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Abstract: The problem of optimising the structure of the encoder/decoder pair in a discrete
communication system, with an additive distortion measure, is formulated in terms of a quadratic
programming (QP) problem. This new formulation benefits from the following special features: it
optimises the joint effects of the source/channel coding on the end-to-end distortion; and the
encoder and the decoder structures are not restricted to being the inverse of each other. A method
which obtains an e-minimiser approximation of an optimum point of a general QP problem is
discussed. Some simulation results based on this method are also given.

1 Introduction

Vector quantisation (VQ) has been a popular and effective
technique which addresses the problem of transmitting a
source subject to a fidelity criterion. An important part of a
VQ’s design is its robustness in the presence of channel
noise. In this paper, we are concerned with the low-
complexity design of an overall system, which involves no
explicit error control to deal with channel errors, and does
not suffer delays due to channel decoding. It has been
shown [1–4] that in such systems an appropriate selection of
the mapping between the source and the channel symbols
can reduce the effect of channel errors, which can otherwise
be severe. This mapping is conventionally called the ‘index-
assignment problem’. Two approaches are typically taken
to this problem: one is to design a VQ source coder for a
noiseless channel, and add to it an optimised index
assignment. The other approach incorporates the effects
of channel error directly into the design of the VQ. These
VQs are in a sense optimised for a given channel and often
are referred to as ‘channel optimised VQ’. Although
channel optimized VQs typically outperform those designed
using index assignment techniques, they require longer
training time and the exact knowledge of channel
characteristics, which may not always be available. In this
paper we adopt the index-assignment approach. Several
index-assignment methods have been studied in the
literature. De Marca and Jayant [1] introduced an iterative
search algorithm for designing index assignments for scalar
quantisers, which was extended to vector quantisation in [5].
For binary-symmetric channels and certain special sources
and quantisers, analytical results have been obtained
[6–9]. Using a ‘greedy’ index assignment method, some
numerical bounds for noisy channel vector quantisation

were presented in [10]. Zegger andManzella [11] presented a
random coding argument for the selection of the index
assignment resulting in certain bounds on the system
performance. Knagenhjelm and Agrell [12] studied a special
form of index assignment based on using properties of the
Hadamard transform.

These prior methods have usually been based on
assuming a binary symmetric channel and/or a quantiser
with a mean-square-error distortion measure, and analyses
of their performance, if any, have been based on
strict assumptions about the channel error or the index
assignment itself. A natural approach is to formulate
the index assignment in terms of an optimisation problem.
In spite of its importance, there has not been any
prior rigorous analysis of this problem using an optimisa-
tion formulation. Farvardin [3] used simulated annealing
to find a solution for this mapping for the special case
of a mean-square distortion measure. The formulation
and the approach followed in [3], however, heavily depends
on the assumption of a mean-square-error distortion
measure.

In the present work, this mapping is formulated in terms
of a quadratic programming (QP) problem. The proposed
formulation optimises the combined effects of the source/
channel coding on the end-to-end distortion. The formula-
tion is general in the sense that it can handle any discrete
channel model and any additive distortion measure. It will
be shown that this formulation will result in an non-convex
QP problem. Citing the fact that computing that exact
solution to a non-convex QP problem is equivalent to
solving an NP-completeness problem, we will show how an
efficient interior-point algorithm can be used to find local
optimum solutions which satisfy nontrivial bounds in terms
of system performance.

After an explanation of the block diagram of the system,
the optimisation problem under consideration is first
expressed in terms of a zero-one program. It is then shown
that, due to the special structure of the problem, one can
relax the zero-one constraint without affecting the solution.
This results in a QP problem whose solution is substantially
simpler to compute than the original zero-one program.
Some simulation results based on a text case for transmit-
ting the output of a Linde–Buzo–Grauy quantiser (designed
for a Gaussian source) through a binary symmetric channel
are also given.
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2 System block diagram

Consider the communication system shown in Fig. 1. The
system is composed of a source S, a channel C, an encoder x
and a decoder Z. The source S is composed of Ns symbols si,
i¼ 0,y, Ns�1. The symbol siAS occurs with probability
Ps(i). A measure of distortion is defined between each pair
of the source symbols. The distortion between the symbols
si, skAS is denoted as Ds(i, k), i, k¼ 0, y, Ns�1. The
channel C is composed of Nc symbols cj, j¼ 0, y, Nc�1.
The transition probabilities of the channel, namely the
probability of receiving symbol cj when symbol ci is
transmitted, are denoted as Tc(j7i), i, j¼ 0, y, Nc�1.

