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Abstract: The maximum-likelihood decoding of linear block codes by Wagner rule decoding is
discussed. In this approach, the Wagner rule decoding, which has been primarily applied to single
parity check codes, is employed on acyclic Tanner graphs. Accordingly, a coset decoding equipped
with Wagner rule decoding is applied to the decoding of a code C having a Tanner graph with cycles.
A subcode C; of C with acyclic Tanner graph is chosen as the base subcode. All cosets of C; have the
same Tanner graph and are distinguished by their values of parity nodes in the graph. The acyclic
Tanner graph of Cj, together with a trellis representation of the space of the parity sequences,
represent the code C. This graphical representation provides a unified and systematic approach to
search for an efficient method for the maximum-likelihood decoding of a given linear block code. 1t is
shown that the proposed method covers the most efficient techniques known for the decoding of
some important block codes, including the hexacode Hy, extended Golay codes, Reed-~Muller codes,
Hamming codes and (32, 16, 8) quadratic residue code. The generalisation to the decoding of lattices

is briefly explained.

1 Introduction

The maximum-likelihood (ML) decoding complexity of a
group code C is one of the main concerns in the applica-
tion of C. It is believed that appropriate graphical represen-
tations of codes will contribute in this regard. The well
known graphical models presented for linear codes are trel-
lis diagram [1-3], Tanner graph (TG) {4], and Tanner-
Wiberg-Loeliger graph [5, 6].

Bahl [1] and Wolf [3] demonstrated that one could con-
struct a trellis diagram for a block code, and hence employ
the Viterbi algorithm for its decoding. Wolf also gave a
simple algorithm for the construction of the trellis diagram.
Forney [2] later gave a procedure for the construction of
the minimal trellis diagrams [Note 1] for the class of Reed-
Muller codes and the extended Golay code. In most
instances, the code was found to have far fewer states than
the method origmally given by Wolf in [3]. In the same
year, Muder [7] rephrased the work of Forney in graph the-
oretic terms. Since then, several authors have studied the
problem of finding minimal trellises for linear block codes
[8-11}. Trellis-based approaches have also been successfully
applied to the decoding of array codes {12, 13].

The work of Conway and Sloane [14] has addressed the
decoding of binary codes and lattices containing geometri-
cally simple subcodes such as the universe code F,, and the
even weight code &, A slightly different language and
perspective has been independently applied to decoding of
the extended Golay codes by Pless [15] using the hexacode
Hg and the (4, 2, 3) tetracode. The general approaches
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given in these two works have been employed by several
authors [16-19] to introduce some of the best known tech-
niques in decoding linear block codes, including the (24, 12)
Golay code (18], the (32, 16) extended quadratic residue
(QR) code [19], and the second order Reed-Muller codes
[16].

The methods of coset decoding have been developed dur-
ing many years by some of the best known coding theo-
rists, and are mainly due to the intuitive understanding of
their inventors with respect to the structure of the specific
code considered. Unfortunately, however, the techniques
developed usually do not follow a unified framework and
the results cannot be easily understood or generalised from
one instance to the other. The present work provides a uni-
fied and systematic approach to searching for an efficient
coset decoding method of a given linear block code. It is
shown that the proposed method covers the best decoding
technique known for many of the important codes.

A TG representing a linear block code with check matrix
H = [k} is a bipartite graph in which one of the two sets of
vertices denotes the parity nodes, the rows of H, and the
other set denotes the symbol nodes, the columns of H. A
parity node u; is connected to a symbol node v; iff /1; = 0. A
cycle-free TG will be referred to as an acyclic TG (ATG).

The single parity (SP) codes are easily decoded by using
the Wagner rule [20]. In this case, a bit-by-bit hard decision
of the received channel output is considered unless the par-
ity is not satisfied, in which case the least rehable bit is
flipped (inversed). The Wagner rule decoding has been,
explicitly or implicitly, applied and generalised by several
authors including [14, 21-28] to the ML decoding of block
codes and lattices.

Snyders and Be’ery [17] introduced a generalisation of
the Wagner rule decoding for binary block codes, including

Note 1: A minimal trellis diagram is the trellis having the least number of states
among all trellis diagrams representing the code.
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the Golay codes. Later, their work on the Golay codes was
improved substantially by Vardy and Beery [18] using
Pless construction {15] of these codes together with the
Wagner rule. The same approach was taken for decoding
of the (32, 16) QR code [19]. The method of coset decoding
has been used in [34-36] in conjunction with various other
decoding techniques to provide a variety of tradeoffs
between bit error performance and decoding complexity.

It is natural to think of a generalisation of the Wagner
rule decoding on codes with connected ATGs by focusing
on one of the parity nodes, to be called the root parity, and
then considering the branches, leaving the root parity node
as the symbol nodes. In short, we can say that any code
with a connected ATG may be decoded by the Wagner
rule decoding. This, together with coset decoding tech-
niques, leads us to the application of the Wagner rule
decoding on codes having TGs with cycle.

Given a linear block code C, one first needs to determine
a relatively large subcode Cj of C with ATG to reduce the
number of cosets. Our experience has shown that the larg-
est subcode (with the minimum index) always results in the
minimum overall complexity. The method to deal with the
cosets of C, for finding the most overall reliable codeword
is another important issue. To illustrate this point, we
compare the method of [17, 18] for the decoding of the
Golay code: These references use the same five-dimensional
subcode of the Golay code Gy In [17], all cosets are
decoded independently and then the most likely codeword
is chosen, while in [18], the final selected codeword is deter-
mined without decoding all the cosets. This is the main
reason for the reduction in complexity in [18] with respect
to [17]. This explains the fact that in any coset decoding of
a linear code, the structure of the underlying subcode and
the corresponding set of coset.leaders have to be applied
efficiently in order to achieve the lowest possible decoding
complexity.

