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Abstract—An analytical method for approximate performance
evaluation of binary linear block codes using an additive white
Gaussian noise channel model with binary phase-shift keying mod-
ulation is presented. We focus on the probability density function of
the bit log-likelihood ratio (LLR), which is expressed in terms of the
Gram–Charlier series expansion. This expansion requires knowl-
edge of the statistical moments of the bit LLR. We introduce an
analytical method for calculating these moments. This is based on
some recursive calculations involving certain weight enumerating
functions of the code. It is proved that the approximation can be as
accurate as desired, if we use enough terms in the Gram–Charlier
series expansion. Numerical results are provided for some exam-
ples, which demonstrate close agreement with simulation results.

Index Terms—Additive white Gaussian noise (AWGN) channel,
binary phase-shift keying (BPSK), bit decoding, bit-error proba-
bility (BEP), block codes, log-likelihood ratio (LLR), weight distri-
bution.

I. INTRODUCTION

I N THE APPLICATION of channel codes, one of the most
important problems is to develop an efficient decoding algo-

rithm for a given code. The class of maximum-likelihood (ML)
decoding algorithms are designed to find a valid codeword with
the ML value. The ML algorithms are known to minimize the
frame-error rate (FER) under the mild condition that the code-
words occur with equal probability.

Another class of decoding algorithms, known as bit decoding,
compute the probability of the individual bits and decide on
the corresponding bit values independent of each other. The
straightforward approach to bit decoding is based on summing
up the probabilities of different codewords according to the
value of their component in a given bit position of interest.
Reference [2] provides an efficient method (known as BCJR)
to compute the bit probabilities of a given code using its trellis
diagram. There are some special methods for bit decoding
based on the coset decomposition principle [3], sectionalized
trellis diagrams [4], and using the dual code [5], [6].

ML decoding algorithms have been the subject of numerous
research activities, while bit decoding algorithms have received
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much less attention in the past. More recently, bit decoding al-
gorithms have received increasing attention, mainly due to the
fact that they deliver bit reliability information. This reliability
information has been effectively used in a variety of applica-
tions, including turbo decoding.

In 1993, a new class of channel codes, called turbo codes,
were announced [7], which have an astonishing performance,
and at the same time, allow for a simple iterative decoding
method using the reliability information produced by a bit
decoding algorithm. Due to the importance of turbo codes, there
has been a growing interest among communication researchers
to work on the bit decoding algorithms.

The analytical performance evaluation of symbol-by-symbol
decoders is considered a hard task in [8] and [9]. Although there
is a method for calculating exact performance (in the sense of
expected Hamming distortion) of Viterbi decoding of convolu-
tional codes over binary symmetric channels (BSCs) [10], there
has been no method for performance evaluation of bit decoding
in general. Some asymptotic expressions are derived in [11] for
bit-error probability (BEP) of binary linear block codes in the
additive white Gaussian noise (AWGN) channel with bit de-
coding. The BEPs of convolutional codes over BSCs is consid-
ered in [9] with ML decoding. An upper bound is presented in
[12] for the performance of finite-delay symbol-by-symbol de-
coding of trellis codes over discrete memoryless channels.

In this paper, we employ Gram–Charlier series expan-
sion to find the probability density function (pdf) of the bit
log-likelihood ratio (LLR). This method is used in some other
communications applications, including calculation of pdf of
the sum of log-normal variates [13], evaluation of the error
probability in pulse amplitude modulation (PAM) digital data
transmission systems with correlated symbols in the presence
of intersymbol interference (ISI) and additive noise [14],
computing nearly Gaussian distributions [15], and computation
of the error probability of equal-gain combiners with partially
coherent fading signals [16]. Reference [17] presents a method
for computing an unknown pdf using infinite series (also
refer to [18]). Reference [19] computes moments of phase
noise and uses the maximum entropy criterion [20] to find the
corresponding pdf.