The encoder provides a mapping, denoted as x, from the
set of source symbols to the set of channel symbols, such
that the ith source symbol, i¼ 0, y, Ns�1, is mapped to
the channel symbol indexed by x(i)A[0, Nc�1]. Each source
symbol is encoded to a specific channel symbol. However,
several source symbols may be encoded to the same channel
symbol, and some of the channel symbols may not be used.

The decoder provides a mapping, denoted as Z, from the
set of channel symbols to the set of source symbols, such
that the jth channel symbol, j¼ 0, y, Nc�1, is mapped to
the source symbol indexed by ZðjÞ 2 ½0;Ns � 1�. Each
channel symbol is decoded to a specific source symbol,
however, several channel symbols may be decoded to the
same source symbol.

Our objective is to optimise the mappings x, Z by
minimising the average distortion between the encoder
input and the decoder output. In the following, this
optimisation problem is formulated as a zero-one program.
The symbols used in this paper are listed in Table 1.

3 Zero-one programming formulation

We assign an Nc dimensional binary vector to each symbol
of the source at the channel input. The vector corresponding
to the ith source symbol, i¼ 0, y, Ns�1, is denoted as
ei ¼ ½eiðjÞ; j ¼ 0; . . . ; Nc � 1�. We impose the constraints

that eiðjÞ 2 f0; 1g,
PNc�1

j¼0 eiðjÞ ¼ 1; 8i. If the ith source

symbol is encoded to the ath channel symbol, we set
eiðjÞ ¼ 1, j¼ a and eiðjÞ ¼ 0, jaa. We assign an Ns

dimensional binary vector dl ¼ ½dl ðkÞ; k ¼ 0; . . . ; Ns � 1�,
l¼ 0,y, Nc�1 to each channel symbol at the decoder side.

If the lth channel symbol is decoded to the bth source
symbol, we set dl(k)¼ 1, k¼ b and dl(k)¼ 0, kab.

Using these notations, the optimisation problem is
formulated as:

minimise
XNs�1

i¼0

XNc�1

j¼0

XNc�1

l¼0

XNs�1

k¼0
PsðiÞTcðljjÞDsði; kÞeiðjÞdlðkÞ

ð1Þ

subject to:

eiðjÞ 2 f0; 1g and
XNc�1

j¼0
eiðjÞ ¼ 1; 8i ð2Þ

dlðkÞ 2 f0; 1g and
XNs�1

k¼0
dlðkÞ ¼ 1; 8l ð3Þ

We refer to the constraints
P

j eiðjÞ ¼ 1 and
P

k dlðkÞ ¼ 1

as the ‘indicator constraints’. Note that the indicator
constraints are non-overlapping, in the sense that each of
them involves a different set of variables. Due to this
structure, the extreme points of the polytopes corresponding
to
P

j eiðjÞ ¼ 1 and
P

k dlðkÞ ¼ 1 are composed of zero-

one variables only.
The introduced formulation optimises the combined

effects of source quantisation and channel coding on the
end-to-end distortion. It is well known that providing a
proper trade-off between source and channel coding plays
an important role in the performance of a digital
communication systems [13]. We note that quantisation of
a set of source symbols is equivalent to a grouping of those
symbols into disjoint partitions and using a single
representative for each partition. In this sense, quantisation
of the source symbols occurs when several source symbols
are encoded to the same channel symbol. We also note that
channel coding is equivalent to discarding some of the
symbols at the channel input to increase the level of the
immunity against the channel errors. As already mentioned,
this possibility is incorporated in our coding structure.

The immediate problem in applying optimisation meth-
ods to solve (1) is that the variables are restricted to 0 and 1
(zero-one program). It is generally known that solving a
zero-one program is a very hard problem. However, one
can relax the zero-one constraint as is explained in the
following.