A code C is said to be the sum of C; and C,, denoted C
= C; + G, if C; and G, are subcodes of Cand C; N G, =
{0}, and C = {¢; + 3] ¢; € €, and ¢, € G,}. The direct
product (also called the Kronecker product, or simply the
product) operation is denoted by ‘®’. The direct sum of
two codes C; and G, denoted C; @ C,, is defined to be
C® G = {c ¢ € C) and ¢, € G}, where ¢j¢; 18 the
concatenation of ¢; and ¢,. The ordinary product of two
matrices M, and M, is denoted by M M,.

Consider a linear block code C, where a subcode C; of C
with ATG is used as the base subcode and C = G, + C.,.
Let My denote a generator matrix of the dual code Cgt.
The space of the parity nodes, referred to as the parity
space (PS), is generated by the matrix Mpg = Mg-M,,
where M, is a generator of C,. The ATG of C, together
with the minimal trellis diagram (MTD) of the associated
PS, are considered as a graphical representation of the code
C and are applied in the decoding process. We refer to this
representation as a Tanner graph-trellis (TG-T) of C.

The base code C, needs to be of high dimension to keep
the index (number of cosets) low. Another important fea-
ture of C is the structure of the corresponding TG. To
reduce the decoding complexity, it is essential to have the
number of branches leaving the root parity large, and for
the branches to be as similar as possible. We refer to this
property as the uniformity of the Tanner graph. The class
of product codes (n, n — 1, 2) ® (m, 1, m) satisfies this uni-
. formity condition fully, for which the corresponding ATG
is composed of n branches of length m.

In all the important cases examined, the base sub-code is
of the form (n, n — 1, 2) ® (m, 1, m), m = [dy;,/2] where
diy is the minimum distance of the original code. This
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results in a minimum distance of 2[d,;/2] for the resulting
subcode. This is the minimum possible value for the length
of branches in extracting such a subcode from a code of
minimum distance d,;,,. Indeed, after this work was com-
pleted, we became aware of [29], which completely charac-
terises the codes with cycle-free TGs. Using the results of
{291, we conclude that all the base subcodes used in our dis-
cussions are indeed maximal. We will present an independ-
ent proof for the maximality of the extracted subcode for
the case of the first order Reed~Muller code.

2  Tanner graphs

2.1 Minimal Tanner graph

Tanner graphs were first introduced in [4]. A TG of a lin-
ear code C is a bipartite graph obtained from a set of par-
ity check equations representing C. The two sets of vertices
are called variable nodes and check nodes. A variable node
v is adjacent with a check node u iff the coefficient of the
variable corresponding with v is not zero in the check equa-
tion corresponding to u.

Example 1. Two TGs of the (4, 2) linear code C presented
by the parity check matrices A and H' are given in Fig. 1.
H=

X

1101] 4 o
= 1 4
1011 oy

a

X4
1101
H{ st
0110 b X4

b
Fig. 1 Two Tanmner graphs of (4, 2) linear code C corresponding to H and H'

Note that the number of edges in a TG is the number of
ones in the corresponding check matrix A, and the number
of vertices is the sum of the rows and columns of A. There-
fore, unlike the number of vertices, the number of edges is
not constant, as can be seen from example 1.

Definition | (minimal. Tanner graph): A TG of a linear
code C is called minimal Tanner graph (MTG) if it has the
minimum number of edges among all TGs representing C.
For the (4, 2) code given above the check matrix H' con-
tains the minimum possible ones, and hence the TG given
by Fig. 1his a MTG.

One of the matrices associated with a graph G, whose
cycles and edges are labelled, is the cycle matrix, and the
generated space is called the ‘cycle space’. For a graph G
with m cycles and n edges, the cycle matrix [¢;] is a binary
m x n binary matrix for which ¢; = 1 iff the jth edge lies on
the ith cycle {30].

As all MTGs of a linear code C have the same number
of edges and vertices, it follows that the associated cycle
spaces have the same rank. This supports the idea of refer-
ring to any MTG of a linear code C as the minimal Tanner
graph of C.

Definition 2 (minimal Tanner basis). Let H;, denote any
version of the check matrix of C that generates the MTG
of C. The set of rows of H,;, will be referred to as a mini-
mal Tanner basis of C.

In [31], we have given an algorithm to construct H, from
a given check matrix H.

2.2 Acyclic Tanner graphs and single parity
codes

A linear code C whose MTG is cycle-free will be referred to
as an acyclic code. The class of linear block codes with
ATGs is characterised in [29]. Since most of the important

323



codes are not acyclic, for a given code C, the acyclic sub-
codes are of special interest.

The (1, n — 1, 2) SP code &, called also the even weight
code, has the simplest nontrivial ATG. Its associated TG
consists of one parity node and n symbol nodes, all adja-
cent with the parity node.

Let C be an acyclic linear code. If the MTG is a forest (a
disconnected acyclic graph), then obviously each compo-
nent of the TG represents a linear subcode of C such that
C is the direct sum of all such subcodes. Therefore, in char-
acterising acyclic linear codes we may consider only those
with connected ATG to be called tree TG (TTG).

1t is natural to think of a code C with TTG as a SP code

by focusing on one of the parity nodes, to be called the
root parity node, and then considering the branches leaving
the root parity node as the symbol nodes. In this way, one
can easily construct a generator matrix of C using the asso-
ciated TTG and generator matrices of SP codes [31].
Definition 3 (generalised single parity code): A linear code
C having tree Tanner graph G is defined to be a generalised
single parity (GSP) code if at most one of the parity nodes
of G is of degree m = 3. Such a unique node is referred to
as the ‘root parity’.
If all parity nodes of the TTG G are of degree 2, then C is
a repetition code. In this case, we say the root parity is of
degree 2. It is said that G has m = 2 branches if the root
parity is of degree m. The number of symbol nodes on a
branch is called the length of the branch.

It is obvious that the generator matrix of a GSP code C
with m = 3 branches is obtained from the generator of the
(m, m — 1, 2) SP code &, by replacing the nonzero entries
of each column of £, with a repetition code that has the
same length as the corresponding branch of G.

If all the branches are of the same length then C is called
a uniform generalised single parity (UGSP) code.

