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plex centered at the origin. The proof can be carried out
inductively with respect to the vector dimension. A constant
length s for the edges arises together with a constant length nc,
for the vertices of the simplex.

b) Due to a memoryless Gaussian source, the n-dimensional
pdf f(x) is rotational invariant. By Lemma 1, the centroids of
the quantization cells have the same length r; and the centroid
of Z, has the same direction as the center of Sy. Let Sy be
spanned by v,(n),-,v,(n). Due to (18), Sy lies in the plane
x, = ¢, and the center of S lies on the x, axis:

n

Y uln) = —v,4(n) = O,nc,).

i-1
Hence ((A1), (A2)),

ri=%x,=(n+ 1)({[0 )x,,fn f(x) dx; o, dx,_, dx,.

- 1(X,/€,88)

(A4)
¢) Since S, is the convex hull of v ,(n), -+, v,(n), its projection
on the x,,-,x,_, plane is the convex hull of v(n — 1), -,
v,(n — 1) ((18)), which is the simplex P, ,(s). Hence,
I, (x,/c,Sy) is the simplex P,_(s") with edge length ((18))
s =x,/c,s =x,2n(n + 1) (AS)

d) By (A4), (A5), and the statistical independence of x;,

ri=(n+ 1)[[0’00)xnfl(x,,)W,l,l(x,,(Zn(n + 1))-1/2) dx,

(A6)

holds with W, _,(s) denoting the probability of P, (s).
e) The functions W,(s) can be evaluated iteratively. For k > 1,
we have ((18))

W, (s) = f f1(x;)

[=keg,c]

'/;(Pk(s),xk)
i) s fiGge ) degyee, dxg g dxy,

with I(P,(s), x,) as the intersection of P,(s) at x, ((A2)).

With (18), it can be shown that I(P(s), x;) is the simplex
P,_(s). Tts edge length s’ depends linearly on x, with
s'(—kc,) = 0 and s5'(c,) = 5. Hence,

(A7)

W,(s) = /[._k ]fl(xk)W,hl(s(xk + kc;.)
/(e + keyp)) dxy, k>1. (A8)
By (A8) and
wis) = [ f(x) dx,
[-s5/2,5/2]

the functions W, (s) and, by (A6), r,, are given by one-dimen-
sional integrals which can be computed numerically.
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Block-based Eigensystem of the 1 + D and 1 — D’
Partial Response Channels

A. K. Khandani and P. Kabal

Abstract—We find analytical expressions for the block-based input
and output eigenvectors and eigenvalues of the systems with responses
1 + D and 1 — D2 The input eigenvectors form an orthonormal basis
which is the optimum modulator for a channel with that transfer
function. The output eigenvectors form an orthonormal basis with the
same spectral nulls as the corresponding system. This basis can be used
to produce line codes with spectral nulls. The eigenvectors are sinusoids.
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Fig. 1.

Block diagram of the transmission system.

This reduces the computational complexity by allowing for fast trans-
form algorithms to perform the modulation for a block of data.

Index Terms—Block-based eigensystem, partial response channels.

L. INTRODUCTION

We consider the problem of finding the input and the output
eigenvectors and the eigenvalues of the block-based 1 + D and
1 — D? systems. For an M X N-dimensional matrix C, the input
eigenvectors m,, k € [0, N — 1], are the eigenvectors of C‘C
with the eigenvalues ¢2. The output eigenvectors #1,, k € [0, M
— 1], are the eigenvectors of CC’. Assuming M > N, CC* has N
nonzero eigenvalues equal to the same ¢;’s and My =M — N
eigenvalues equal to zero. We have

Cm, = ¢,

C'my, = ¢ m,. (D
Since C’C and CC' are both symmetric, the input and the
output eigenvectors form an orthonormal basis denoted by M
and M, respectively. In the following, we discuss two applica-
tions for the eigenvectors of the matrix C.