The constraints of

eiðjÞ 2 f0; 1g;
XNc�1

j¼0
eiðjÞ ¼ 1

reflect the restriction that each input source symbol is
mapped to a unique channel symbol. Similarly, the
constraints of

dlðkÞ 2 f0; 1g;
XNs�1

k¼0
dlðkÞ ¼ 1

reflect the restriction that each output channel symbol is
mapped to a unique source symbol. We refer to a
construction with such constraints as deterministic. In an

source (s )
i

VQ encoder (�)
�(i )

channel (c)
j

VQ decoder (�)
�(J)<

Fig. 1 Block diagram of a typical vector quantised communication system

Table 1: Summary of symbols used

Symbol Description

Ps(i) occurance probability of a symbol source si

x VQ encoder

Z VQ decoder

Ds (i, k) distortion between the source symbols si and sk

Tc (j |i) transition probability of receiving channel symbol
cj if ci was transmitted

Ns number of source symbols

Nc number of channel symbols
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alternative, we replace these constraints by

eiðjÞ � 0;
XNc�1

j¼0
eiðjÞ ¼ 1

and

dlðkÞ � 0;
XNs�1

k¼0
dlðkÞ ¼ 1

respectively. In this case, the resulting encoder and the
decoder mappings will be stochastic, in the sense that the ith
source symbol is mapped with probability ei(j) to the jth
input channel symbol, and the lth output channel symbol is
mapped with probability dl(k) to the kth source symbol.

As the optimisation problem resulting in a stochastic
structure is obtained by a relaxation of the corresponding
problem in the deterministic case, such a stochastic mapping
cannot result in a degradation in performance. Indeed,
noting that the objective function in (1) is bilinear in terms
of eiðjÞ and dl(k), it is easy to see that the final solution of
the relaxed problem will be located at an extreme point of
the polytope corresponding to the eiðjÞ constraints (linearity
with respect to eiðjÞ s), as well as at an extreme point of the
polytope corresponding to the dl(k) constraints (linearity
with respect to dl(k) s). As a result, eiðjÞ and dl(k) variables
will be composed of zero-one values only, i.e. the zero-one
constraint is automatically satisfied. In the following, the
optimisation problem in (1) is transformed into a QP
problem.

4 Quadratic programming problem

The quadratic programming problem used here may be
stated as:

minimise qðxÞ ¼ 1
2

xtQx
subject to: x 2 X ¼fx 2 Rn : Ax ¼ b; x � 0g ð4Þ

where Q 2 Rn�n, A 2 Rm�n and b 2 Rm for some positive
integers m and n.

The problem in (1) can be expressed in terms of a QP
problem by arranging the elements eiðjÞ and dl (k) in the
column vector x, i.e.

xt ¼½e0ð0Þ; e0ð1Þ; . . . ; e0ðNc � 1Þ; . . . ; eNs�1ð0Þ; . . . ;

eNs�1ðNc � 1Þ; . . . ; d0ð0Þ; . . . ; dNc�1ðNs � 1Þ�
and

Q ¼ 0 D
Dt 0

� �
where D is an NsNc�NsNc square matrix with Ps(i)Tc(l | j)
entries corresponding to entries of the vector x in (1). For
example, consider the case where Ns¼ 2 and Nc¼ 1. Then,
for

xt ¼ ½e0ð0Þ; e0ð1Þ; e1ð0Þ; e1ð1Þ; d0ð0Þ; d0ð1Þ; d1ð0Þ; d1ð1Þ�
the corresponding matrix D is given by

Psð0ÞTcð0j0ÞDsð0; 0Þ Psð0ÞTcð0j0ÞDsð0; 1Þ
Psð0ÞTcð0j1ÞDsð0; 0Þ Psð0ÞTcð0j1ÞDsð0; 1Þ
Psð1ÞTcð0j0ÞDsð1; 0Þ Psð1ÞTcð0j0ÞDsð1; 1Þ
Psð1ÞTcð0j1ÞDsð1; 0Þ Psð1ÞTcð0j1ÞDsð1; 1Þ

2
6664
Psð0ÞTcð1j0ÞDsð0; 0Þ Psð0ÞTcð1j0ÞDsð0; 1Þ
Psð0ÞTcð1j1ÞDsð0; 0Þ Psð0ÞTcð1j0ÞDsð0; 1Þ
Psð1ÞTcð1j0ÞDsð1; 0Þ Psð1ÞTcð1j0ÞDsð1; 1Þ
Psð1ÞTcð1j1ÞDsð1; 0Þ Psð1ÞTcð1j1ÞDsð1; 1Þ

3
7775

The indicator constraints described by (2) and (3) can be
also rewritten as the constraints on the QP problem (4) by
simply letting

A ¼
1 � � � 1

. .
.

