ergy as the constellation resulted by employing quadrature am-
plitude modulation (QAM) signaling in an OFDM system. It
can be easily seen that the Hadamard constellation points in (8)
can be represented by , where .
Therefore, the Hadamard constellation contains all the integer
points inside a hypercube whose boundary is along the columns
of the Hadamard matrix. By considering ,
while , the Hadamard constellation is times
smaller than a cubic constellation whose sides are the columns
of the Hadamard matrix. Then, it is straightforward that the av-
erage energy per each dimension of the Hadamard constellation
is

(21)

3ForN = 2 , the rate for each real component is log (2 )=N = n=2.

Note that (21) shows the average energy per dimension for the
root constellation, i.e., the transmission rate is . This energy
is times the average energy of the equivalent con-
stellation in an OFDM system employing QAM signaling with
the same transmission rate.

In the case where the transmission rate is , as mentioned in
(20), the constellation points form a subgroup of the Hadamard
constellation points (uniformly distributed subset). Therefore,
the constellation has the same energy as in (21); however, the
distance among the points is increased by a factor of .
Therefore

(22)

Note that the average energy in (22) is
times the average energy of the equivalent

constellation in an OFDM system employing QAM signaling
with the same transmission rate. This justifies our earlier claim
that the average energy remains almost constant.

C. Decoding Procedure

At the receiver end, the time-domain signal is filtered by a
low-pass filter and sampled at the Nyquist rate. The samples are
processed by an FFT to recover the constellation point in the fre-
quency domain. For an additive white Gaussian noise (AWGN)
channel, the received vector is given by

(23)

where is the transmitted time-domain signal in (8) and is
a zero-mean complex AWGN. The approximated constellation
point is written as

FFT FFT (24)

where is the transmitted constellation point, and is a
zero-mean complex AWGN. The maximum-likelihood decoder
simply rounds off the received constellation point in the in-
teger domain. Then, the resulting constellation point is replaced
in (10) to decode the transmitted signal.

D. Example

To further clarify the algorithm, we compute the constellation
points in an OFDM system with 16 subcarriers. Theorem 2 states
that there are points inside the Hadamard constellation, i.e.,
the real and imaginary parts of the signal can be one of these
points (equivalent to using a 16-QAM in the OFDM system).
The Hadamard matrix and its SNF decomposition are calculated
by (11) and (12). Then the input data is encoded using (8). In
Table I, we have computed some of the constellation points.

The SNF decomposition of the matrix based on the IFFT
matrix, even for this small case, is difficult.

IV. SELECTIVE MAPPING

SLM is a method to reduce the PAPR in an OFDM system,
which involves generating a large set of data vectors that repre-
sent the same information, where the data vector with the lowest
PAPR is used for the transmission. Here, we present a method
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TABLE I
AN EXAMPLE OF THE ENCODING PROCEDURE FOR THE CONSTELLATION POINTS IN THE HADAMARD CONSTELLATION IN AN OFDM SYSTEM

WITH 16 SUBCARRIERS EMPLOYING 16-QAM

to apply the SLM technique to further reduce the PAPR in the
constellation developed earlier.

Assume that the data rate is bits per block of length- FFT
symbols. Let denote the number of redundant bits specified
for SLM [ and (constellation size)]. There-
fore, there are constellation points representing the
same information for transmission in SLM. In the proposed
SLM method, the input integers are mapped to the Hadamard
constellation points, and the constellation points corresponding
to the integers with the same most significant bits (MSBs) are
classified in the same subset. Note that the constellation points
in each subset represent the same information. The time-do-
main signals corresponding to the frequency-domain constel-
lation points are computed by the IFFT transformation, and the
constellation point with the lowest PAPR is transmitted.

The details of this scheme are described in the following. In
the first step, the input binary sequence is divided into blocks of

bits. Then, bits of zeros are added to each information
block, and these blocks are divided into subblocks of lengths

, bits (refer to Fig. 3). The binary repre-
sentations of these subblocks form the vector , which leads to
the calculation of the constellation point using (8). The other
data vectors are obtained by changing the MSBs of the bi-
nary information sequence. Therefore, Hadamard constel-
lation points with different values for the PAPR are calculated.
Finally, the constellation point with the lowest PAPR is selected
for the transmission.

