defined as 1 = RJkVR,-[k], where R[] is the autocorrelation of
the actual signal for the lag &, and R,.[k] the distorted autocorrela-
tion that the conventional PAR model would exhibit, we reinforce
the autocorrelation of g[u] for the lag & so that, after being pro-
jected, the distortion of the autocorrelation will be compensated.

Simulation and results: To prove the proposed scheme, two differ-
ent MPEG-I encoded sequences were used. The first one corre-
sponds to the whole film ‘Star Wars’. The second sequence
includes thirty minutes of the soccer World Cup 1994 final. Both
traces were encoded with 24 frames per second and a GOP struc-
ture of twelve frames. The model was designed to distinguish
between three different scene types (V = 3). Distribution functions
were calculated using histograms of 40 levels. Results are pre-
sented for simulated queues with a utilisation factor of 70%. In
Figs. 2 and 3, the behaviour in a queue of the real traffic is com-
pared with those of different models: a SRD model that does not
consider scene changes (N = 1) and the proposed model using
both the conventional PAR model and the modified PAR as well
as two different window sizes for the averaging filter. For the film
‘Star Wars’, Fig. 2 proves the accuracy of the modified PAR
scheme to predict losses if the window size (W = 500) is correctly
designed. A model with a shorter window (W = 50) or conven-
tional PAR scheme and, of course, an SRD model, underestimate
the losses, especially when the queue size increases. Conversely,
Fig. 3 proves that the proposed model is also able to adjust the
behaviour of a video trace of a sport event, improving the adjust-
ment that a SRD model performs. In this case, a shorter window
(W = 100) is enough for a proper tuning of the model, as long as
scenes are not as long as in a film.

Conclusions: A two level model for VBR video traffic has been
presented. To cope with the existence of LRD within the video
signal, the model considers two time scales: scenes and GOPs. To
model the scene changes, a Markov chain is used. For the GOP
level a modification for the PAR model is proposed so that the fit-
ting of the autocorrelation function is improved. The ability of the
model to adjust the behaviour of the real traffic in a queue is
proved using two MPEG sequences with different characteristics.
Using this scheme, the complexity of self-similar models and frac-
tal calculations is avoided.
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Group structure of turbo-codes
A K. Khandani

The author discusses the group property of turbo-codes when
considered as a periodic linear system. It is shown that the
interleaving procedure provides a homomorphism between
different encoded sequences and thereby breaks the low weight
sequences by a factor of, at most, 1/2”, where r is the constraint
length of the code.

Introduction: Fig. 1 shows the block diagram of a rate 1/3 turbo-
code composed of two recursive convolutional codes (RCC),
where i, is called the systematic bit, and p,}, p,? are called the par-
ity check bits [1]. The effect of interleaving is equivalent to multi-
plying the input sequence by a permutation matrix which
corresponds to a linear operation. Note that as the RCCs and also
the interleaver, have the property of linearity, the resulting code is
linear, and consequently the distance invariance property holds.

The weight of the code in Fig. 1 is equal to the sum of the
weights of the i, p,! and p.2 sequences over a block. Considering
that the RCCs are linear systems with an impulse response of infi-
nite length, it is expected that the p,! and p;? sequences will be of a
large weight. This, however, depends on the pattern of the i
sequence, and unfortunately, there exists low weight i sequences
for which the resulting p,! sequence will also be of a low weight.
The role of the interleaver is to modify the pattern of such i,
sequences such that the resulting p,? sequence will be of a large
weight (and vice versa for p.!).

i i

RCC ~ |——pk

interleaver

RCC |——pf

Fig. 1 Basic structure of turbo encoder

Periodicity property and group structure of turbo-code impulse
response: We assume that the RCCs are generated by the transfer
function G(d) = O(d)/D(d). We know that the impulse response of
G(d) is periodic with period p < 27 — 1 where r is the constraint
length of the code [2]. We are mainly interested in the group struc-
ture and also the periodicity property of the impulse response of
G{(d). In this respect, without loss of generality, we limit our atten-
tion to the structure of D(d).

The polynomial D(d) in turbo-codes is selected to be a primitive
polynomial generating generating a maximum length sequence
(MLS) [3 — 5]. The intuitive reason is that we would like the
period of the impulse repose of G(d) to be as large as possible. It is
known that if D(d) is a primitive polynomial, then the resulting
period is a factor of 2r — 1 [2]. If the period is equal to 2 — [, the
resulting impulse response is called an MLS. It is known that
among the irreducible polynomials of degree r — 1, a subset of
them of cardinality ¢(2 — 1)/r, where ¢(.) is the Euler function,
results in an MLS [2]. Obviously, if 2/ — 1 is a prime number, then
any irreducible polynomial D(d) results in an MLS. The rules for
determining all the possible configurations of D(d) in order to
obtain MLS are given in [2]. It can be shown that in any period of
an MLS, the number of ones is equal to 2! and the number of
zeros is equal to 2~ — 1 [2].

If we look at the impulse response of D(d) as a periodic
sequence, we obtain K = 2" — | non-zero sequences which are time
shifts of each other. Each sequence corresponds to a specific posi-
tioning of an mput impulse within the period. We refer to these
sequences as different phases of the periodic signal. It can be
shown that the set of phases of an MLS (plus the all-zero
sequence) constitute a group under binary addition [2]. The order
of each element in this group is equal to two, meaning that the
sum of each phase with itself results in the all-zero sequence
(denoted as the zero phase).
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