1 � � � 1

2
4

3
5; b ¼

1
..
.

1

2
4
3
5
9=
;Nc þ Ns

It is well known that the QP problem (4) is a non-convex
problem if the matrix Q is not positive semi-definite. In the
case dealt with in the paper, the matrix Q is not positive
semi-definite as will be shown below.

To show that the matrix Q in (4) is not positive semi-
definite, recall the structure of Q and the fact that the matrix
D is a square matrix. It is easy to see that the main diagonal
elements of the Q matrix are always exactly zero. To test if
the Q matrix is positive semi-definite, we use the following
lemma.
Lemma: [14] If a symmetric matrix Q¼ (qi,j) is positive
semi-definite and has a zero diagonal entry qi,i, then all the
entries in that row and column have to be zero, i.e., the row
i and column i must be zero.

The lemma above and the fact that the main diagonal
entries of the Q matrix are always zero, implies that the only
case where the Q matrix is positive semi-definite is when all
its entries are equal to zero, making the objective function
identical to zero.

It has long been known that a non-convex QP problem is
a hard problem to solve. This was first shown by Sahni [15],
and later by Pardalos [16]. More recently, several authors
have shown that a non-convex QP is actually NP-complete
[17]. This will imply that a polynomial algorithm for
computing the exact solution of this problem cannot be
expected, since that would imply P¼NP.

Having shown that the optimisation problem stated in (1)
is a non-convex QP, the approach will be to find a local
optimum solution which satisfies some nontrivial bound in
terms of how well it minimises the objective function.

A feasible point x is defined to be an e-approximation if
there exists a global minimum x* such that q(x)�q(x*)re
for some e40. However, we will use the following definition
since some of its useful properties prove crucial in our
approach. We assume that the feasible region is bounded
and closed, and contains a nonempty interior region.
Definition: Assume that an upper bound for Ps(i)Tc(l7j)
Ds(i, k), or in the case where the probabilities of source
symbol Ps(i) and the transition probabilities are known an
upper bound for distortion Ds (i, k) is known. Let �z be the
value of the objective function in (4) if all Ps(i)Tc(l7j)Ds(i, k),
or D(i, k) are replaced by this upper bound. Also, let z
denote where the objective function is minimised. A feasible
point x is an e-minimal solution or e-approximation, eA
(0, 1) for (4) if

qðxÞ � z

�z� z
� e

This definition has the advantage that the e-approximation
property of a point is preserved under affine linear
transformations of the feasible region. Note that only an
optimum point is a zero-approximation.

Another useful property of the above definition is that it
is insensitive to translation or dilation of the objective
function. In other words, let the objective function q(x) be
replaced by a new objective function f(x)¼ aq(x)+b for
some a40. It is easy to see that an e-approximate point x
will be also an e-approximate of the new objective function.

Our approach to solving the QP problem (4) is to utilise
the fact that efficient algorithms exist for certain non-convex
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quadratic minimisation problems (in particular minimisa-
tion is subject to a unit ball constraint i.e. xk k2� 1).
Interior-point algorithms for linear programming often use
a gradient direction method. However, this will give a
substantial reduction in the objective function only if the
current feasible point is centred in a somewhat large
polytope. Therefore a commonly used technique is to use a
scheme that alternates between centring the feasible point
and taking a step in the gradient direction. The interior-
point algorithm described here uses the affine scaling
algorithm, first proposed by Dikin [18], followed by a
polynomial time bisection algorithm that solves a sub-
optimisation ball-constraint QP problem. This will produce
an e-approximation to a local minimum associated with (4)
which satisfies the Karush–Kuhn–Tucker (KKT) first and
second conditions.