The different constellation points that represent the same in-
formation have the same bits. Thus, at the receiver end,
the constellation point is decoded by (10), and the extra bits
are discarded. Therefore, this method can be expressed as a
variant of SLM in which no side information on the choice of
the transmit signal needs to be transmitted. The degradation in
the data rate can be ignored, since a significant PAPR reduction
is obtained by using only one or two redundant bits. To be fair in
viewing the potential loss in the data rate, we have to include the
impact of using the SLM method on the average energy of the

constellation, as well. The Hadamard constellation has a zero
shaping gain4 due to its cubic boundary (shaping gain is com-
puted using continuous approximation [33]). Numerical results
show that applying the SLM method to the resulting cubic con-
stellation results in a reduction in the average energy, reflected
in a small, but positive, shaping gain. This justifies our earlier
claim that the reduction in the PAPR is achieved at no extra cost
in terms of a reduction in the spectral efficiency and/or an in-
crease in the average energy of the constellation.

V. SIMULATION RESULTS

In this section, we present simulation results for a complex
baseband OFDM system with subchannels employing
16-QAM by using randomly generated OFDM symbols.
First, we show the PAPR performance of the Hadamard con-
stellation. The next step is then to show the capability of the
SLM technique, when it is applied to the Hadamard constella-
tion to achieve further PAPR reduction. The simulation results
are presented as the complementary cumulative density func-
tion (CCDF) of the PAPR of the OFDM signals, expressed as
follows:

CCDF PAPR PAPR (25)

This equation can be interpreted as the probability that the PAPR
of a symbol block exceeds some clip level (it is referred to as
symbol-clip probability [16]).

According to (5) and (6), the continuous PAPR can be esti-
mated by the IFFT of the zero-padded sequence of length .
Results for the oversampling to are shown in Fig. 4.
The continuous PAPR can be approximated by an oversampling
factor of . As mentioned in [1]–[3], further oversampling
will result in minor changes. We have a PAPR reduction of more
than 4 dB at symbol-clip probability.

4Shaping gain is defined as the relative reduction in the required average en-
ergy for a given number of constellation points with respect to a cubic constel-
lation [33].
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Fig. 4. CCDF of PAPR for a Hadamard constellation with different
oversampling factors (128-channel OFDM system with 16-QAM constellation).

Fig. 5. CCDF of PAPR for a Hadamard constellation in anN -channel OFDM
system employing 16-QAM constellation and L = 1.

Fig. 5 shows the PAPR of an OFDM signal using the
Hadamard constellation with different numbers of block length

. The effect of the constellation size is also investigated. It
is observed that the achieved PAPR is rather insensitive to the
constellation size, see Fig. 6. The symbol-error rate (SER) of
the proposed method and that of a conventional OFDM system
are compared. As shown in Fig. 7, the gap is minimal.

Fig. 8 shows the simulation results of applying the SLM tech-
nique to the Hadamard constellation. As illustrated in Fig. 8,
using only one bit of redundancy in bits per block of
a 128-FFT symbol5 results in a 5.6-dB reduction in the PAPR.
Simulation results show that by employing more redundant bits,
the PAPR approaches its optimal value for a cubic constellation,
namely . The PAPR of a cubic constellation is com-
puted using continuous approximation.

A. Some Insight to the Achieved Performance

In a conventional OFDM system with different subcar-
riers, the time-domain samples can be approximated by zero-
mean Gaussian random variables, based on adopting the central

5By using 16-QAM in a 128-channel OFDM system, there are 16 =

2 constellation points.

Fig. 6. CCDF of PAPR for a Hadamard constellation in a 128-channel OFDM
system employing different QAM constellations and L = 1.

Fig. 7. SER comparison for the proposed method in a 256-channel OFDM
system employing 256-QAM and 16-QAM constellation.

Fig. 8. CCDF of PAPR by SLM method based on Hadamard constellation in
a 128-channel OFDM system employing 16-QAM constellation.

limit theorem. Therefore, the amplitude of these samples has a
Rayleigh distribution, and the CCDF of the PAPR of the OFDM
signal can be approximated as follows [34]:

PAPR (26)
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Fig. 9. CCDF of PAPR in a 128-channel OFDM system with SLM method
using different number of redundant bits L = 1.

