The new approach led to a reduction in the complexity of the
gain prediction module of ~92%. This means a 20% reduction in
the overall computational load of the codec, which is ~25 MIPS.

Subjective listening tests: To evaluate the efficiency of this new
method, we carried out a series of listening tests using several
speech sequences of different speakers, both male and female, in
different enviromental conditions.

Table 2 gives the percentage of preferences expressed by 30 lis-
teners between the standard version of the codec and the modified
version. It shows that most of the listeners did not perceive any
difference between the two versions.

Conclusion: We have proposed a valid alternative for reducing the
complexity of an LD-CELP speech codec. The novelty lies in the
use of a fuzzy system for backward excitation gain prediction. We
have shown that the new approach reduces the computational
load of the module by ~92%, preserving the same perceptive
speech quality as the traditional solution in various functioning
conditions.
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Multidimensional cubic constellation with non-
flat power spectrum

A K. Khandani

Indexing terms: Multidimensional systems, Digital signal processing

The author presents a multidimensional cubic constellation with a
non-flat power spectrum. The objective is to maximise the rate for
a fixed average energy, subject to certain constraints on the
resulting power spectrum.

Introduction: Consider the block diagram shown in Fig. 1. The N-
D base-band constellation a is bounded within a cubic region C,.
Using a continuous approximation, the normalised rate of a is
computed as

H{a) = log[V(C,)] 1)
where ¥(C,) is the volume of C,.

The average energy along the ith dimension of C, is denoted as
A, where A, > 0. We define A, = diag[),, ..., A,_]. Each signalling
interval (block) is composed of N,, time periods N,, 2 N. The total
average energy per block is normalised to N, resulting in LA, =

e

i a y:Ma
——{ encoder o] modulator(M) |—
C, c,

Fig. 1 System block diagram

The columns of the N,, x N matrix M are the dimensions of the
constellation y (MM = I where I is the N x N identity matrix).
For N < N,,, we can have up to N,, — N nulls in the power spec-
trum of y.

performance loss, dB

‘0.18 0.2 0.2 0.24
normalised cutoff frequency, f

Fig. 2 Performance loss against f, = ©/2R, with and without spectral

null, for the case of optimised basis

F,=01,N, =4 _ .

— — — — no spectral null, optimised basis

spectral null, optimised basis

Defining R, = E[yy’], it can be shown that

Hy)=Slos(2)+ 1 3 loglu(R,)] ()
Ai(Ry)#£0

where A(R)) is the ith eigenvalue of R,. Assuming that all the
eigenvalues are nonzero, we obtain % log[A(R)} = log(IR,|) where
|.| denotes the determinant. To realise a given R,, we select M and
A, as the matrices of the eigenvectors and eigenvalues of R,
respectively.
Using the results of [1], the power spectrum of y is equal to
] Nmzt
S =5 2 2 Ryl cos(wk)

£=0 |i—j|=k

1 N-1
=5 2 NiSi(w) (3)
m™oi=0

where S{) is the spectrum of the ith dimension. Given a cutoff
frequency ,, we define the power-ratio of a spectrum as the frac-
tion of the energy in the frequency band [0, ®]. The F,-constraint
is to have a power-ratio < F,. Integrating eqn. 3, the F,-constraint
is expressed as

Ny —1
> 3 R,G.j)sin(wek)/k < TNnF, ()
k=0 |i—j|=k

In the case of spectral null(s), we consider y as the output of a
linear system A with the same null(s) and reformulate the problem
at the system input x. As x has no spectral null, R, is positive-def-
inite. Using R, = AR A’, to maximise F(y), we should maximise
R,|. In this case, the energy constraint and the F, constraints
transfer to:

N—-1N—1

> > U, 9)R.(p.q) = Nnn

p=0 ¢=0
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Ny —1

Ulp,q) = Z A(3,p)A(i, )
woana (5)

1N
> WP, )Relp,q) < TNLF,
=0

2

=0 g¢=

Now 1 Now L inlweli —7)]

W(p,q) = Z EAZp =)

The objective is to select M and A, to maximise the second term
in eqn. 2 for A, = N, subject to some constraints on the power
spectrum of y. It is easy to see that such spectral constraints trans-
late into linear constraints on the elements of R,.