The first application involves signaling over a channel with the
transfer matrix C. The block diagram of the transmission system
under consideration is shown in Fig. 1. We use a discrete-time
model and block-based processing. The block length is equal to
N. Each block invokes M = N + M, channel uses, where M, is
the memory length of the channel. M, zeros are transmitted
between successive blocks; as a result, each block starts with
zero initial conditions. Modulator matrix M is the basis for the
given constellation at the channel input. The additive noise is
white Gaussian with zero mean and unit variance. The demodu-
lator matrix D is selected such that DCM = I, where I is the
N X N identity matrix. This results in a unity gain N-dimen-
sional channel with additive Gaussian noise whose autocorrela-
tion matrix is DD’. We assume that the decisions along different
dimensions of the channel are made independently. In this case,
the effective noise along the kth dimension, k = 0,:--, N — 1, is
a Gaussian random process with power o2, where o is the kth
diagonal element of the matrix DD’.

It can be shown that the input eigenvectors of C are the
optimum modulating basis. at the channel input [1]. This basis
minimizes the product of the noise powers along different di-
mensions. In this case, for a given total rate and given minimum
distance-to-noise ratio at the demodulator output, the volume of
the signal space and, consequently, the required energy at the
channel input, are minimized.

The second application involves line coding. The output eigen-
vectors of a system C form an orthonormal basis with the same
spectral nulls as the system. This basis can be used to produce
line codes with spectral nulls. Fig. 2(a) shows the block diagram
of such a line coder. Considering (1), multiplication (modula-
tion) by M can be achieved using the system shown in Fig. 2(b),
where ®~! is a diagonal matrix with the diagonal elements
1/¢,. As we will see later, for the systems under consideration,
modulation by M can be achieved using an even discrete sine
transform algorithm. This reduces the computational complexity
of a realization based on Fig. 2(b).
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Fig. 2. (a) Block diagram of the line coder. (b) An equivalent form
for (a).

The 1 — D, 1+ D, and 1 — D? systems have special impor-
tance in partial response signaling [2]. The 1 ~ D system has a
spectral null at zero frequency, 1 + D has a spectral null at the
Nyquist frequency, and 1 — D? has spectral nulls at both zero
and the Nyquist frequencies. Let the energy per channel use be
normalized to 1. The 1 + D systems have an (N + 1) X N-
dimensional transfer matrix with ith column, i = 0,--, N — 1,
equal to [(0),v2 /2, + V2 /2,(ON"'~i. The 1 — D? system
has an (N + 2) X N-dimensional transfer matrix with ith col-
umn, i = 0,--, N — 1, equal to [(0),V2/2,0,-V2/2,
(O)N— 1-i ]t'

II. EicensystEMorTHE 1 + D anp 1 — D? SysteEms

The input eigenvectors of the 1 — D system are equal to

2 Comlk+ Dn+ 1)
O i i

k,n=0,-,N-1. (2)
The corresponding eigenvalues are given by
m(k+ 1)

2=1- _— 3
¢ =1 — cos N+l 3)

This can be verified by considering (2) as a periodic function
with period N + 1. This function is zero at n =N + 1) — 1,
Vi. This means that the signal itself provides zero initial condi-
tions for the N-dimensional blocks. Consequently, the response
of the system in each block is equal to its steady state. Note that
in steady state, a sinusoid is the input eigenfunction of any
linear system.

To give a formal proof, we consider C'C as the transfer matrix
of a linear time-invariant system with the transfer function
H(D) = 05(1 — D)1 — D~Y). This is the transform of
c(n)* c(—n), where c(n) = {1/v2, -1/ 2} is the impulse re-
sponse of the 1 — D system (power is normalized to 1) and =
denotes the convolution. To have consistency with the block-
based processing, we apply a causal input and truncate the
output of positive time. In this case, if m(n) is an input eigen-
vector and M(D) is its transform, we have

H(D)IM(D) — m(0)] + m(0)(1 — 0.5D) = $>M(D). (4)
Calculating (4) at time zero results in
2=1-05 ) (5)
¢ = “m0)”
Substituting H(D) = 0.5(1 — DX1 — D~') and (5) in (4) results
in

M(D) = (6)

Eqgs. (6) and (5) can be satisfied by the eigenvectors and eigen-
values given in (2) and (3). Using (2) in (1), the output eigenvec-

After this paper was accepted for publication, we became aware of the
work of Honig et al. [4], which presents a result similar to (2).
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tors of the 1 — D system are found as

N m(k + 1)2n + 1)
M=V NTT T v

n=0,N, k=0, N—-1. (7)
The input and output eigenvectors of the 1 + D system are
obtained by multiplying (2) and (7) with (—1)". The eigenvalues
of the 1 + D system are the same as the 1 — D system given in
3.

