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Application of Cumulant Method In Performance

Evaluation of Turbo-Like Codes

Ali Abedi, Mary E. Thompson, Amir K. Khandani

Abstract1: In this article, a new method for performance evaluation of Turbo-like codes is presented.

This is based on estimating the Probability Density Function (pdf ) of the bit Log-Likelihood-Ratio (LLR)

using higher order statistics. We do not restrict ourselves to any specific model for the pdf and try to

estimate it directly using a Cumulant matching method. Numerical results show a close agreement between

the proposed method and simulations.

I. INTRODUCTION

For any arbitrary random variable, the logarithm of its characteristics function may be approximated

using a Taylor series expansion. The coefficients of this series expansion are known as Cumulants or

higher order statistics. Cumulants have been widely used in a variety of applications including analysis

of digital communications systems.

The problem of performance evaluation of coherent optical communication systems is considered in [1],

where a solution based on estimating the Cumulants of the noise process is presented. A condition is

derived to quantify under what system conditions a Gaussian Probability Density Function (pdf ) is a

good approximation. A discrete-time method is proposed in [2] for estimating the impulse response of

a frequency selective digital modulated communication channel. This method is based on estimating the

Cumulants up to the fourth order. Parameters of a moving average model are estimated in [3], using second

and third order Cumulant matching. This estimation is further improved in [4]. Cumulants of symmetric

distributions like uniform, triangular, and Gaussian are estimated in [5] using a robust estimation technique.

The application of Edge-worth series and higher-order statistics to the discrete-time detection of a known
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constant signal in multivariate non-Gaussian noise is considered in [6]. A numerical algorithm based on

knowledge of the noise Cumulants is presented in order to analyze the finite-sample size performance of

the sub-optimum detectors.

Non-Gaussian sources are modeled in [7] using Gaussian mixture densities. It is shown that in high

Signal to Noise Ratio (SNR) regions, this method outperforms the Cumulant based algorithms for param-

eter estimation. The problem of blind equalization and estimation of digital communication finite impulse

response channels is considered in [8]. The channel parameters are estimated by nonlinear optimization

of a quadratic Cumulant matching criterion involving second and fourth order Cumulants. This problem is

later considered in [9] for partial-response signals. A method for phase recovery in Quadrature Amplitude

Modulation (QAM) communication systems based on higher order statistics is presented in [10]. A relation

is derived between the phase error and the fourth order Cumulant of the output.

Since the higher order Cumulant-based criteria can be multi-modal, conventional gradient search tech-

niques require a good initial estimate to avoid converging to local minima. This problem is solved in [11],

where a novel scheme based on genetic algorithms is employed to optimize the Cumulant fitting cost

function. A method based on higher order statistics is proposed in [12] to mitigate the performance

degradation caused by multi-path propagation in a mobile radio communication system. It is shown that

an over-determined system of linear equations (involving only Cumulants of the received baseband signal)

can be obtained to perform non-iterative deconvolution. The study of chaotic communication systems

with Additive White Gaussian Noise (AWGN) interference is considered in [13] by employing suitable

Cumulant analysis tools.

In this paper we present a method based on using the Cumulants of the bit Log-Likelihood-Ratio (LLR)

versus its moments as used in [14]. The first two Cumulants of the normal density are its mean and variance

and the higher order Cumulants are zero. Since the pdf of the bit LLR is nearly normal [15]–[17], it is

expected that its higher order Cumulants are fairly small. This allows for easy truncation of the series

expansion of the pdf in terms of its Cumulants.

This paper is organized as follows. The problem is modeled in Section II. In Section III, the Cumulant

matching method, which is used to find the parameters of the proposed model, is described. The accuracy of

this method is investigated in Section IV. The numerical results and conclusion are presented in Section V

and Section VI, respectively.
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II. PRELIMINARIES

A common tool to express the bit probabilities in bit decoding algorithms is based on the so-called

LLR. The LLR of the kth bit position is defined by the following equation:

LLR(k) = log
P (ck = 1|x)

P (ck = 0|x)
, (1)

where ck is the value of the kth bit in the transmitted code-word, x is the received vector, and log represents

the natural logarithm. Let us define the random variable Y = LLR(k) and let its pdf be denoted as f(y).