This paper is organized as follows. In Section II, the model
used to analyze the problem is presented. All notations and
assumptions are in this section. Computing the pdf of bit LLRs
using the Gram–Charlier expansion is presented in Section III.
This is an orthogonal series expansion of a given pdf which re-
quires knowledge of the moments of the corresponding random
variable. An analytical method for computing the moments of
the bit LLR using Taylor expansion is proposed in Section IV,
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where it is shown that we can compute the coefficients of
Taylor expansion of the bit LLR recursively. We also present a
closed-form expression for computing the BEP in Section V.
In Section VI, the convergence issue of this approximation
is discussed. Numerical results are provided in Section VII,
which demonstrate a close agreement between our analytical
method and simulation. We conclude in Section VIII.

II. MODELING

Assume that a binary linear code with codewords of length
is given. We use notation to refer to a

codeword and its elements. We partition the code into a subcode
and its coset according to the value of the th bit position

of its codewords, i.e.,

(1)

(2)

We define the following operators on the code book:

Bitwise binary addition of two codewords (3)

Note that the subcode is closed under binary addition.
The dot product of two vectors and

is defined as

(4)

The modulation scheme used here is binary phase-shift
keying (BPSK), which is defined as the mapping

(5)

(6)

Note that modulating a codeword as mentioned above results
in a vector of constant square norm

(7)

We use the notation to refer to the Hamming weight of a
codeword , which is equal to the number of ones in . It follows
that:

(8)

Modulating a codeword using BPSK
and sending it through an AWGN channel, we will receive

, where is an independent,
identically distributed (i.i.d.) Gaussian noise vector which has
zero-mean elements of variance . Note that for an AWGN
channel, we have

(9)

A common tool to express the bit probabilities in bit decoding
algorithms is based on using the so-called LLR. The LLR of the

th bit position is defined by the following equation:

(10)

where is the value of the th bit in the transmitted codeword
and log stands for the natural logarithm. Assuming

(11)

and using (9), it follows:

(12)

(13)

Using (7), it follows:

(14)

(15)

Given a value of the bit LLR, a decision on the value of bit
is made by comparing LLR with a threshold of zero. We are
interested in studying the probabilistic behavior of LLR as a
function of the Gaussian random vector .

Using the following theorems from [21],1 we can simplify
our analysis.

Theorem 1: The probability distribution of LLR is not
affected by the choice of transmitted codeword , as long as the
value of the th bit remains unchanged.

Theorem 2: The probability distribution of LLR for
0 or 1 are the reflections of one another through the origin.

Theorem 3: The probability distribution of LLR is not
affected by the choice of bit position , for the class of Cyclic
codes.

Using Theorems 1 and 2, without loss of generality, we as-
sume for convenience that the all-zero codeword, denoted as

, is transmitted in all our following discussions.
This means is the transmitted
modulated codeword.

In this case, (15) reduces to

(16)

1For the sake of brevity, the proofs are not given here. The reader is referred
to [21] for proofs.
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Using (8), we obtain

(17)

In the following, for convenience of notation, the index in-
dicating bit position is dropped. This means the sets and
are indeed and , respectively. We use the notation
to refer to the LLR expression given in (17), i.e.,

(18)

III. GRAM–CHARLIER EXPANSION OF PDF

One common method for representing a function is to use
an expansion on an orthogonal basis which is suitable for that
function. As the pdf of a bit LLR is approximately Gaussian
[7], [22], [23], the appropriate basis can be a normal Gaussian
pdf and its derivatives which form an orthogonal basis. There
are a variety of equivalent formulations for this expansion [15],
[24]–[26]. We follow the notation used in [15].