The use of statistically independent vectors that have the
same information for transmission in the SLM method changes
the CCDF of the PAPR of the OFDM signal, such that

PAPR (27)

Therefore, in the logarithmic CCDF versus PAPR graph, the
slope of the curve is proportional to (see Fig. 9). By in-
creasing the number of vectors with the same information, the
corresponding slope increases. Thus, the major PAPR reduction
is achieved by the first few redundant bits, as shown in Fig. 9

. In other words, we have a saturation effect
on the PAPR reduction by increasing . This is the reason that
we have applied the SLM technique to the Hadamard constel-
lation. As mentioned in Section IV, the method employing only
the Hadamard constellation considerably reduces the PAPR.
By adopting the Hadamard constellation in the proposed SLM
method, not only can we lower the PAPR considerably, but
also we can approximately maintain the slope of the CCDF
versus PAPR curve. This results in a considerably lower PAPR
by using a small number of redundant bits before reaching the
saturation.

B. Comparison

In numerical simulations, we have selected the system param-
eters to be compatible with some recent works on PAPR reduc-
tion reported in [11], [12], [30], [34], and [35]. As a complexity
measurement, the main complexity of the proposed method is
due to the encoding algorithm and the multi-IFFT computations
in the SLM technique. The complexity of the encoding algo-
rithm is in the matrix multiplications of (8). As mentioned in
Section III, all the elements of the Hadamard matrix and its SNF
decomposition matrices are , , or 0, and consequently,
these operations can be easily implemented using a butterfly
structure. Note that in the SLM technique, for each of the
time-domain signals, we shall compute one IFFT.

In [12], an SLM method based on multiplying the constel-
lation point by different pseudorandom but fixed vectors is
introduced. For the same system as ours, with different

vectors, a PAPR reduction of 3 dB is gained at the symbol-clip
probability close to . However, for the same symbol-clip
rate and , we have a 6-dB reduction by using the pro-
posed SLM method. Also, the complexity of this algorithm is
comparable with the method in [12]. Note that in [12] some side
information (with high sensitivity to channel error) needs to be
transmitted.

Another approach, similar to [12], is introduced for the SLM
in [34]. The authors have introduced this method for multiple-
input multiple-output (MIMO)-OFDM systems. The simulation
results in [34] are similar to [12] (the relative comparison be-
tween the proposed method and the one in [12] is explained ear-
lier).

The tone reservation [35] is a well-known method for PAPR
reduction in multicarrier systems, provided that it can quickly
converge to a good solution. An efficient approximation for the
tone-reservation approach with a faster convergence is devel-
oped in [30]. The complexity of [30] is comparable with ours;
however, we have about 3-dB lower PAPR than that in [35] or
[30] for similar system parameters. Note that in the tone-reser-
vation method, some tones are reserved for the PAPR reduction
and some of the tones are not used for data transmission, im-
plying a loss in the data rate. Note that [30] reduces the PAPR
by solving a min-max problem. This problem is solved by an
interior-point method which requires a descent direction and a
constraint to find the solution recursively.

Recently, we became aware of the work by Ochiai [18]. For
a 256 complex channel OFDM system employing 256-QAM, a
4.5-dB reduction in the PAPR is obtained using a trellis-shaping
technique. In our method, for a 128 complex channel OFDM
system employing a 128-QAM, a 6-dB reduction is gained. In
[18], the main complexity is in finding the path with minimum
cost through a trellis diagram (this complexity is considerably
higher than that of a Viterbi decoder). However, the author in-
vestigates methods to reduce this complexity by window trun-
cation and sacrificing PAPR reduction, but still the overall com-
plexity in [18] is significantly higher, compared with the method
proposed here.

We have not provided any comparison with [4], as the method
in [4] relies on using the SNF of the IFFT matrix, which is not
known. Indeed, computing this SNF decomposition would be
an interesting open problem. If this matrix were available, the
resulting PAPR reduction in [4] would be asymptotically equal
to the optimum value of . Also, as mentioned in Sec-
tion II, the computational complexity of the encoding algorithm
of the constellation based on the IFFT matrix is , while
the complexity for the encoding of the Hadamard constellation
in the butterfly structure is [4].

VI. CONCLUSION

We have proposed a constellation-shaping method that
achieves a substantial reduction in the PAPR in an OFDM
system with a low complexity. The boundary of the proposed
constellation is along the basis defined by the Hadamard matrix
in the transform domain. An SLM technique is applied to
this constellation to further reduce the PAPR of the OFDM
signal. The proposed scheme significantly outperforms other
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PAPR-reduction techniques reported in the literature, without
any loss in terms of the energy and/or spectral efficiency.
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