In order to solve the QP problem (4), given any arbitrary
feasible point xkAX, where xk ¼ ðxk

1; . . . ; xk
nÞ40, we use

affine scaling techniques to minimise the objective function
over an interior ellipsoid which will generate another
interior solution. A series of such ellipsoids can be
successively constructed to generate a sequence of points
converging to a KKT point [19, 20]. Note that in the above,
k refers to the kth iteration of the affine scaling technique,
and it is assumed that x0 is given. Let Xk be the n� n
diagonal matrix known as the scaling matrix, whose
jth diagonal entry is xk

j . If one or more xk
j are zero, a

perturbed diagonal scaling matrix is used for which the zero
elements are replaced by, for example, a fixed but non-zero
element. Then let y¼Xkx, Qk¼XkQXk and Ak¼AXk.
Affine scaling solves the following sub-optimisation problem:

minimise qðyÞ ¼ 1
2

ytQky
subject to: y 2 fy 2 Rn : Aky ¼ b; y� Ek k � ag

ð5Þ
where �k k denotes the L2-norm, 0oao1, Et ¼ ð1; . . . ; 1Þ,
and

�
x : ðX kÞ�1ðx� xkÞ
��� ��� ¼ y� Ek k � a

�
corresponds

to the Dikin ellipsoid with radius a in the positive octant
fx 2 Rn : x40g. Note that the ellipsoid constraint
f y�ek k� ao1g implies that any feasible solution y of (5)
gives a positive interior feasible solution x¼ (Xk)�1y for (4).

There are several approximation algorithms developed
for QP which minimise the objective function in an L2-norm
neighbourhood around a given feasible point (a ball
constraint). The basic idea is to use an affine transformation
of the ellipsoid constraint QP which can be solved using a
ball constraint QP [20].

Let NkARn� (n–m) be a matrix whose columns form
an orthonormal basis spanning the null space of Ak, and
let Nkz¼ y–E for some zARn–m. Also, let
Hk¼ (Nk)tQkNkAR(n–m)� (n–m) and gk¼ (QkE )tN kARn-m.
Then, the QP problem, (5) can be written as,

minimise qðzÞ ¼ ðgkÞtzþ 1
2

ztHkz
subject to : z 2 fz 2 Rn�m : zk k � ag ð6Þ

To compute the e-approximation of (6), we use a simple
polynomial bisection method proposed by Fu et al. [21] (see
also [20, 22]). This results in a total of

O

 
ðn� mÞ6

e
log

1

e
þ ðn� mÞ4logðn� mÞ

 !

� log
1

e
þ logðn� mÞ

� �!
ð7Þ

arithmetic operations. For the details of how (6) can be
obtained from (5), and a sketch of the algorithm to solve the

ball constraint QP problem using a bisection method, please
see the Appendix.

Let z be the minimal solution of (6). Generate a sequence
of points by letting z k+1¼X kz. It is proved in [20] that
these points converge to an optimal point satisfying both
the first and second necessary KKT conditions for the
original QP problem (4).

5 Simulation results

The test cases simulate transmission of a quantised
Gaussian source. The Linde–Buzo–Gray (LBG) algorithm
is used to produce the quantiser points, which become the
communication systems’ source symbols. We use the same
number of source and channel symbols. A binary symmetric
channel (BSC) model is used within which a binary symbol
is received in error with a given probability, say e. Multiple
channel symbols are obtained by simulating repeated use of
the BSC. In this case, we have for the channel transfer
matrix T the following values:

TcðjjiÞ ¼ ðeÞhi;jð1� eÞðr�hi;jÞ ð8Þ
where r is the binary length of the code words and hi,j is the
Hamming distance (number of bit differences) between code
words indexed by i and j.
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Fig. 2 Natural labelling vs optimised encoder/decoder performance
a 8 symbols
b 16 symbols
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The graphs, Fig. 2, show the ratio of discrete source
energy to added distortion (in dB) plotted against the
channel error parameter (e). The energy of a discrete source
S¼ s1,y, sn with a priori probabilities p1,y, pn is given by

E ¼
P

i pis2i � ð
P

i pisiÞ2. The added distortion is the value
of the objective function from (1) or any of the later
reformulations. In both graphs, the optimised mapping is
compared with a natural labelling which maps the source
symbol si to the channel symbol corresponding to the
binary representation of i and has the inverse mapping as
the decoder. This corresponds to a typical system without
channel coding.

