which is not cross-ccupled is employed, ,,, has a similar order of
magnitude to r,,. This leads to a poor CMRR, unless an addi-
tional common-mode feedback loop is introduced.

¥4 can be further increased by slightly oversizing M,, and M,
compared to M, and M,,. However, it depends on process toler-
ance, which is difficult to predict and is therefore excluded in this
Letter.

Finally, the voltages on the high impedence nodes are converted
again to the current by the small-signal transconductance (¢’,,,) of
M,; and M,s. The overall differential current gain A, and the
common-mode current gain A,,, of the proposed circuit are:

Aidm ad grlmn(rdm//rout) (5)

Acdm =~ g;rm'rcm (6>
Since the common-mode gain is about one if g, = £,. the
CMRR of the proposed COA is nearly equal to 4,
The dominant pole, f, is determined by the high impedence
node and equal to:
1
= 7
T 27C, (Pam/ [Tout) (7)

where C, is the half of the total capacitance connected to each
high impedence node, including compensation capacitance if it
exists. Hence, the gain-bandwidth product (GBW) of the proposed
COA becomes g°,,/(2rC,).

Simulation: A SPICE simulation has been performed using the
level 28 model parameters provided for LG Semicon 0.6um n-well
CMOS technology with V,,, = 0.771, V,,, = -0.868, k, = 131.1uA/
V2 and k, = 41.8uA/ V2 The supply voltage V,, is 3V and the bias
current 7, is 40uA. All the devices used have the same length of
1um, The widths are: 10um for M, to M,,; 20um for M,s to M,;
30pm for M, to M,,. PMOS transistors M,; and M, are added to
bias M,; and M,, respectively. NMOS transistors M,s and M,
are auxiliary output devices. All body terminals of PMOS and
NMOS transistors are connected to ¥, and ground, respectively.
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Fig. 3 Simulated phase characterisics

The frequency characteristics of the proposed COA are shown
in Figs. 2 and 3. It is seen that the proposed COA exhibits an
open loop gain of 53dB. The 3dB bandwidth of the COA is seen
to be 1MHz. Also, the unity gain bandwidth is found to be
300MHz, at which the phase margin is S0° without inserting com-

pensation capacitors. The CMRR obtained is also shown in Fig.
2. As mentioned, the CMRR has a magnitude nearly equal to the
differential-mode open loop gain. A further enhanced CMRR will
be obtained if an additional common-mode feedback control is
introduced. The proposed COA was simulated in a closed loop
unity gain buffer. Fig. 4 shows the transient response to a step
input of +10pA. The 1% settling time is found to be 7.1ns. The
input and output resistances of the COA are 21 and 597kQ,
respectively. Finally the static power dissipation was < 860uW.
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Fig. 4 Simulated transient response

Conclusions: A fully differential, wide bandwidth and good
CMRR current operational amplifier has been presented. The pro-
posed circuit employs a tapped cascode current mitror as an input
stage and two cross-coupled simple current mirrors to enhance
CMRR. A SPICE simulation shows a 53dB differential-mode
gain, a 52dB CMRR, a 300MHz unity gain bandwidth, and a 50°
phase margin without compensation.
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Design of turbo-code interleaver using
Hungarian method

A K. Khandani

A method is presented for optimising the structure of the turbo-
code interleaver using the Hungarian method (linear sum
assignment problem). Numerical results are presented which show
a substantial improvement with respect to a random interleaver.

Introduction: Consider a turbo code in which the underlying recur-
sive convolutional code (RCC) is generated by the transfer func-
tion G(d) = N(d)/D(d). We know that the impulse response of G(d)
is periodic with period p < 2 — 1, where r is the constraint length
of the code [1]. If p = 2" — 1, the resulting impulse response is
called a maximum length sequence (MLS). This is the case for the
transfer functions used in turbo codes.

If we look at the impulse response of G(d) as a periodic
sequence, we obtain K = 2" — 1 non-zero sequences which are time
shifts of each other. We refer to these sequences as different
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phases of the periodic signal. It can be shown that the set of
phases of an MLS (plus the all-zero sequence) constitute a group
under binary addition [1]. The order of each element in this group
is two, meaning that the sum of each phase with itself results in
the all-zero sequence (denoted as the zero phase).