3  Acyclic Tanner graphs and maximume-likelihood
decoding

3.1 Maximum-likelihood decoding using acyclic
subcode and Wagner rule

3.1.1 Maximum likelihood decoding: Let C be an
(1, k) linear block code over a field F,. Assume that a code-
word of C is transmitted over a noisy memoryless channel
with discrete output alphabet ¥ and transition probability
functions f{y|x); that is, the probability of receiving symbol
v given that x is transmitted is £y|x). Further, suppose the
sequence y = (yy, ..., y,) s received as the channel output.
The maximum-likelihood decoding consists of finding
codeword ¢ = (¢, ..., ¢,) that maximises P(clp), the likeli-
hood that ¢ is transmitted provided that y is received.
Assuming that all codewords of C are transmitted with
equal probability ¢, we see that maximisation of P(cy) is
equivalent to maximisation of P(plc), the probability of
receiving y given that ¢ is transmitted. The channel is mem-
oryless, and hence we have P(yjc) = I, P(ylc) = ML,
Ayie). Consequently ¢ = (¢, ..., ¢,) is the most likely trans-

mitted codeword if and only if it minimises

n
We:=Y " —log f(uile:) 1)
=1

Assume that C is an (n, k) binary code with BPSK, x €
{~1, 1}, modulation transmitted over a memoryless chan-
nel. Let w; == In(p(y{D/p(y4f — 1)) and p == (y, ..., u,). We
refer to y; as the ’confidency value’ of the ith bit. By con-
sidering C as a subset of the Euclidean space R”", under
projection g(¢) : (=1)% the maximum-likelihood problem is
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to minimise the Euclidean norm |ju — c|? := [|ul? — 2<u, ¢>
+ |lel. That is to say ¢ must maximise the inner product
<u, > = ZL (<),

3.1.2 Tanner graph-trellis representation: Let C,
with generator matrix M, be an acyclic subcode of a given
linear code C. The matrix M, can be extended to a genera-
tor matrix M for C. Suppose M = My + M, where M is a
generator matrix for the space of coset representatives.

Let My stands for a generator matrix of Cg-, the dual of
Cy. Hence, Gy = {x]Mj-x = 0}. A coset Cy + ¢ is specified
by Gy + ¢ = {x + Mg x = 0}. If Mg c = b, then Mg-(x +
¢) = Mg x + Mgtc = b. Therefore, TG corresponding to the
coset Cy + ¢ 1s the same as that of C; except for the values
of the parity nodes, i.e., the sequence of zeros for the parity
nodes of Cy has to be replaced by b = My c. The set of all
such parity node sequences is a vector space called the par-
ity space corresponding to C, and is denoted by PS(C).

The parity space is given by generator matrix Mpg =
Mg x M,. The ATG of Gy, denoted G1{Cy), together with
Tps(C), a MTD of the parity space in which the root parity
is ignored, may be considered as a graphical representation
of C, and we call it a Tanner graph-trellis (TG-T) of C.
Figs. 5-7, 9b, 9c and 10 are examples of such a representa-
tion. If ¢, is a maximal acyclic subcode, then the corre-
sponding representation of C will be called a minimal TG-T
of C, as the associated parity space has the minimum size.

In general, if the root parity in G{(p) is of degree m,
then we may think of Tpg as an m-section trellis diagram.
The edge label set at each section of Tpg is generated by the
parity sequences of the corresponding branch of GACy). If
Ciis over field F, then any element of £, can be the contri-
bution of each edge e of Tpg to the root parity. Therefore,
an edge e can be thought of as g-tuple e := (e, e, ..., ),
where ¢; is the version of e which provides the root parity
with contribution i € F,. To each version ¢; of ¢, | sisg,
a confidency value is associated. In the g-tuple of confi-
dency values, the maximum confidency and the differences
between that and the other values are determined. The dif-
ferences are referred to as the ‘confidency deviations’.

All the edges lying on a path of Tpg are originally consid-
ered with the version with maximum confidency, unless the
root parity is not satisfied, in which case a group of edges
of the path are changed with their other versions so that
the change causes the least total confidency deviation and
satisfies the root parity.

3.1.3 Twisted trellis representation: One way to
implement the foregoing process is to substitute each edge
of Tps by g-tuple e = (¢, €, ..., ¢;) and then to ignore the
paths that do not satisfy the root parity. The so obtained
trellis, denoted TTpg(C) or simply TTpg, is referred to as
the twisted trellis of parity space. The trellises shown by
Figs. 4¢c and 7 are examples of twisted trellises.

From the generator matrix point of view, the generator
corresponding to a twisted trellis is easily obtained from
that associated with the underlying trellis Tpg. The trans-
formation process is given here for the binary case.

We consider the root parity column in the generator
matrix of parity space as the contribution of a section, say
the first section, of the trellis 7pg to the root parity, and
provide other sections of the trellis with zero contributions.
This, for instance, transfers parity matrix Mpg to M'":

P, Py P34 PBg
1 11 10 00

0 o1 11 10
1 00 10 11

Mps =
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111 100 000
M' = {010 110 100
001 100 110

The generator matrix so obtained introduces only a linear
subcode of the code corresponding to the twisted trellis. In
the coset associated with the all-zero parity sequence, we
may replace the all-zero sequence of contributions to the
root parity by any even weight binary sequence. As a
result, M rr, the generator of the twisted trellis, is obtained
by adjoining matrix M" to M', where the columns of M"

corresponding to the contributions to the root parity form

a SP code, and the rest of the entries are all zero. The fol-
lowing illustrates the process. The associated trellises are
given in Figs. 46 and ¢, respectively.

111 100 000

" A 010 110 100

My = M= 001 100 110
- 001 001 000

000 001 001

[P, Py Psa Psg

1 11 10 00
- 2
Meps 0 01 11 10 @)

1 00 10 11

One can simply apply the Viterbi algorithm on 77 pg and
find the optimal path. Depending on the structure of 77 g,
however, it may be possible to find the optimal path in a
more efficient manner. For instance, if 7T pg consists of dis-
joint regular sub-trellises, to be defined in the next subsec-
tion, then it can be decoded more efficiently.