It is observed that the optimisation procedure explained
in this paper can result in a substantial improvement in the
end to end distortion of the source, especially for poor
channel conditions.

6 Conclusions and future work

The problem of optimising the mapping between the source
and the channel symbols to minimise the average distortion
between the encoder input and the decoder output of a
discrete communication system is addressed. It is shown
how this problem can be formulated in terms of a zero-one
optimisation problem. This combined source-channel cod-
ing formulation allows for the case when several source
symbols are encoded to the same channel symbol, as well as
for the case when some of the channel symbols are not used
at all, resulting in a larger noise margin for the remaining
symbols. It can also handle any discrete channel model and
any additive distortion measure. Using the structure of the
problem, it is shown that the zero-one formulation can be
reduced to a general QP problem. Affine scaling techniques,
followed by a bisection algorithm which solved a sub-
problem in a polynomial time bound of O(n6L) was used to
generate an e-approximate solution of the given QP
problem. Numerical results are presented for some cases
of practical interest in digital communications, demonstrat-
ing a substantial improvement using the proposed method.

In this paper, the index assignment problem was
reformulated as a QP problem and a possible solution
based on an interior point method was suggested. The study
of constrained QP problems has been one of the richest
areas in optimisation theory. Other techniques used to solve
this problem could be used in future work, and comparisons
made in terms of complexity and convergence rate.

As mentioned in the Introduction, there have been many
methods developed in order to improve the system
performance, in the presence of channel noise, without
using explicit error control. A comprehensive survey of
these methods and their advantages, disadvantages and
restrictions, and the method suggested in this paper could
provide a very useful tool in this area.

In this paper, we did not address the complexity of the
implementation of the vector quantisation encoder/decoder
where the number of source symbols is large. An adaptation
of a hierarchical lookup table, similar to the one suggested
in [23], could potentially offer a solution to this problem.
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9 Appendix

This Appendix shows the relationships between different
QPs presented in Section 4, and sketches of the algorithm
which solves the ball constraint QP problem using a
bisection method.

Consider the general case of the QP problem (5):

minimise qðxÞ ¼ 1
2

xtQx
subject to: x 2 fx 2 Rn : Ax ¼ b; x � 0g ð9Þ

Consider an arbitrary feasible point xkAX, where

xk ¼ ðxk
1; . . . ; xk

nÞ40. Let Xk ¼ diag½xk
1; . . . ; xk

n� be the
diagonal scaling matrix, and use a change variable y¼Xkx.
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Setting Qk¼XkQXk and Ak¼AXk, and for Et ¼ ð1; . . . ; 1Þ
we can then solve the following sub-optimisation
problem:

minimise qðyÞ ¼ 1
2 ytQky

subject to : y 2 fy 2 Rn : Aky ¼ b; y� Ek k � ag
ð10Þ

It should be noted that since xk is a feasible point, we have

AkE ¼ AXkE ¼ Axk ¼ b

We also have that matrix Qk is symmetric, since Q is. In
fact, Qk is an n� n diagonal matrix whose jth diagonal

element is ðxk
kÞ

tQðxk
j Þ.

Now let Dy ¼ y� E. It is easy to show that the following
set of equalities hold:

EtQkDy ¼ DytQkE ¼ EtQkDy ¼ EtðQkÞtDy

¼ ðQkEÞtDy ð11Þ
The last three equalities follow from the fact that Qk is
symmetric, and by a basic property of transpositions. To
show the first two equalities, note that

EtQkDy ¼ ð 1 1 � � � 1 Þ
ðxk

1Þ
tQðxk

1Þ
ðxk

2Þ
tQðxk

2Þ
. .

.

ðxk
nÞ

tQðxk
nÞ

0
BBBBB@

1
CCCCCA

Dy1

Dy2

..

.