Consider a random variable , which is normalized to have
zero mean and unit variance. One can expand the pdf of ,
namely , using the following formula, which is called the
Gram–Charlier series expansion:

(19)

where is the Hermite polynomial [15] of order , defined
as

(20)

and has the following closed form:

(21)

(22)

where

(23)

This is a commonly used method for approximating an unknown
pdf. The only unknown components in (22) are the moments,

. We propose an analytical method using Taylor series expan-
sion to compute the moments of the bit LLR in the next section.

IV. COMPUTING MOMENTS USING

TAYLOR EXPANSION OF LLR

Applying the definition of the th order moment to
bit LLR results in

(24)

(25)

where stands for expectation and denotes variance.
Note that to compute (25), one needs , .

To compute , we take advantage of a method sim-
ilar to the so-called Delta method [27] and find the average of
the Taylor series expansion of . We use the Taylor series
expansion of in conjunction with the polynomial theorem
[15] to find an expansion for

(26)

where is the gradient of at . An alternative
approach is to directly expand . Note that derivatives of

are functions of derivatives of .
The Taylor series expansion of around vector zero,

, is formulated using the expression below in terms
of

(27)

(28)

We can continue with calculation of different terms in the
above equation. For simplicity, we define (18) as

, where

(29)

and has a similar formula. We only consider
hereafter in this section. The same approach can be used for

. For simplicity of notation, we use instead of

(30)
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To simplify the subsequent derivations, the following func-
tions are defined:

(31)

where is a set which contains bit positions dif-
ferent from , and

(32)

where is the modulated value for the th,
, bit of codeword . It is clear that

, as well.
To simplify (30), it easily follows that:

(33)

where is defined as

(34)

where and are given in (29) and (31), re-
spectively.

The functions , , and ,
defined in (29), (31), and (34), respectively, reduce to special
weight distribution functions when

(35)

where , and is the number of codewords
with Hamming weight in

(36)

where is the number of codewords with
Hamming weight , and

(37)

We can compute , using the trellis diagram of the
code. This is achieved by constructing a new trellis diagram and
augmenting each state into two states according to the values of

, where .
Using (33) and (37), we have

(38)

Replacing (33) and (38) in (30), we have

(39)

To compute (39), one needs derivatives of , which
can be calculated using the following theorem.

Theorem 4: For any representing a bit position other than
, we have

if

otherwise.

(40)

Proof: For proof, refer to Appendix A.
Another theorem which simplifies the calculation of even

order derivatives, is presented next.
Theorem 5: We have

(41)

Proof: For proof, refer to Appendix A.
Referring to (40), one can easily see that the coefficients of the

expansion (39) are polynomials of for different
values of . It is noteworthy that these coefficients are polyno-
mials of special weight distribution functions defined in (37).
The above theorems and results enable us to compute all the
derivatives required in the Taylor series expansion of

.

V. COMPUTING PROBABILITY OF ERROR

The BEP follows by a simple integration of the resulting pdf.
We present a closed-form formula for computing this integral in
this section.

Using Theorem 2, we have

(42)

where event corresponds to bit being in error. Using assump-
tion (11), we can write

(43)

Hence, computation of the BEP involves calculating an inte-
gral of the following form:

(44)

where is the bit LLR normalized to have zero mean and
unit variance and . Substituting with its
Gram–Charlier expansion results in

(45)
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Noting that , , we have

(46)

(47)

Changing the order of integration and summation and using
the following property:2

(48)

we can write

(49)

(50)

(51)

This results in a closed-form expression for computing prob-
ability of error.

VI. CONVERGENCE PROPERTIES

Convergence properties of the Gram–Charlier expansion is
investigated in [24], [28], and [29]. It is proved in [30] that the
expansion is convergent if the expanded function satisfies the
following condition:

(52)

Reference [13] mentions that this expansion has good asymp-
totic behavior as defined in [31]. In other words, a few terms
will give a close approximation.