It is proved in [18] that the pdf of the bit LLR is independent of the transmitted code-word, as long

as the value of the bit position under consideration remains unchanged. By using this result and without

loss of generality, we consider the case of sending the all-zero code-word. The received bit is decoded to

0 (or 1), if the corresponding LLR is negative (or positive). Therefore, the following integral simplifies

the remaining Bit Error Rate (BER) calculations:

Pe =

∫ ∞

0

f(y)dy. (2)

III. CUMULANTS MATCHING

The characteristic function of a random variable Y with its pdf denoted as f(y) is defined as

Φ(t) =

∫ +∞

−∞

f(y)eitydy. (3)

The Cumulants of the random variable Y , denoted as km, are the coefficients of the following series

expansion:

log Φ(t) =
∞

∑

m=0

km
(it)m

m!
. (4)

Cumulants can be expressed in terms of the raw moments as follows [19]:

k0 = 1, (5)

k1 = µ1, (6)

k2 = µ2 − µ2
1, (7)

k3 = 2µ3
1 − 3µ1µ2 + µ3, (8)

. . . (9)

The K-statistics are the unique symmetric unbiased estimators of the Cumulants [20]. Thus,

E[Km] = km, (10)
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where the notation Km is used for the mth K-statistic of a given density. In addition, the variance,

V [Km] = E[(Km − km)2], (11)

is a minimum compared to all other unbiased estimators [21], [22]. In other words, the K-statistics are the

Uniformly Minimum Variance Unbiased Estimators (UMVUE) of the Cumulants. The first few K-statistics

are as follows:

K1 =
S1

n
, (12)

K2 =
nS2 − S2

1

n(n− 1)
, (13)

K3 =
2S3

1 − 3nS1S2 + n

n(n− 1)(n− 2)
, (14)

. . . (15)

where n is the number of samples (denoted by yi) used in the estimation, and

Sr =
n

∑

i=1

yr
i . (16)

Once the first few Cumulants are estimated by using the K-statistics, the characteristic function of the

bit LLR can be approximated by using (4). Following that, the pdf of the bit LLR can be approximated

by taking the inverse Fourier transform of Φ(t).

f(y) =

∫ +∞

−∞

Φ(t)e−itydt (17)

IV. ACCURACY ANALYSIS

The cumulative distribution function (CDF ) of the bit LLR is defined as

F (T ) =

∫ T

−∞

f(y)dy. (18)

We are interested in computing the error probability

Pe =

∫ ∞

0

f(y)dy = 1−

∫ 0

−∞

f(y)dy = 1− F (0). (19)

Taking the Inverse Fourier Transform (IFT) of the characteristic function, f(y) = IFT{Φ(t)}, and noting

that

log Φ(t) =
∞

∑

m=0

km
(it)m

m!
, (20)

we have

F (T ) = IFT

{

1

it
exp[

∞
∑

m=0

km
(it)m

m!
]

}

. (21)
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A small error, ∆km in estimating each Cumulant, results in an error, ∆F (T ) in CDF :

F (T ) + ∆F (T ) = IFT

{

1

it
exp[

∞
∑

m=0

(km + ∆km)
(it)m

m!
]

}

(22)

= IFT

{

1

it
exp[

∞
∑

m=0

km
(it)m

m!
] exp[

∞
∑

n=0

∆kn
(it)n

n!
]

}

(23)

' IFT

{

1

it
exp[

∞
∑

m=0

km
(it)m

m!
](1 +

∞
∑

n=0

∆kn
(it)n

n!
)

}

(24)

= F (T ) + IFT

{

1

it
exp[

∞
∑

m=1

km
(it)m

m!
]
∞

∑

n=1

∆kn
(it)n

n!

}

, (25)

taking ∆k0 = 0. This means,

∆F (T ) ' IFT

{

1

it
exp[

∞
∑

m=1

km
(it)m

m!
]
∞

∑

n=1

∆kn
(it)n

n!