Consider the situation that a given RCC encoder is excited by a
random binary sequence composed of w impulses located at time
instants ¢, ..., t,, where i, < ... <1, w2 2. This corresponds to an
information sequence of weight w at the input. We refer to [z, ¢, ]
as the non-zero span, and to ¢, as the terminating edge of the
sequence. Note that if two such sequences are added, then the ter-
minating phase corresponding to their sum 1s obtained by adding
the terminating phases of the two sequences. Also note that
changing the position of some of the impulses by some multiples
of the period does not change the terminating phase of the output
sequence.

The role of the interleaver is to modify the pattern of those low-
weight input sequences which have resulted in a low weight output
after passing through the first RCC, such that the output weight
of the subsequent RCCs is high. In the design of the interleaver,
. we have the following three implicit objectives in mind: (i) break-
ing the low-weight input sequences such that a terminating zero-
phase is avoided in at least one of the outputs, (ii) providing a
large span for the input sequences which have resulted in a zero
terminating phase in all the component codes, and (iii) providing a
large distance for the terminating edge of the sequences from the
right edge of the corresponding block in at least one of the encod-
ers.

Brealking of the weight-two input sequences: The design of the inter-
leaver in turbo codes has been usually concentrated around the
task of breaking the weight-two input sequences. In the following,
we design an interleaver which is in a sense optimum with respect
to this task. Specifically, we conclude that there exists an inter-
leaver which breaks all the weight-two sequences with a span lim-
ited to K2, while there does not exist an interleaver which breaks
all the weight-two sequences of a larger span.

We refer to time positions within a given block which are con-
gruent to i modulo K as C. If the system is already in phase a,
then an impulse at position ¢ € C; will result in phase b = a @ i at
the output of the corresponding RCC, where @ denotes the group
addition of the phases (an impulse at position ¢t € C, will result in
the zero phase). For the sake of simplicity, we assume that the car-
dinality of C, values is an integer multiple of K, or equivalently, N
is an integer multiple of K2,

In the process of interleaving, if two elements within a given C,
i=1, .., K, are mapped into two positions within a given C, then
these positions constitute a weight-two, zero-phase sequence which
remains zero-phase after interleaving. The interleaver can force the
elements mapped to different positions of a given C, i = 1, ..., k|
to be of different C, values iff the number of positions in each C, is
< K This in turn means that the block length N should satisfy N
< K2 In practice, N > K? and the interleaver will not be able to
break all the weight-two sequences. Noting the periodicity prop-
erty, it is easy to see that the fraction of the unbroken weight-two
sequences within a given C; is at least 1/K. The interleaver should
be designed such that the span of such unbroken sequences is
maximised. The value of the minimum span is upper-bounded by
K2 (which is achieved if we sample each C, by an interval of K into
K subsets and leave the weight-two sequences within each of these
subsets unbroken). The structure of the interleaver achieving these
features is very simple. It suffices to partition the input block into
sub-blocks of length K and apply a cyclic shift of i positions, i = 0,
1, ..., to the elements of the ith sub-block. Obviously, the effective
number of cyclic shifts applied to the ith sub-block is equal to:
imod K). In this case, after K sub-blocks, we come back to our
original point where no cyclic shift is performed. The same proce-
dure repeats in a periodic manner. We refer to this structure as a
uniform interleaver. Since our simulation results show that the cor-
responding interleaver has a poor performance, we conclude that
it is not sufficient to consider only the effect of the weight-two
input sequences.

As in a uniform interleaver, the minimum span of the unbroken
weight-two sequences is quite large, the performance is not deter-
mined by the weight-two sequences. This means that we can per-
mute the elements mapped to each C, in the interleaved block

without being concerned about the interaction of these elements
with themselves (in producing low-weight error events). In this
case, the performance of the code is determined by the interaction
between the elements located in different values of C, and also by
the right margin (distance to the right edge of the block) of the
elements. In the following, we explain a combinatorial optimisa-
tion technique which attempts to optimise these quantities.