3.2 Multilevel parity codes
Definition 4: Let {A4;}[%; be a sequence of nonzero matrices
of rank r over field F,. The code C over F, with generator
matrx
Ar Ay
Az Az

An—~‘2 An—l
> Ano1 A,
is referred to as an r-level parity check code.

Example 2: The following matrices represent two one-level
and two-level binary parity codes.

111100

11 10 00 , _ {001 o001
M= [00 10 11J M= 100 111
001 001

(4)

Definition 5 (regular trellis diagram). An n-section trellis
diagram 7 is called regular if:

(1) the number of vertices of T is the same for all time indi-
ces, except for the imtial and final time indices that have a
single vertex;
(ii) each section of the trellis is a complete bipartite graph;
(iti) the set of labels of edges leaving or entering any vertex
of a section of T, except for the first and last sections, is the
whole set of edge labels of that section.
The trellises shown by Figs. 2a and 86 are regular quater-
nary and binary trellises, respectively,

The MTD of a SP code of length n over F, is regular
with ¢ states at each time index, except for the mitial and
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final vertices. In general, an r-level parity code over F,
specified by matrix sequence {4;}Z,, has an n-section regu-
lar trellis diagram with ¢ vertices at each time index. This
has indeed been the motivation for introducing the term
multilevel parity code. .

3.3 Maximum likelihood of linear block codes
containing a multilevel parity code

The Viterbi algorithm is a common tool when decoding a
code using a trellis. For multilevel parity codes, however,
we can apply a much more efficient technique. A
constrained design representation of second order Reed--
Muller codes and the (24, 12) Golay code is given in [16]. A
layer of the constrained design does indeed present a regu-
lar trellis diagram. It is therefore natural to extend the elim-
ination techniques given in [16] on the multilevel parity
codes.

A linear block code C containing an r-level parity code
has a trellis diagram consisting of structurally identical par-
allel sub-trellises, each of which is a regular trellis. In each
of the regular trellises an optimal path is found, and then a
comparison among the obtained paths determines the
decoder output. Therefore, we may just focus on the
decoding process of a given r-level parity code C over F,.

At each section of the n-section regular trellis 7" of C
there are ¢” distinct edge labels. The corresponding ¢” confi-
dency values are determined and sorted. If the edges with
maximum confidency constitute a path in 7 then that path
is the optimal path. If this is not the case then all 1 paths
containing n — 1 edges with maximum confidency are deter-
mined and the best among them is specified. After that, all
the n non-maximal edges of these n paths are deleted from
T, as the best paths containing such edges are indeed the
obtained paths containing n ~ 1 edges with maximum con-
fidency values. The second step is to find the paths contain-
ing n — 2 edges with maximum confidency among the
remained paths after the deletions in the first step. The best
path among the obtained paths is determined. If ¢; and e,
are the two non-maximal edges of one such path, then all
other paths containing these two edges are deleted. The
third step is to deal with the remaining paths that have
n — 3 edges with maximum confidency. This process is con-
tinued until no path is left. A comparison among the candi-
dates of the mentioned groups of paths-gives the decoder
output.

Example 3: Consider the single parity code C over F, given
by the generator matrix

1 10 \

[0 | 1} ©)

The corresponding trellis, which is regular, is shown in
Fig. 2a. We have to find a path of the trellis with the max-
imum possible value of confidency. Let M, and M, denote
the maximum and second maximum values, not necessarily
distinct, among the four confidency numbers associated
with the ith section of the trellis. The computations of find-
ing M; and M/, along with the differences between M; and
the other three confidency numbers of the same section,
requires at most five real operations. Therefore, the com-
plexity of this step is 15 real operations. If the edges corre-
sponding with M}, M, and M; form a path in the trellis
then it is the best choice. Suppose this is not the case, and
consider the paths of the trellis including two edges with
maximum confidency, say the edges with confidency labels
L\MyM5, M\L,M5 and M, M,L;. Two real operations are
required to determine the winner of these three paths based
on the difference between their total confidency and the
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number M := M| + M, + M. These three paths are the
best among the paths including any edge with confidency
labels L, L, and L;. Therefore, the paths including such
edges are deleted from the trellis and this results in the trel-
lis shown by Fig. 2b. .

c .
Fig.2 Regular trellis diagram representing 2-D single parity code, and
derived trellises

a Regular trellis diagram representing 2-D single parity code C over Fy with genera-
tor matrix given by eqn. 5

b Trellis obtained from trellis a by deleting the edges labelled Xy, X; and X,

¢ Trellis obtained from trellis 4 by deleting paths containing the edge labelied A1,

Now consider N := min{M, - M\', My - My, My — M3}
and without loss of generality suppose N = M; — M/’. This
requires two real operations. If M," = L, then the path with
confidency label L,M,M; would be the best. Assume M, =
L. It is easy to see that in this case the total confidency of
the paths M @@ and M00 is not larger than that of
MM, and M,'0M;, respectively. Accordingly, the paths
including the edge with confidency label M, could be
deleted and we are left with the trellis shown in Fig. 2¢. In
this trellis five real operations are required to determine the
winner based on total confidency deviation from M =
M, + M, + Mj;. Between the two surviving paths, one
operation is needed to find the winner. Hence C is decoded
by at most 15+ 2+ 2 + 5+ 1 = 25 real operations. Decod-
ing of C by the Viterbi algorithm requires 35 real opera-
tions.

3.4 Three-section semi-regular trellis
In dealing with decoding of ternary (12, 6, 6) Golay code
and (32, 16, 8) QR code we encounter a special form of
trellis which is worth describing at this point.

Let {4;}&, be matrices of the same rank r such that

rank [ﬁz} = rank [ﬁ:} =7

As Azl
and rank [Aﬁ As] =2r

Consider the linear code C with generator matrix

A Ay Az

[ 44(; A5 A4 (6)
A four-section MTD T of this code is indeed a three-
section trellis, as all rows of the generator are active at time

index 2. All three sections of T are complete bipartite
graphs and T has ¢" vertices at time indices 1 and 2.
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At section 1 = i < 4, the edge labels of the trellis form
<A>, the space generated by 4;. The main property of T is
that any two distinct elements from any two spaces <4
and <A>, 1 = i=j =4, determine a unique path of 7.