General properties of Hermite polynomials are discussed in
[32], where it is shown that this class of polynomials form an
orthogonal basis which span the interval ( , ). Therefore,
the pdf of the bit LLR can be expanded arbitrarily closely, in a
mean-square sense, using the given set of orthogonal basis, i.e.,

(53)

where is truncation error defined as

(54)

If is piecewise continuous in the interval ( ,
), the result of this expansion converges to at each

point of ( , ) at which is continuous. At points
where has a jump discontinuity, this series converges to

2Proof is in Appendix B.

Fig. 1. Comparison between analytical and experimental BER for (15,11,3)
Cyclic code.

[33]. In the following, we show that the
error in the computation of BEP converges to zero.

In practice, computation of error probability is performed by
integrating from to instead of to , where

and is a large finite value.
Using the Cauchy–Schwartz inequality [34]

(55)

for the case of , and

otherwise
(56)

we have

(57)

Applying (53)to (57) results in

(58)

In this case, we can get as small as the desired error in
computation of the error probability by increasing the number
of terms .

VII. NUMERICAL RESULTS

In this section, some examples are provided which show a
close agreement between the analytical method and simulation
results.

As an example, we used a (15, 11, 3) Cyclic code and eval-
uated its performance using the proposed method. The order of
the Gram–Charlier expansion is 10. The comparison between
the analytically calculated bit-error rate (BER) and the one ob-
tained from simulation is shown in Fig. 1. From Theorem 3, we
know that in the case of Cyclic codes, the computed pdf is not
affected by the choice of the bit position.
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Fig. 2. Comparison between analytical and experimental BER for (12,11,2)
single parity-check code.

Fig. 3. Comparison between analytical and experimental BER for binary
extended (24,12,8) Golay code.

Another example is a (12,11,2) single parity-check code. The
order of the Gram–Charlier expansion is 10. The comparison
between the analytically calculated BER and the one obtained
from simulation is shown in Fig. 2.

The last example is the binary extended (24,12,8) Golay code.
Its performance is shown in Fig. 3. The BER is calculated using
the Gram–Charlier series with 14 terms.

There is not any known method in the literature to calculate
the truncation error of the Gram–Charlier series. It is an open
problem to determine where to truncate the series to get a good
approximation.

VIII. CONCLUDING REMARKS

A method is presented for calculating BEP of binary linear
block codes over an AWGN channel, using special weight enu-
merating functions of the code. A summary of the proposed
method is presented here. Starting with calculation of special
weight distribution functions defined in (37), proceed with a

Fig. 4. Flow chart of the analytical method for performance evaluation of
binary linear block codes.

Taylor series of the LLR, as indicated in (27). Averaging this ex-
pansion will give us moments of the pdf of the bit LLR, which
can be used to compute the coefficients of the Gram–Charlier
series using (22). A closed-form expression (51) can be used to
find the BEP. All these steps can be seen in Fig. 4. A possibility
for future work is the extension of this method for performance
evaluation of turbo codes. Although calculation of the required
weight distribution functions for turbo codes is very complex, it
can be approximated using the concept of uniform interleaving.
Some existing approaches are bounds on the performance of
turbo codes [35]–[37] under the assumption of ML decoding.

APPENDIX

PROOFS OF THEOREMS

Theorem 4:
Proof: Using (34), one can write

(59)

(60)

(61)

(62)
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(63)

(64)

Using (31) and noting that , we have

if
otherwise.

(65)

Substituting (65) in (64), and using (34), completes the proof.
Theorem 5:

Proof: We consider two different cases. If
, using (40), one can write

(66)

(67)

(68)

(69)

(70)

(71)

For the other case where , we have

(72)

(73)

(74)

(75)

(76)

(77)

It can be seen from (71) and (77) that both cases ended up
with the same expression as the one in (41), which completes
the proof.

PROOF OF PROPERTY (48)

We can expand the right-hand side of (48) as follows:

(78)

(79)

Using (20), we have

(80)

It follows that:

(81)

(82)

Substituting (82) in (79), we have

(83)

which is the left-hand side of (48).
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