An N-dimensional 1 — D? channel, N even, can be consid-
ered as two time-multiplexed N /2-dimensional 1 — D channels.
Consequently, the eigenvalues are in pair equal to

w(k +1)

WD
The two eigenvectors corresponding to a pair of eigenvalues are
of the general form a;m,(2n) + a,m,(2n + 1), where a? + a3
= 1 and m,(n) is the eigenvector of the 1 — D channel given in
Q).

The product of the nonzero eigenvalues of C is equal to

N-1

Il ¢2=Ic'ci, )
k=0

$F=1 k=0,,(N/2)-1. (8

where |C'C| is the determinant of C'C. This product is an
important parameter of the systems based on C. For example, in
the transmission system shown in Fig. (1), the volume of the
Voronoi region around each constellation point at the channel
input is proportional to (IT,¢;)~" and the required energy is
proportional to (IT, ¢,)~%/".

For the 1+ D channels, assuming |C'C]=2"" X A, and
expanding the determinant, we obtain A, = A4,_, + 1. Solving
this recursive equation with the initial value 4; = 2 results in
Ay = N + 1. Consequently, for the 1 + D channels, we have

N-1
IT¢2=2""x(N+ 1. (10)
k=0
For the 1 — D? channel, we have
N-1
T é2=2""x[(N/2) + 1] (11)
k=0

For all three channels, modulation with the input eigenvectors
can be performed by using the even discrete sine transform. For
modulation with the output eigenvectors, we can use the block
diagram shown in Fig. (2). Using (7), modulation with the output
eigenvectors can also be achieved using an N + 1-point even
discrete cosine transform. In this case, samples of the modulat-
ing vector are shifted by one sample and filled with zero. Ref. [3]
shows how both the discrete sine transform and the discrete
cosine transform can be efficiently calculated.

II1. SuMMARY

The input and output eigenvectors and the eigenvalues of the
1+ D and 1 — D? systems are calculated. The product of the
nonzero eigenvalues are found in closed form. In all cases, the
multiplication by the input or output eigenvectors can be
achieved by using fast transform algorithms.
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Number of Nearest Neighbors in a Euclidean Code

Kenneth Zeger and Allen Gersho

Abstract—A Euclidean code is a finite set of points in n-dimensional
Euclidean space %”". The total number of nearest neighbors of a given
codepoint in the code is called its touching number. We show that the
maximum number of codepoints F, that can share the same nearest-
neighbor codepoint is equal to the maximum kissing number 7, in n
dimensions, that is, the maximum number of unit spheres that can touch
a given unit sphere without overlapping, We then apply a known upper
bound on 7, to obtain F, < 270491+ @) which improves upon the best
known upper bound of F, < 2" *°®), We also show that the average
touching number T of all the points in a Euclidean code is upper
bounded by 7,.

I. INTRODUCTION

A Euclidean code is a finite set Y of M > 1 points in n-di-
mensional Euclidean space #”. A vector quantizer codebook
and a code (or signal constellation) for the Gaussian channel are
both examples of Euclidean codes. In both cases, the nearest-
neighbor partition (also known as the Voronoi partition) of the
space induced by the code is of particular importance in evaluat-
ing the performance of the code. For vector quantizers, a source
vector is encoded by identifying in which region of the partition
it lies. For Gaussian channels, a selected codepoint is corrupted
by an additive Gaussian noise vector and the maximum a
posteriori decoder identifies in which region of the Voronoi
partition the resulting vector lies.

A special case of a Euclidean code is a uniform code (e.g., a
lattice code), defined by the property that every codepoint has
the same nearest-neighbor distance, d,;,. Each point of a uni-
form code can be viewed as the center of a sphere of radius
¥o = dpmin/2 s0 that each sphere is contained in the closure of a
nearest-neighbor region.

The nearest-neighbor region (or Voronoi cell) of a given point
a in a Euclidean code is the set of points in #” closer to «a
than to any other codepoint. This region is a convex set bounded
by faces of dimension n — 1 that are subsets of hyperplanes.
Each such hyperplane is defined as the locus of points equidis-
tant from « and some other codepoint S.
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