Let 7 in general be a four-section trellis whose edge
labels at the ith section 1 = i < 4, form set S, If any two
distinct elements from any two sets S;and S, 1 =i =/ =<4,
define a unique path of 7, then we refer to T as a three-
section semi-regular trellis.

Example 4: The ternary generator matrix

22 22 22 00
00 22 11 11
20 21 21 20

has a MTD consisting of three structurally identical paraliel
sub-trellises, each of which is a three-section semi-regular
trellis. The trellis corresponding to the subcode specified by
the first two rows of the generator is given in Fig. 10b.

4 Maximal acyclic subcodes

Distinct maximal acyclic subcodes: The maximal acyclic
subcode of a code has the advantage of minimising the
number of cosets. However, the number of cosets does not
necessarily reflect the decoding complexity. Another factor
is the structure of the chosen acyclic subcode. If the TG has
a poor structure, from the decoding complexity point of
view, then the non-maximal acyclic subcodes might be
worth examining. In’ general, the more well structured the
Tanner graph the lower the decoding complexity.

3 7 9 8
6 11 5 4 1 2 10 12
1 2 3 4 5 6 7
b

Fig.3  Tuamner graphs associated with matrices H and H’
a Minimal Tanner graph of (12, 8, 3) code with parity matrix H given in eqn. 7
b Tanner graph associated with parity matrix H’

A (12,8, 3) code: The (12, 8, 3) code Cy, specified by par-
ity matrix H has MTG given in Fig. 3a.

r 000110000000 7
~111011001000 POLOLOGOOOI0
100100100000
110100110100 ,
H= H’' = | 110000001000
101110100010
011101010001 010000010100
- 000001000010
| 000000000101
r001011001011 17
010000000001
001100000000
H'" = | 000010100000 (7)
000001010000
000000001100
| 100000000010 |
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A five-dimensional maximal acyclic subcode C' of Cy; is
given by the parity matrix H'. This subcode has GH{(C’)
shown by Fig. 3b.

As is apparent from the graph, the parity node p, is the
best option to be considered as the root parity. Applying
this graph and considering p4 as the root parity, the code
C), is decoded by about 150 real operations. The main
problem with this graph is the fact that from three
branches leaving py4, one branch is too short compared with
the other two branches.

Pe

Fig.4  Tunner graphs assocoated with H” and trellis dingrams

a Tanner graphs associated with parity matrix H"

b Minimal trellis diagram of parity space when the root parity P, is ignored
¢ Twisted regular trellis diagram representing paths satisfying the root parity

On the other hand, the parity check matrix H" repre-
sents a five-dimensional UGSP subcode C” of Cy,. It has
G{C") given in Fig. 4a. The corresponding parity space is

P. Py P34 Psg
1 11 10 00

0 01 11 10
1 00 10 11

The trellis Tp(C”) given by Fig. 4b. represents the space of
parities {P), ..., Pg}. The impact of the root parity P, has
changed the trellis in Fig. 4b into the twisted trellis in
Fig. 4c¢, which consists of two disjoint regular sub-trellises.
Using this trellis and applying the decoding technique given
for regular trellises, C), is decoded by at most 48 real oper-
ations.

Comparing with the five-dimensional subcode given by
the check matrix H', we see that it is indeed the number of
branches leaving the root parity P,, and the uniformity of
those branches, that has reduced the decoding complexity
substantially.

The determination of maximal subcodes with ATGs of a
given code C seems to be quite a challenging problem. To
find such a subcode, the dual space of C has to be

Mps =
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extended, which in turn results in the removal of the cycles
of the MTG of C by adding new constraints to the parity
check matrix. A few observations are given in [31].

5 Reed-Muller codes and Hamming codes

In this Section, we show that the maximal acyclic subcodes
of first order Reed-Muller code, R(1, m), are of dimension
three. For the general case of R(r, m), a (2! — 1)-dimen-
sional UGSP subcode is presented. This is a maximal
acyclic subcode of R(r, m).

Let a = (a1, ap, ..., a,) and b = (b, b», ..., b,) be two n-
tuples. The Boolean product of @ and & is defined as ab :=
(aiby, arby, ..., a,b,). The product of i n-tuples is called a
Boolean product of degree i. For a nonnegative integer 1,
consider the 2"-tuples vy, vy, ..., v, such that v, has Ham-
ming weight 2, and v;, 1 < i = m, is the concatenation of
271 jdentical blocks of length 2/, each of which is divided
into two sub-blocks of length 27! such that the first sub-
block is the string of all ones, and the second sub-block is
the string of all zeros.

Let 0 = r = m, and A be the set consisting of vy and alt
the Boolean products of the elements of D = {v, vy, ..., v,,,}
up to degree r. The subspace of Fou», generated by A4 is
defined as the rth order Reed~Muller code of length 27,
and is denoted by R(r, m).

5.1 First order Reed-Muller codes
Let R'(1, m) denote the (m — 2)-dimensional subcode of
R(1, m) generated by [v,, vs, ..., v,.of, where [} stands for
the transpose operation. The matrix G,!, the generator
matrix of R(1, m), may be represented by

al o= [Go(l,m)} — [(473,2) x R(0,m — 2)]
™ G.(1,m) |’ R'(1,m)
The dual of Gy(1, m)is Hy(l, m) == (4,4, H® R(m -1, m
~2) + R0, 2) ® 102! The parity space is given by gen-
erator Mpd(1, m) := Hy(1, myR'(1, m) = 0RO, 2) ® M,,,
where the 0 beside R(0, 2) denotes a zero column, and M,,
is defined by
0 1 0
Mm ._ I:A/-[m—l 0 Mm—l
It is obvious that Gy(1, m) is a three-dimensional acyclic
subcode of R(1, m). The following theorem shows that
Gy(1, m) is a maximal UGSP subcode of R(1, m). In this
theorem, by the expression ‘a MTG of a matrix M’, we
mean a MTG of a linear code having generator matrix M.
Theorem I: The maximal acyclic subcodes of R(1, m) are
of dimension three.
Proof: The proof is based on the fact that for any (n ~ k) x
n matrix M, the MTG of M is acyclic iff the MTG of (2, 1,
2) ® M is acyclic, and the simplex code B(1, m) (the code
generated by the set of Boolean polynomials of degree one
given by D = {v,, vy, ..., v,,,} [32]) is not acyclic. The details
of the proof are given in [31}. [J
Example 5: For m = 4, we have
1111 1111 0000 0000
0000 1111 1111 0000
Gy = [go(i,i)} = {0000 0000 1111 1111
e(1,4) 1100 1100 1100 1100
1010 1010 1010 1010