Optimising the interleaver using Hungarian method: We define a
distance measure between the elements of each C; with respect to
the rest of the block and then permute the elements of the C, val-
ues (one C; at a time) such that this distance measure is minimised.
Specifically, we define the distance between two elements to be
unity, if the separation between them plus the separation between
their permuted versions is less than a given threshold. To incorpo-
rate the edge effects, we assign a separate distance to each element
which is set equal to unity if the right margin of the element plus
the right margin of its interleaved version is less than a given
threshold.

The overall distance of a given C, denoted as D, is defined as
the sum of the distances of its elements. The optimisation proce-
dure permutes the elements originally mapped to a given C, to
minimise this distance. In practice, we order the C, values accord-
ing to the value of their D, and select the first one (with the maxi-
mum D)) for readjustment. If this readjustment decreases the value
of the corresponding D, we start a new iteration, and if it does
not change the value of D,, then we proceed to the next C; in the
list.

It remains for us to find a method to permute the elements of
each C,; to minimise the relevant D, This is achieved by consider-
ing that if a given position, say 4, within C, is assigned to another
position, say B, then the change in the value of D, depends only
on A and B. This property results in a linear objective function for
our assignment problem. To formulate the problem, we consider a
set of zero-one variables, say 8 where 82 = 1, if the mth posi-
tion of C, is assigned to its n # m position. If the contribution of
this assignment to the new value of D, is denoted by 87 (i), we can
formulate the optimisation procedure as

N N
Minimise ~— D; = Z > ondr )

m=1n=1

N N
Subject to: Y drn =1 > 6 =1 and &7, €{0,1}
m=1 n=1

Ym,n (1)
Note that the constraints X6, = 1 and X,8;, = 1 reflect the per-
mutation structure of the interleaver. This problem is known in
the context of discrete optimisation as a linear sum assignment
problem and can be solved very efficiently using the Hungarian
method [2].

The key point behind obtaining a linear objective function, and
consequently an easy solution, is that here we are not entering the
interaction among the elements within each C; into our computa-
tions. In general, incorporating such a mutual interaction between
making decisions in a discrete optimisation problem (assignment
in the present case) makes the problem substantially more compli-
cated. As an example, the simplest form for inclusion of such
mutual interaction would be to consider the interactions between
pairs of decisions, which results in the so-called quadratic assign-
ment problem (QAP) [3]. In a QAP, the objective function would
involve the product of all pairs of 87 values. It is worth mention-
ing that the problem in eqn. 1 can easily be solved over sets of car-
dinality in the order of few thousand, while the solution of a QAP
over a set of cardinality more than ~20 is a challenging problem.

More generally, if we attempt to incorporate the effect of the
higher weight input sequences, say weight w, into our optimisation
routine, then the resulting assignment problem would be of degree
w (involving the product of all possible combinations of 8 values
composed of w components). Such problems are generally
extremely difficult to solve, and their solution methods are mainly
heuristic (e.g. simulated annealing), or deterministic algorithms
based on an exchange of pairs or triples.

As already mentioned, there is no strong motivation to attempt
to design the interleaver based on the objective of breaking the
zero-phase sequences. Based on this observation, we have also
examined the application of the optimisation problem in eqn. 1 to
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the case that the optimisation procedure starts from an initial
interleaver which is an identity transformation (each element is
mapped to itself). The interesting observation is that in this case,
the results obtained are relatively close to the results obtained by
starting from a uniform interleaver. In the following, we present
some numerical results for the application of the optimisation pro-
cedure in eqn. 1, starting from a uniform and also from an iden-
tity interleaver.
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Fig. 1 Bit error performance of random optimised interleavers

(i) optimised interleaver with uniform initialisation
(i1) optimised interleaver with identity initialisation
(iii) random interleaver

We have implemented the algorithm given in eqn. 1 for a simple
rate 1/3 turbo-code, where the underlying RCCs are of constraint
length r = 3 (period of K = 2" — 1 = 7) and have the generator pol-
ynomial (eqns. 5 and 7). The code block length is equal to 196 and
the number of iterations is 20. Fig. 1 shows the bit error probabil-
ity of a random interleaver against that of an optimised inter-
leaver. In the optimisation procedure, the threshold 7 is selected
as T = 14 (simply as two times the period) and the distances to the
end of the blocks are weighted by a relative factor of two. The
reason for the selection of a simple code and a short block length
is because we have been mainly interested in wireless applications
where the delay is limited to 20ms (a delay of 20ms corresponds
to a block length of 196 at a bit rate of 9.6K).
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Improved upper bound on bit error rate for
truncated convolutional codes