}

(26)

=
∞

∑

n=1

∆kn
in−1

n!
IFT

{

tn−1 exp[
∞

∑

m=1

km
(it)m

m!
]

}

(27)

=
∞

∑

n=1

∆kn
in−1

n!
f (n−1)(T ), (28)

where f (n)(T ) is the nth derivative of f(y) at point y = T for n > 0. To have a consistent notation, we

define f (0)(T ) = f(T ). This results in the following relationship between the error in computing Pe and

the error in estimating Cumulants:

∆Pe '

∞
∑

n=1

∆kn
in−1

n!
f (n−1)(0). (29)

In order to simplify (29), we assume that the derivatives, f (n)(y), are similar to the derivatives of the

normal density. This is based on the fact that pdf of the bit LLR is close to the normal density. Thus we

suppose that

f (n)(y) ' (−1)ne−y2/2Tn(y), (30)

where Tn(y) is the Hermite polynomial [14] of order n, defined as

Tn(y) =

bn/2c
∑

j=0

(−1)jn!

2j(n− 2j)!j!
yn−2j . (31)

This approximation results in the following equation:

∆Pe '

∞
∑

l=0

∆k2l+1

(2l + 1)2ll!
(32)

Numerical values presented in Table-1, section V have been calculated using (32).
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V. NUMERICAL RESULTS

The proposed algorithm is compared with Monte-Carlo (MC) simulation in this section. A Turbo-code

of length 100 and rate 1/2 is used to perform the simulations as seen in Figure 1. It is evident that

increasing the number of Cumulants (the order of approximation) that are involved from two to four

significantly improves the approximation.
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Fig. 1. BER curves for Turbo-Code of length 100 and rate 1/2.

The relationship between interval probabilities of the point estimates and the number of samples n is

computed using numerical methods and demonstrated in Table-1. It is evident that the proposed method

is still accurate even by using fewer samples compared to the MC simulations.

n θ p(|∆Pe| < θ) for Cumulant method p(|∆Pe| < θ) for MC

104 0.0060 0.95 0.67

105 0.0060 0.96 0.70

106 0.0060 0.97 0.96

104 0.0020 0.94 0.66

105 0.0020 0.95 0.70

106 0.0020 0.96 0.96

104 0.0005 0.93 0.33

105 0.0005 0.94 0.68

106 0.0005 0.95 0.95

Table 1 : The Relationship between n and the interval probabilities of the point estimates at Eb/N0=2dB for the Cumulant
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method and the MC simulation.

This method is similar to the one introduced in [23], where a suitable model for the pdf of bit LLR is

suggested. The moment matching method with maximum entropy principle is then used to estimate the

parameters of the suggested model for the pdf . In this case, a constrained maximization problem is solved

using iterative Newton-Raphson method. At each iteration, solving a system of linear equations (with

the same degree as the number of moments) as well as evaluating an integral of the exponential form is

required. This renders the Cumulant method proposed here significantly less complex as compared to the

moment method of [23].

Table-2 provides an example on how to decide on the required accuracy in estimating the Cumulants

of different orders. Numerical values presented have been calculated using (32).

l 0 1 2 ∆Pe

2l + 1 1 3 5 -

∆k2l+1 1× 10−4 1× 10−3 1× 10−2 5.17× 10−4

Table 2 : The Relationship between error in Cumulant estimation and the error in BER estimation.

VI. CONCLUDING REMARKS

The problem of performance evaluation of a coded communication system with bit decoding algorithms

in low BER regions is considered. The main ingredient of a bit decoding algorithm is the reliability

information, i.e. the LLR. The pdf of the bit LLR is estimated using Cumulant matching technique. This

method is based on estimating the characteristic function of the bit LLR using its Cumulants. In order

to have an unbiased estimation of the Cumulants with minimum variance, the best choices are the K-

statistics. Once the characteristic function of a random variable is known, the rest of the pdf computation

is straightforward using the inverse Fourier transform. Numerical results demonstrate a close agreement

between the theory and simulations. It is also shown that the error in BER estimation is bounded and may

be reduced by increasing the accuracy of Cumulant estimation or equivalently increasing the number of

samples.
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