Ho(1,4) = [1111] @ [1000] + (4,4,1) ® R(1,2)
P. Pis3 Pis6 Prgg Piojiiz
Mps(1,4)= 1] 0 010 010 010 010
0 101 101 101 101

} and M3 =1




Fig.5 Mininal Tunner graph-trellis of the (16, 5, 8) Reed-Muller code

Applying the presented minimal TG-T for the first order
Reed-Muller codes, the codes R(1, 3), R(1, 4), R(1, 5),
and R(1, 6) are decoded by at most 21, 59, 183, and 623
real operations, respectively, versus 23, 94, 278, and 806
operations required in trellis decoding under optimal sec-
tionalisations [33]. Note that in the mentioned minimal
TG-T of R(1, m), the trellis representing the parity space
consists of parallel paths, as was the case with the hexacode
Hg. In this case, one is required to perform an exhaustive
search over all the trellis paths. This means that the trellis
cannot be exploited for further reduction of the decoding
complexity.

5.2 The rth order Reed-Muller codes
The results given for the first order Reed-Muller codes
may be generalised. We can now show that the second
order Reed—-Muller code R(2, m), m = 3, includes acyclic
subcodes of dimension seven, and the third order Reed—
Muller code R(3, m) m = 4, includes acyclic subcodes of
dimension 15, and in general the rth order Reed-Muller
code R(r, m), m = r + 1, includes acyclic subcodes of
dimension 2'*! — 1. The existence of such subcodes is dem-
onstrated, and using theorem 5 of [29], it can be shown that
the subcodes presented are maximal acyclic subcodes.

The code R(m — 1, m) is the dual of R(0, m) and hence
the MTG of R(m — 1, m) is a tree. The code R(r, m) may
be expressed by

R(r,m) = R(r—-1,m-—1) 0 ]

Rir,m—1) Rir,m —1)

It follows that R(r, m) includes Gy(r, m) := RO, m — r — 1)
® R(r, r + 1) as a subcode. This subcode is of dimension
21— 1 and is acyclic by the fact that for any (n — k) x n
matrix M, the MTG of M is acyclic iff the MTG of (2, 1,
2) ® M is acyclic.

Let Hy(r, m) denote the dual of Gy(r, m) and PS(r, m)
stand for the associated parity space. From the foregoing
argument the following are easily derived.

Theorem 2: For the Reed-Muller code R(r, m) we have:

_ {Lym— Lom—1
Ho(r,m) = [ 0 Hqo(r,m ~ 1)]
where Ho(r,r + 1) = R(0,r + 1) (8)
[ Rer—-1,m-1) 0
Meps{r,m) = [ 0 Mps(r,m — 1)]
where Mpg(r,r +2) = R(r — 1,7 + 1)0 (9)
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Example 6:

Iy Ig

0 11111111

Mpg(2,4) = R(1,3)0

The associated TTG is shown in Fig. 6. The root parity P,
is always zero and the space of the other eight parities is
R(1, 3) as shown by a trellis. The trellis in Fig. 6 expresses
the relation among the set of parities {p|, py, ..., pg}, and
does not reflect the role of the root parity p, in the TTG of

the code. Therefore, it is replaced by the twisted trellis given
in Fig. 7.

Ho(2,4) = [ ] and

Py

X4

P4

)

%
D
7

AV
e

.

Fig.7  Twisted Tamer graph-trellis representation of the (16, 11, 4) Reed-
Muller code

The twisted trellis consists of two disjoint regular sub-
trellises, and hence the decoding technique given for the
multilevel codes can be applied on this trellis. A similar
method has been implicitly used in [16] in the language of
design theory. As a result the two works give the same
decoding complexity. '

5.3 Hamming codes
If a code is obtained by the shortening of another code,
then it inherits many of the properties of the original code.
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As an example of such inheritance, an ATG for the short-
ened code can be obtained by shortening the ATG of the
original code.

The 2" — 1, 2" — 1 — r, 3) Hamming code H,, the short-
ened Reed-Muller code, is obtained from R{r — 2, r) by
deleting the last column of the corresponding generator
matrix. Therefore, one may apply the results of the previ-
ous Section to find maximal acyclic subcodes of .

Let r = 3. The code R(1, 3) contains R(1, 2)R(1,2) as a
subcode. Deletion of the last column of the matrix

1 1001100
(2,1,2)@R(1,2)=10 1 1 0 0 1 1 0
00110011

results in the matrix

10‘01100]
ZglIg’.:OlO].O 0
0011001J

where the ‘1’ in Z;317; stands for a column of Is. 73175 is a
subcode of the (7, 4, 3) Hamming code and its dual code is

I 0 T

1 _ |43 3

Ts12s)" = [ 0 1 111}

This shows that the MTG of 73175 is a tree. The method
may be applied to introduce Zo-1_(1Z,1_; as an acyclic sub-
code of H,

—

6 Quadratic residue codes

We will show that the best techniques which have been
applied to decode the (24, 12, 8) and (32, 16, 8) extended
QR codes [15, 18, 19] are essentially based on the applica-
tion of the TG-T representation of these codes.