Hichan Moon

The author presents the performance of convolutional codes
truncated by input information of finite length. In a convolutional
code, the error rates of each bit are different. The upper bound on
the error rate for each bit within a convolutional code is derived
and analysed.

Introduction: The performance of a convolutional code can be esti-
mated from the upper bound on the bit error rate (BER) [1]. This
bound is derived assuming that the input information sequence is
infinitely long. The bound is accurate on channels with moderate
to large signal-to-noise ratios, if the input information sequence is
long enough. In real applications, the convolutional code is trun-
cated by input information of finite length [2]. The conventional
method for truncation is to encode an information message of
fixed length L followed by m additional all zero inputs, where
m+1 is the constraint length of the convolutional code. When the
input information sequence is short, the conventional bound
becomes loose. Moreover, the error rates of each information bit
are different within a convolutional code, depending on the bit
position. The error rate of the first or the last position bit is much
lower that that of centrally positioned bit. Because of this non-
uniform BER property, it is usual to place important bits at the
beginning and end of a convolutional code. In this case, it is nec-
essary to know the performance of each information bit.

In this Letter, the upper bound on etror rate for each informa-
tion bit is derived and analysed for convolutional codes truncated
by input information of finite length L.

Upper bounds: The BER P, of a binary rate k/n convolutional
code is bounded as
B, < Z
d=dmin
where P, is the probability that a path at distance 4 from the
transmitted sequence is chosen in decoder; d,,, is the free distance
of the convolutional code, and A(d) is the distance spectrum of the
convolutional code [3]. If a binary code symbol is transmitted by
binary phase shift keying (BPSK) over an additive white Gaussian
noise channel with noise spectral density Ny/2, then P, is given as

Pd:Q( 21‘]2V(.)d> (2)

where E is the energy per coded symbol. But, this bound becomes
loose when the code is truncated by short input information
sequence. Moreover, this conventional bound cannot explain the
dependence of a code’s BER on bit position.

To explain the different error rate of each bit in a convolutional
code, it is necessary to obtain the BER upper bound for each bit
position, respectively. Let P,®@ denote the error rate of ith informa-
tion bit in a convolutional code. The upper bound on P,®is pro-
posed as

-A(d) - Py (1)

| b=

o0
PP< 3 Add) Pa 3)
d=dmin
where A4(d) is the number of paths, at distance d from the trans-
mitted sequence, that cause error in the ith information bit.

Number of error paths: Suppose the encoder of a binary rate 1/a
convolutional code has m memory elements and the code is trun-
cated by an information message of length L. A generalisation for
rate k/n codes can easily be made. The encoder has its state S =
(51,82 > 5,,), Where s; is the content of the jth memory element of
the encoder. Let S, denote the state at trellis depth 7. Without loss
of generality, it can be assumed that all the zero sequence is trans-
mitted.

Consider the error rate of the ith information bit. Paths which
cause error in the ith information bit diverge from the all-zero
state before trellis depth i-1, merge to the all-zero state after trellis
depth i, and have a non-zero information bit between trellis depth
i-1 and i. To compute A(d), it is necessary to obtain the modified
trellis diagram for ith information bit. The modified trellis dia-
gram for the ith information bit can be obtained by modifying the
trellis diagram as follows: (i) Let the all-zero state at trellis depth 0
be the starting point, and the all-zero state at the end of the trellis
be the end point. Draw an arrow in each branch from each trellis
depth to next trellis depth. (ii) Before trellis depth -1, delete all
branches which merge into the all-zero state. After trellis depth i,
delete all branches which diverge from the all-zero state. If all
branches merging to a node are deleted, delete the node and all
branches diverging from that node. (iii) Label the branches which
are between trellis depth i-1 and i with powers of indeterminate x
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