In the following, we will discuss the general form of the above
signature equation to satisfy security considerations.
(i) Since x and k are two secret numbers and the verifier does not
know these two values, x and k should be treated as in different
terms in the above equation. Otherwise, if we combine these two
secret parameters together (i.e. for example, if xk = r+s mod (p),
then y* = ar** mod p or r* = ar*s mod p), the verifier cannot verify
the signature,
(i) To claim that s is a signature for the random public key r, the
random public key r should be included in the signature equation
and can be included in any parameter of (4, b, ¢).
(i) To provide a digital signature, s should also be mncluded in
any parameter of (@, b, ¢). Thus, there are four parameters, (x, k,
r, §), in the equation.
(iv) For security reasons, ¢ cannot be zero. For example, if rx = sk
mod &i(p), it is easy to forge a signature for a random public key
to satisfy the verification 3 = r* mod p. This can be shown by ran-
domly selecting a u e [1, p-2] and computing »* = y* mod p. The
forged signature for the random #” is 5" = y4! mod p-1.
(v) For security reasons, r cannot be combined with s. For exam-
ple, if x = k + rs mod Z(p), it is easy to forge a signature for a
random public key to satisfy the verification y = ror® mod p. This
can be shown by randomly selecting an »* € [1, p—2] and comput-
ing v’ = yorr" mod p. The forged signature for the random r” is s”
= r’r” mod p-1.
(vi) The signature equation contains four parameters. Two param-
eters, (r, s), are public information. But, x is the fixed secret key of
the signer and & is a random secret value for each random public
key. Since the number of secret parameters is always one larger
than the number of linear equations available to the attacker, the
signature scheme is secure based on the discussion in the original
ElGamal paper. We list all possible signature variations in Table 1.

Table 1: All possible signature variations

Signature

Equation Verification
Q) |rx = k+s mod D(p)
(i) |sx = k+r mod(p)
(ifi) | x = rk+s mod XKp)

(iv) | x = sk+r mod Xp)

y = ror modp
¥ = ro modp
y = rov modp
y = r'a’ modp

Discussion:

(i) Among all signature schemes we have listed in Table 1, the sig-
nature generation only requires us to solve a linear equation. The
signature verification requires two modular exponentiations. In
schemes (1) and (iii), the signature s can be solved without comput-
ing the inverse. More important than the efficiency is that these
signature schemes are not relied on any one-way hash function.
(il) The techniques used in the DSA [7] and the Schnorr scheme [8]
can also be applied to all schemes in the table to shorten the signa-
ture and to speed up computation.

Conclusion: We have proposed signature schemes which are espe-
cially suitable for signing the Diffie-Hellman public keys. Using
these schemes to sign Diffie-Hellman public keys, they do not
require any one-way hash function and are very efficient in signa-
ture generation and signature verification.
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Optimum source-to-channel assignment

A.K. Khandani

Indexing terms: Channel coding, Source coding

The problem of the optimum assignment of a set of source
symbols to a set of channel symbols is expressed in terms of a
quadratic assignment problem (QAP). Numerical examples are
presented for the assignment of a scalar quantiser to a binary
channel.

Consider a communication system aimed at transmitting a source
S through a channel C. The source S has 7 symbols, s, i = 0, ...,
T-1, where s; occurs with probability P(i). The distortion between
s, s, € S is equal to Dy, ). The channel C has 7 symbols ¢, i = 0,
.., 1=1. The probability of receiving a channel symbol j condi-
tioned on transmitting a channel symbol i is equal to: P.(j|i). The
objective is to select a one-to-one mapping & between the set of the
source symbols and the set of the channel symbols to minimise the
end-to-end average distortion, namely

T-1T-1

Dove = ), Y P PLIE@ID: [, €71 (5)]

=0 j=0
We assign a T dimensional binary vector to each symbol of the
source at the channel input. The vector corresponding to the ith
symbol is composed of the elements: [x;, j = 0, ..., 7-1]. If the ith
source symbol is assigned to the /th channel symbol, we set x;; = 1
for j = [ and x,; = 0 for j # /. Using these notations, the assign-
memt problem is formulated as

T—1T—-1T—1T-1
minimise Y > "> " P.())P(l|5)Du(i, §)zi; 2h
i=0 j=0 k=0 I=0
subject to: z;; € {0,1} ¢,7=0,...,7—1 (1)

T—1
doay=1 i=0,.,T-1
=0

T-1
inj:l j:O,.v.,T—l
1=0

The optimisation scheme in eqn. 1 is equivalent to a standard
problem of discrete optimisation known as a quadratic assighment
problem (QAP) [3, 4]. This problem arises in discrete locational
problems with mutual interaction between facilities. QAPs are
known to be NP-hard and are generally very difficult to solve. The
exact solution methods are mainly based on either finding an inte-
ger programming formulation for the problem or using the
method of the branch and bound. There are also numerous works
discussing different heuristic approaches to approximate the opti-
mum solution [3, 4].