In the mentioned works the (24, 12, 8) and (32, 16, 8)
extended QR codes have been projected (refer to definition
6) on the quaternary codes. There are 16 binary sequences
of length 4, and this set is partitioned into four subsets of
the same cardinality, and each subset is associated with an
element of the field £, = {0, 1, w, @} where =@, D=
w, and @ + @ = 1. In other words, any element of F; may
be expressed in four distinct ways as a binary combination
of the elements of F,. This produces the aforementioned
partition. For any element of F, an expression is called an
even or odd interpretation depending on the number of
nonzero coefficients of the expression.

Let C, and C, be two binary and quaternary linear codes
of length 4m and m, respectively. According to [15], we
have the following definition (also used in [18, 19])).

Definition 6 (Pless-type projection): The quaternary linear
code Cy is called the Pless-type projection of the binary lin-
ear code G, if:

(i) The quaternary expression of any codeword of C, is a
codeword of C;.

(ii) The components of any projection are all in even or all
in odd interpretation.

(i) In the quaternary projection of a codeword of C,, the
number of nonzero coefficients of 0 € F, 1s even (odd) if
the components of the corresponding projection are in even
(odd) interpretation.

6.1 The (24, 12, 8) Golay code G ,,

The (24, 12, 8) Golay code G, has a generator matrix Moy,
=[(6,5,2) ® (4, 1, 4)] + M,, where M, is given below. The
five-dimensional UGSP code (6, 5, 2) ® 4, 1, 4) is a maxi-
mal acyclic subcode of Gy. The associated TG is given in
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Fig. 8a. The parity space is given by M pg.
[1100 1100 1100 1100 0000 0000]
1010 1010 1010 1010 0000 0000

0000 0000 1100 1100 1100 1100

My = | o000 0000 1010 1010 1010 1010
0110 0000 0110 0000 1100 1010
0000 1100 0000 1100 0101 0110
_IOOO 1000 1000 1000 1000 Olllj
Mps(1,4) =
[P. Pro3 Pase Prso Ploaii2 Piaias Pigaras)
0 010 010 010 010 000 000
g 111 111 111 111 000 000
0 000 000 010 010 010 010
0 000 000 111 111 111 111
0 101 010 101 010 101 010
0 000 010 000 010 111 101
L 1 100 100 100 100 100 100 |

(10)

Ignoring the root parity P,, the parity space with genera-
tor MPS is represented by a three-section trellis diagram
consisting of eight parallel regular sub-trellises, four of
which correspond to the odd codewords, P, = 1, and the
other four correspond to the even codewords, P, = 0. One
of the sub-trellises associated with the first four rows of
M ps is shown in Fig. 8.

Fig.8 S-dimensional acyclic subcode and 3-section regular sub-trellis

a 5-dimensional acyclic subcode (6, 5, 2) ® (4, 1, 4) of the Golay code Goy

b One of the 8 parallel 3-section regular sub-trellises of the trellis associated with the
parity space MPS given by eqn. 10

Applying the eight parallel three-section regular sub-trel-
lises representing the parity space M pg, along with the same
computational techniques used in (18], we come up with the
same decoding complexity. This shows that the decoding of
Gys by means of its projection on the hexacode Hj is just
another expression of the decoding by projection of the
code on its maximal UGSP subcode.

6.2 The (32,16, 8) quadratic residue code

A two-level decoding technique has been presented for the
(32, 16, 8) QR code [19]. In [19], the (8, 4, 4) quaternary
code B with generator matrix Gy, given in eqn. 11 has been
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considered as the base code. From the permutation given in
theorem 1 of [19], we have derived generator matrix Mz, :=
[(8,7,2) ® (4, 1, 4] + M,, where M, is given below.
!‘1 0 0 O w 0 1

1 w
0
w 1

Gy =

€& € o8
S~ &
S

01 0 O
0 01 0
L0 0 0 1
rOlOl 0000 0110 1010 1100 0000 0000 0000
0011 0000 0101 0011 0110 0000 0000 0000
0000 0101 1111 1001 1100 1100 0000 0000
0000 0011 0000 1010 1100 0110 0000 0000
M1 = | 0000 0000 0110 0000 1100 0110 1100 0000
0000 0000 0011 0000 1010 0011 1010 0000
0000 0000 0000 0101 1100 0000 0011 1010

0000 0000 0000 0011 0110 0000 1001 1100

| 0001 1000 1000 0001 1000 1011 1101 1000 |
(11)
The last row of this matrix does not satisfy the third condi-
tion of definition 6, contrary to the claim made by the
authors. The matrix M3, however, satisfies the first two
conditions of the definition.
The UGSP code (8, 7, 2) ® (4, 1, 4), presenting the first
seven rows of Mps,, has parity matrix H:

HI, = (8,1,8) ® [1000] + Zs ® (4,3,2)

The parity space has the generator matrix Mpg = Hl, M,
given below (Mpg will be defined later):

0 111 000 101 111 010 000 000 000
0 010 000 111 010 101 000 000 000
0 000 111 000 101 111 010 000 000
0 000 010 000 111 010 101 000 000
vMPS = |0 000 000 101 000 010 101 010 000
000 000 010 000 111 010 111 000
000 000 000 111 010 000 010 111

000 000 000 010 101 000 101 010

o o o ©

|0 001 100 100 110 100 110 011 100 |
(0100 100 100 100 100 100 100 100 ]
0010 010 010 010 000 000 GO0 QOO
0000 000 010 010 010 010 000 000
0000 000 000 000 010 010 010 010
Mpg = {0010 000 010 000- 010 000 010 000
0111 111 111 111 000 000 000 000
0000 000 111 111 111 111 000 000

0 000 000 000 000 111 111 111 111

0111 000 111 000 111 000 111 00O |

(12)
The corresponding TTG is a uniform connected graph with
eight branches, each of length 4. The root parity P, is
always zero, contrary to the TTG of the Golay code Gy.
This is indeed due to the fact that M3, does not satisfy the
third condition. From this point of view, this code is the
same as the (32, 16, 8) Reed-Muller code that has graphi-
cally the same TTG with zero root parity for all cosets. The
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generator matrix M'pg in eqn. 12 is the parity space of the
(32, 16, 8) Reed-Muller code.