-4.0

performance loss, dB

0. 16 0.18 0.2 0.22 0.24
normafised cutoff frequency , f c
174/3

Fig. 3 Performance loss against f, = ©/27, with and without spectral
null, for the case of fixed basis

= O LN, =48,16

Nm =4, nonul, —— — N, =4, null
N, =8 nonull; e N,, = 8§, null

——— N,, = 16, no null; N,, = 16, null

Optimum speciral shaping: Using the previous results, the final
optimisation problem is as follows:

Maximise log(|Rq|)

N-1N-1
Subject to: Z ZBl 4, 7)R:(4,7) <ei 1€[0,L—1]
1=0 j=0
R, is symmetric positive-definite
(6)

where L denotes the total number of spectral constraints. Using
the results of ([2] p.467), it is easy to show that eqn. 6 is a convex
optimisation problem. As a result, the maximum point is unique
and can be computed using the Lagrange method.

We define an active constraint as a constraint for which the
equality holds. The set of the active constraints are denoted by 4..
The Lagrange multipliers are denoted by &, / € A.. Calculating the
derivatives with respect to the elements of R, we obtain

adjR,] = > &By (7)

€A,

where adj[R,] is the adjoint matrix of R, and B, is the matrix of
the elements B(i, j) in eqn. 6. For the spectral null constraint and
the F, constraint, we have B = U and B = W, respectively, as
given in eqn. 5. We also have

R, = |adjR,| ™7 X (adj[Ro]) ™" (8)

To calculate the Lagrange multipliers, we start from an initial
value for the unknowns and compute R, using eqns. 7 and 8.
Then, the status of the constraints is checked and the Lagrange
multipliers are adjusted accordingly. This procedure is repeated in
an iterative manner until the optimum solution is found.

It is easy to show that for the spectral nulls and/or the F,-con-

straint, the energy constraint is always active. For F, € [Fm,,,, E,.l
(given F,,, and F,,,), the F,-constraint is active. For F,<F,, the

optimisation problem has no answer.-For F, > F,,, the F,con-
straint is not active and the power-ratio remains at Z,,,.. The FE, ..

can be calculated by relaxing the F,-constraint and finding the
power-ratio of the resulting spectrum.

Spectral shaping with a fixed set of basis: This involves selecting a
fixed M and using only A, to maximise the rate. For a spectrum
with spectral nulls, M is selected as the output eigenvectors of a
linear system with the same set of nulls. For the case of no spec-
tral null, the sine basis is used. For a null at zero/Nyquist fre-
quency, A is taken as 1-D/1+D system (refer to [3] for the
definition). The eigenvectors of these systems, given in [3], are
closely related to the sine basis. This reduces the computational
complexity of the modulation by using a fast sine transform algo-
rithm.

performance loss, dB

0.18 0.18 0.2 0.22 0.24 0.26

normalised cutoff frequency ,f s
[174/4]

Fig. 4 Performance loss against f, = 0/2%, without spectral null, for
cases of fixed and optimised basis

=01,N,=N=4238 16
— - — - — - fixed basis (sme) N=4 ——— optimised basis, N = 4
-------------- fixed basis (sine), N = 8; — — — — — optimised basis, N = 8§
— — — fixed basis (sine), N = 16; optimised basis, N=16

Using eqn. 3, the F,-constraint is formulated as
N-1 wo
> ABi(we) < NpF,  Bi(we) = | Si(w)dw (9)
=0 0
As in the case of the optimised basis, the energy constraint is
always active. This results in the following convex optimisation
problem:

Maximise

Subject to: Y \iBi(we) < Ny Fy (10)
=0

Assuming that the F-constraint is active and using the Lagrange
method, we obtain

1

AN = —————— 11
§iBiwe) + &2 )
where &, and &, are determined by solving:
N-1
Bi(wc)
— = =N, F,
; GBiw)+& | F
N-1
! — N, (12)

and ; &1 Bi(we) + &

In the case that the F,-constraint is not active, the answer is
obtained by allocating equal energy to all the dimensions.