Tables 1 and 2 contain numerical results for the optimum
assignment of the levels of a scalar Max quantiser [5] to the sym-
bols of a binary channel. The distortion measure is the mean
square distance. The corresponding QAP is solved using the
branch and bound algorithm. A supplementary technique (known
as reduction) is used which allows us to decompose the objective
function of the QAP as the sum of a linear term and a quadratic
term. The main strategy in computing lower bounds for a QAP (as
required in the branch and bound method) is based on minimising
the linear term and replacing the quadratic term by a lower bound
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Table 1: Optimum and worst index assignment for 3bit Max
quantisation of source with uniform, Laplacian and
Gaussian distributions

Uniform Optimum 000 001 010 011 100 101 110 111
Worst 000 01 101 110 111 100 010 001
Laplacian Optimum 000 001 010 011 111 110 101 100
Worst 000 011 111 100 010 001 101 110
Gaussian Optimum 000 001 010 011 111 110 101 100
Worst 000 011 101 110 100 010 001 111

Table 2: Degradation in D,,, (denoted as Loss) for different sub-
optimum assignment rules (with respect to optimum rule)
for 3bit Max quantisation of sources with uniform,
Laplacian and Gaussian distributions, P, indicates prob-
ability of bit error

Uniform Laplacian Gaussian
P, |Mapping|Loss [dB]] P, [Mapping|Loss [dB]| P, |Mapping|Loss[dB]
10~ | natural | 0.0 10 | natural | 225 107 | natural | 0.81
107 | grey 1.09 10 grey 0.93 1073 grey 0.27
10°] worst | 4.41 107 | worst | 453 1075 | worst | 4.00
107 | natural | 0.0 107 | natural [ 221 107 | natural | 0.80
107] grey 1.07 1072 grey 091 1072 grey 0.26
107} worst | 433 107 | worst | 445 107 | worst | 391
1071 | natural | 0.0 10T | natural | 1.84 10T [ natural | 0.66
10T grey 0.87 10T grey 0.72 10T grey 0.20
1077 worst 3.60 10T Wworst 3.70 10°T worst 3.24

thereof. To increase the efficiency, the reduction rule is selected to
enhance the relative effect of the linear term with respect to the
quadratic term. The minimisation of the linear term reduces to a
linear assignment problem (LAP) which can be easily solved using
the method explained in [6].
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Harmonic distortion due to output
conductance in Sl cells

J. Martins and V. Dias

Indexing terms: Integrated circuits, Switched curvent circuits,
Harmonic distortion

A closed-form equation for the effect of the output conductance
on the harmonic distortion in switched-current basic memory cells
is presented here. The authors show that in memory cells with
short channel transistors, the variation of the output conductance
can generate high levels of harmonic distortion (~51dB for L =
2um using a 12um CMOS technology); however a suitable
relation of transistor lengths can lead to very low distortion levels.
The results are confirmed both by simulation and measurements
on an IC prototype.

ELECTRONICS LETTERS

Introduction: The need for analogue techniques suitable for single
poly technologies (usually referred to as digital technologies),
together with the need for lower supply voltages and higher speed
has led to the development of the switched-current (ST) technique
(1]

In SI circuits, harmonic distortion is a major source of concern,
and several authors refer to it as the main cause of the mismatch
between the threshold voltages in the current mirrors [2], clock
feedthrough [2], and nonlinear settling [3]. We have found that an
important cause of distortion that has been overlooked is the vari-
ation of the output conductance with signal level.

L 4 O Vpp

GND

Fig. 1 Second generation SI memory cell

Theoretical study: The basic second generation ST memory cell [4]
is represented in Fig. 1 (the results to be obtained also apply to
the first generation memory cell [1]). A transistor in saturation has
ip = K(vgs—V)*(1+kvy) and can be represented by an equivalent
circuit consisting of an ‘ideal’ transistor with A = 0 with a con-
ductance G, connected between drain and source, which is a func-
tion of the signal (and not only of the bias current):

Go(t) = Nip(t) (1)

We represent a variable x at the end of the acquisition phase ¢,, as
x(¢,) and in the hold phase ¢,, as x(¢,); if the difference between
x(¢) and x(¢,) is only of second order, the phase is not
indicated. The current error is defined as

i (p2) = io(p2) — tine1) (2)

It 1s possible to show that it can be written as

te = [Gos + Go1 + gm10llupsi(¢2) —vpsi(é1)]  (3)
where

9 = Cdgl/(odgl + Cgsl + C) (4)

1s related to the feedback from v,y to v4 via the parasitic capaci-
tances C,, of 7). We note that G,, =AJ, G, = (J+i,(9)), g =
2\/{[{1(]+izn(¢1))} and Vps(0)) = vesr(®y) = \/{(J+iin(¢l))/Kl} + Ve
Assume that during ¢, the cell is connected to a similar cell in the
acquisition mode with transistor T3, Vps(9) = vpsa(dy) = vgsa(th) =
VT, )VEs} + V..

Although i, is a discrete-time variable, it is convenient to con-
sider that it is the sampled version of a continuos-time variable
it). W K, = K, = K, m; = i,(0))/J, and AV = V{J/K} is the over-
drive voltage, we can write eqn. 3 as

ie(t) > [AlJ(l +m) + A J + 20VE TV + ml]
X AV (VI =—m; — VI +m;) (5)

If we consider that Y{1+m(r)} = 1+m(2)2-mX#)/8, and assume
that m, = M,,coswt, the amplitude of the second harmonic relative
to the amplitude of the input signal is

3MAV M, AAVM,, 06M,
€00 ! 3 - 3 + 7 (6)

Since €,, has both positive and negative terms, it is possible to
have no harmonic distortion if the lengths of 7; and 7, are
related: for instance, if L, = 2um, AV = 0.7V, and M,, = 0.5, we
find that for L, = 8um, there is almost no harmonic distortion
(-81dB). However, if short length transistors are used, distortion
levels as high as —51dB can be obtained.
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