Dyn

0
BBBB@

1
CCCCA

¼ ðxk
1Þ

tQðxk
1ÞDy1 þ ðxk

2Þ
tQðxk

2ÞDy2 þ � � � þ ðxk
nÞ

tQðxk
nÞDyn

which is the same as

DytQkE ¼ ðDy1 Dy2 � � � DynÞ
ðxk

1Þ
tQðxk

1Þ
ðxk

2Þ
tQðxk

2Þ
. .

.

ðxk
nÞ

tQðxk
nÞ

0
BBBBB@

1
CCCCCA

1

1

..

.

1

0
BBBB@

1
CCCCA

Now using the equalities in (11) and the fact that
y ¼ Dyþ E, q(y) can be written as

qðyÞ ¼ 1

2
ðDyþ EÞtQkðDyþ EÞ

¼ 1

2
ðDyt þ EtÞQkðDyþ EÞ

¼ 1

2
ðDytQkDyþ 1

2
DytQkE þ 1

2
EtQkDy

� �
þ 1

2
EtQkE

¼ 1

2
ðDytQkDyþ ðQkEÞtDyþ 1

2
EtQkE

Since qðEÞ ¼ 1
2
EtQkE is a constant and hence can be

ignored in the minimisation problem, and given the fact that
we have already shown

AkðDyþ EÞ ¼ AkDyþ AkE ¼ AkDyþ b

the QP (10) can be rewritten as

minimise 1
2
DytQkDyþ ðQkEÞtDy

subject to: y 2fDy 2 Rn : AkDy ¼ 0; Dyk k � ag
ð12Þ

Now, let N kARn� (n-m) be a matrix whose columns form an
orthonormal basis spanning the null space of Ak, such that
(N k)t(N k)¼ I, and let N kz¼Dy. Then, the QP problem
(12) can be written as the ball-constraint QP,

minimise qðzÞ ¼ 1
2

ztHkzðgkÞtz
subject to: z 2 fz 2 Rn�m : zk k � ag ð13Þ

where H k¼ (N k)tQkN kAR(n-m)� (n-m) and gk¼ (Q kE)tN kA
Rn-m. Here, we have used the fact that N kz

�� �� ¼
N k
�� �� zk k ¼ zk k.

The ball-constraint QP (13) is then successively solved for
each iteration of the affine scaling step until a local
optimum point is found.

Below is the sketch of steps involved in solving (13) using
a bisection method. It should be noted that the ball-
constraint QP is one of the most studied problems, and the
bisection method is one of the many suggested algorithms
to solve it. For more details on the bisection method below,
the reader is referred to [20, 24].

It is well known that the solution, z, of the ball constraint
QP (13) satisfies the following necessary and sufficient
conditions,

ðHk þ mIÞz ¼ �gk ð14Þ

m � maxf0; �lg ð15Þ

and zk k � a ð16Þ
where l denotes the least eigenvalue of the matrix Hk. In the
case where Hk is not positive semidefinite, we must have
lo0. Furthermore, it is known that [20]

lj j � ðn� mÞmax hk
ij

��� ��� ð17Þ

and

m� � lj j þ
gk
�� ��
a

ð18Þ

where m* is the unique solution to (14), and hk
i;j is the (i, j)th

component of the matrix Hk. We have,

0 � m� � m0 :¼ ðn� mÞmaxfjhk
ijjg þ

gk
�� ��
a

For any given m4 lj j, let zm be a solution to the linear
equation (14). We can use the bisection method stated
below to look for the root of zm

�� �� over the interval

m 2 ½ lj j; m0� � ½0; m0�. It was proved in [21] that this will
generate an e-minimiser of (13) in the polynomial time
stated in (7).
Algorithm: for solving ball-constraint QP (13)
Set m1¼ 0 and m3 ¼ nmax

ij
hij

�� ��þ gk
�� ��=a, and

stop:¼ false.
Step 1: Set m2 ¼ 1

2
ðm1 þ m3Þ

Step 2: Let m¼ m2, and solve for z in (14)
Step 3: If m3�m1oe then stop:¼ true;
elseif
(a) Hk+mI is indefinite or negative definite, or
(b) (14) has no solution, or
(c) the norm of the minimal norm solution of (14) is
greater than a,
then m1¼ m2 and goto step 1;
elseif the norm of the solution of (14) is less than a,
then m3¼ m2 and goto step 1.
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