Numerical results: In this Section, by a spectral null we mean a
first-order null at zero frequency. For the sake of comparison, we
consider a region C; which has N, dimensions, with equal values
of energy along each dimension. The increase in average energy of
the region C, with respect to the region C,, is measured by the fac-
tor P, (performance loss). Figs. 2 — 4 show P, against £, = &/2x for
some cases of interest. It is seen that for high values of f;, having a
spectral null at zero frequency results in a better performance. The
other conclusion is that increasing the space dimensionality can be
very useful, specifically for higher values of f, (having a wider null
width).
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Prediction of propagation parameters in
frequency hopping spread spectrum

M.P. Fitton, A.R. Nix and M.A. Beach

Indexing terms: Frequency hop commumication, Spread spectrum
commumication

Frequency hopping spread spectrum (FH-SS) has found a number
of applications in both CDMA and TDMA cellular systems,
wireless local loop, and wireless local area networks. Propagation
studies and statistical analysis are employed to show that the
frequency hopped channel displays improved short-term
characteristics when compared to the non-hopped case.
Furthermore, novel analyses of the short-term statistics of the
frequency-hopped channel enable prediction of the performance
of an FH system.

Introduction: Frequency hopping spread spectrum (FH-SS) has
been receiving a great deal of attention for a variety of applica-
tions in the field of wireless communications. The GSM world-
wide digital standard incorporates frequency hopping to improve
performance and ease frequency planning requirements [1]. Fur-
thermore, the nature of the frequency-hopped channel is applica-
ble in other areas, such as special mobile radio, wireless local loop,
and wireless Jocal area network technology. In particular, slow fre-
quency hopping code division multiple access (FH-CDMA) has
been found suitable as an air interface technique for flexible third
generation wireless networks [2].

Frequency hopping improves short-term channel statistics, such
as mean fade duration and level crossing rate. Consequently, it is
unlikely that outage duration will be excessive. This effect can be
exploited by interleaving the data, thus randomising error bursts
and improving the performance of forward error correction
(FEC). Alternatively, retransmission in an automatic repeat
request (ARQ) scheme can occur on an uncorrelated hop fre-
quency, thus maximising the throughput [3].

Theoretical and practical investigations of the frequency hopped
mobile channel are employed in this Letter to characterise the
impact of hopping on channel statistics. Previous propagation
work [4] has indicated that frequency hopping does not alter the
long-term statistics of the channel. Novel mathematical expres-
sions governing the short-term statistics of the frequency-hopped
channel are derived, enabling prediction of the overall perform-
ance of an FH system.

Measurement techniques: A campaign of frequency hopping prop-
agation measurements was undertaken in an urban environment in
the city of Bristol, at 1.823GHz [4]. A near-Rayleigh channel with
a Doppler frequency of ~20Hz was studied over a 100m section.
The coherence bandwidth of the channel corresponds to 1040kHz
for a threshold of 0.5, and 250kHz for a threshold of 0.9 [4].

Level crossing rate: The level crossing rate (V) [5] is defined as
the number of positive going transitions of the signal magnitude

with respect to a certain threshold, R. A high level crossing rate
implies a rapidly changing channel, with problems arising from
static nulls becoming statistically unlikely.

To simplify the analysis of level crossing rate in a frequency-
hopped channel, it is assumed that the channel is constant over a
hop period, so that the instantaneous characteristics due to chan-
nel variations can be neglected. For this assumption to be valid, it
is necessary for the coherence time of the narrowband channel [6]
to exceed the hop frame duration. The level crossing rate can then
be calculated from the cumulative channel statistics both before
and after a hop boundary (a Rayleigh distribution is assumed in
this case [5]). To simplify analysis all frequencies are assumed to
be uncorrelated, which results if the hop bin spacing exceeds the
channel coherence bandwidth. The level crossing rate of a hopped
channel is given by eqn. 1, where f,,, is the hop rate (in hops per
second), R is the magnitude threshold level, and ¢ is the standard
deviation of the random variable:

Np = fhopP[Tl < R]P[TQ > R}

— fhope—RQ/202(1 _ e—R2/20'2>

(1)

Level crossing rate propagation results: Comparison of real and
predicted statistics for non-hopped and hopped systems is shown
in Fig. 1. The hopped system is operating at a rate of 500 hops per
second, and adjacent frequencies are separated by 1.5MHz. The
diagram indicates reasonable agreement between real and pre-
dicted data. In particular, the hopped performance is accurately
predicted by eqn. 1 at high magnitude thresholds. At lower values,
the statistics of the channel dominate, and thus the measured hop-
ping characteristic tends towards the non-hopped theoretical
curve. In particular, it is not necessarily valid to assume that the
channel is stationary over the hop frame, as in eqn. 1.

10°
. 10
»
o)
B
=]
£ 1}
a 10
8 E
53
© -
B 0l
10'1 I L L il 1 I 1
-30 -20 -10 0 10

received signal level relative to mean,dB
Fig. 1 Predicted and measured level crossing rate
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