Ignoring the root parity, we see that the parity space has
a three-section trellis consisting of two disjoint semi-regular
trellises. This is because the deletion of the root parity and
the last row of Mg results in the generator matrix

Al Ay As
Ag As Ay

where 4;, 1 =i <6, is a 4 x 6 matrix, row-equivalent with
the matrix

111 000
010 000
000 111
000 010
and
2| _ 3t _
rank {Ae] = rank [AJ =4
nk | A2 Ast _
and rank [Ae A_J =8

The main portion of the decoding complexity, 1599 oper-
ations out of 2059 operations, is concerned with this three-
section semi-regular trellis. Due to the multilevel parity
structure of M'pg the (32, 16, 8) Reed-Muller code, unlike
the (32, 16, 8) QR code, is decoded by only 1183 real oper-
ations, reported first in [16].

Once again our conclusion here is that the decoding tech-
nique given in [19] for the (32, 16, 8) QR code is in fact
nothing but the application of the TG-T of this code with
the maximal UGSP subcode (8, 7, 2) ® (4, 1, 4) as the base
code.

7 Hexacode H; and (12, 6, 6) ternary Golay code

7.1 Hexacode Hg

The (6, 3, 4) quaternary hexacode Hg has a generator
matrix M given in eqn. 13. Interchanging the last two col-
umns of the matrix, we obtain the generator matrix of the
dual code. Based on this, and the fact that the code is
MDS, we obtain the MTG of H; given in Fig. 9a. The
edge labels are the variable coefficients. For instance, for
the variables touching the second parity equation, we have
Xy + X4 + @xs + wxg = 0. Consider the two-dimensional
UGSP subcode of the hexacode with generator and parity
matrices My and M-, respectively.

1001@0.)—’

M=|0 101 w @
001111J
111100

M0’001111]
10010 1

L_|1 10000

Mo=1o0 011 0 0 (13)
000011

The corresponding MTG is a tree, shown in Fig. 95, in
which P,P\P,P; = 0000, and the edge labels are 1. The hex-
acode is the union of four cosets of the given subcode, and
the corresponding four sequences of P.PP,P; are the ele-
ments of the one-dimensional space generated by wlll, ie.

P, PPy Ps € {000, w111, Bwww, 100w }

These four cosets are applied in a maximum likelihood
technique of the code. Let (ry, r,, r3, rq, s, 76) be the

IEE Proc.-Commun., Vol. 147, No. 6, December 2000



received output channel. Four real numbers p(ric), o; €
GF(4), are assoctated with each r, 1 =i < 6, and hence a
sequence of 24 real numbers is the input of the decoder.

It can be easily verified that at most 39 real operations
are required to determine the best candidate in each coset,
and hence the code is decoded by at most 39 x 4 + 3 = 159
operations {311.

Fig.9  Minimal Tanner graph and graph-trellis of hexacode Hy
« Minimal Tanner graph of the hexacode Hy
b, ¢ Minimal Tanner graph-trellis of the hexacode Hg

7.2 Ternary Golay code G,
The ternary (12, 6, 6) Golay code G, has a generator
matrix M, given by eqn. 14.

ri1l 111 000 000
000 111 222 000
u 000 000 111 111
27 1020 001 010 221
020 121 001 020
L002 211 010 020
_Pr Pl,g P3,4 Ps,ﬁ P?,S
1 22 22 22 00
1,4) = 14
Mps(1,4) 0 2 21 2 90| Y
0 00 22 11 11

The three-dimensional UGSP subcode G generated by the
first three rows of M, has dual space

210
021

presented by TG shown in Fig. 10a, in which the value of
all parity nodes is zero. The edge labels are the coefficients
of the corresponding variables, symbol nodes, forming a
parity check equation. For instance, 2x; + x, = 0, and x; +
2x4 + 2x7 + x;0= 0.

The corresponding parity space is given by the generator
matrix Mps. Let r be a received channel output. One
approach in decoding the code is to find a closest codeword
to r in each coset, and then choose the best one among the
27 obtained codewords. Applying this approach, a total of

(%£U®[ }+ummmmmm
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at most 656 real operations is required to decode the code
in [31], as reported in [17].

Instead of working on each coset and then choosing the
best codeword, we could apply the MTD of the parity
space M pg to work on all cosets simultancously and come
up with less operations. This is the same method as implic-
itly used in [18]. The corresponding trellis consists of four
parallel sub-trellises, one of which is given in Fig. 10. In this
trellis, the paths beginning with edges labelled by 00, 22
and 1 correspond to the root parity values 0, 1 and 2,
respectively.

Fig.10  Tanner graph-trellis representation of the the temary Golay code
a Minimal Tanner graph of Cy . .
b One of three parallel semi-regular sub-trellises of the parity space

8 Summary and conclusion

Projection of linear block codes on maximal acyclic Tanner
graphs provides the basis for the application of the Wagner
rule to develop an efficient soft decision decoding algo-
rithm. Using this projection, a given linear block code is
represented by a combination of a trellis and a Tanner
graph, where the efficiency of the decoding algorithm lies in
the ability to exploit the structure of the underlying trellis
diagram. Tt has been shown that the best maximum likeli-
hood techniques known so far for the decoding of many
important codes such as Hamming codes, Reed~Muller
codes, hexacode, the extended Golay codes, and the (32,
16, 8) QR code are in fact based on this kind of projection.

The application of this approach on an arbitrary linear
block code depends on the identification of relatively uni-
form acyclic subcodes of the code. Introduction of a
method to find such a subcodes is left as an open problem.

The technique developed can be easily extended to the
decoding of an integer lattice A with the partition chain Z"/
ANKZ", where Z" is the set of the n-tuple integers. In this
case, the role of the UGSP sub-code is replaced by the lat-
tice KD, where the lattice D, defined as D, = {(xy, ..., X,,),
x; € Z, Zx; even} is the counterpart to a single parity check
code.
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