Linear (zero—one) programming approach to fixed-rate
entropy-coded vector quantisation

AK.Khandani

Abstract: The problem of the decoding of a shaped set is formulated in terms of a zero—one linear
program. Some special features of the problem are exploited to relax the zero-one constraint, and to
substantially reduce the complexity of the underlying simplex search. The proposed decoding method
has applications in fixed-rate entropy-coded vector quantisation of a memoryless source, in decoding
of a shaped constellation, and in the bit allocation problem. The first application is considered and
numerical results are presented for the quantisation of 2 memoryless Gaussian source demonstrating
substantial (of the order of a few tens 1o a few hundred times) reduction in the complexity with
respect to the conventional methods based on dynamic programming. It is generally observed that the
complexity of the proposed method has a linear increase with respect to the quantiser dimension. The
corresponding numerical results show that it is possible to get very close to the bounds determined by
the rate-distortion theory, while keeping the complexity at a relatively low level.

1 Introduction

This work introduces a new approach to the problem of
the decoding of a shaped set. This has several important
applications in communications, including in the fixed-rate
entropy-coded vector quantisation (FEV(Q) of a memory-
less source, which is the focus of the present article. We
first present a general formulation of the problem, and then
focus the discussion on FEVQ, in which case the corre-
sponding numerical results show a substantial improve-
ment with respect to the conventional methods.

Consider a discrete set A, where a non-negative cost is
associated with each element of 4. The n-fokd Cartesian
product of 4 is denoted as {4}*. It is assumed that the cost
of an element of {A}" is equal to the sum of the costs of its
components. Shaping is achieved by selecting a subset (of a
given cardinality) of {A4}", say S, C {A}", with a cost less
than or equal to a given value C,,,,.. We refer to 4 as the
‘constituent subset” and to S, as the ‘shaped set’.

Consider an p-tuple random vector x known as the
input. A non-negative distance is defined between each
component of x and each element of A. It is assumed that
the distance in the r-dimensional space has an additive
property. The decoding of a vector x involves finding the
element of the shaped set which has the minimum distance
to x.

The immediate approach to decoding is to perform an
exhaustive search. This is achieved by computing the dis-
tance of x to all the elements of S, and finding the element
resulting in the smallest value. However, in most cases, S,
has a huge cardinality and the exhaustive search is imprac-
tical. In this case, one needs an algorithmic approach for

©TIEE, 1998

IEE Proceedings onfing no. 19990133
DOF: 10.1049/p-com: 19990133
Paper reccived 30th May 1997

The author is with the Department of Electronic and Computer Engineering,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

IEE Proc.-Commun., Vol 146, No. 5, October 1999

the decoding, The basic frameworks to develop such an
algorithm are the additivity property of the cost, and the
additivity property of the distance.

This mathematical formulation can be applied to a
number of communications problems where a Cartesian
product set, with an additive objective function defined
over it, is involved, and the Cartesian product set is trun-
cated (shaped) by imposing a constraint on a cost function
which has an additivity property. Examples of such appli-
cation are: (i) FEVQ of a memoryless source, where 4 is
the set of the reconstruction levels of a scalar quantiser,
cost is the self-information associated with the quantiser
partitions, and distance 15 the quantisation distortion, (ii)
the bit allocation problem, where 4 is the set of the availa-
ble quantisers, cost is the allocated rate, and distance is the
average quantisation distortion, and (iii) decoding of a
shaped constellation (assuming independent noise), where
A is the set of points of a sub-constellation, cost is the
energy associated with the points, and distance is the log-
likelihood function (square distance for additive white
Gaussian noise).

The previously known decoding methods are based on
replacing the shaping set by the Voronoi region around the
origin of a lattice and using the group property of lattices
to perform the decoding [1], or using dynamic program-
ming with the states corresponding to the additive cost
[2-4].

In this paper, we introduce a decoding method based on
linear programming. This method makes use of the additiv-
ity properties mentioned earlier in a very efficient way.
Decoding is achieved in a number of steps, where each step
finds a point of the shaped set with a smaller distance. This
property enables us to provide a tradeoff between the
search complexity and the performance. This is the first
time that the problem of decoding of a shaped set has been
formulated in terms of a linear program. This formulation
enables us to apply the rich ideas developed in various con-
texts of linear programming to this new application.

275

2 Formulation of decoding as a linear program

A linear program (LP) is an optimisation problem involv-
ing a linear objective function as well as linear constraints.
The basic theorem of linear programming says that in a
problem composed of M equality constraints, the optimum
answer is composed of M nonzero components. (In the
case of an inequality constraint, by introducing an extra
variable for each such constraint (denoted as the ‘slack var-
iable’), it is transformed into the form of an equality.) Any
solution with M nonzero components, denoted as ‘basic
variables’ or ‘basis’, and satisfying the set of the constraints
is called a ‘basic feasible solution’. This theorem also gives
the necessary and sufficient conditions for a basic feasible
solution to be optimum. The simplex method is a system-
atic search procedure which searches among the basic feasi-
ble solutions and finds the optimum answer in a finite
number of steps. The search is composed of a set of pivot-
ing operations, where each such operation brings one of the
non-basic variables into the basis and replaces it with a
basic variable.

Assume that the dimensions of the Cartesian product set
are indexed by /i = 0, ..., n - 1, and the elements of the con-
stituent subset are indexed by j = 0, ..., K - 1. To formulate
the decoding problem as a linear program, the jth element
of the constituent subset along the #th dimension is identi-
fied by the use of a binary variable 8()), i =0, ..,n-1,j =
0,..,K-1,where 6() =0, land X, §(} = 1,i =@, .., n—
1. To select the element indexed by j, along the ith dimen-
sion, we set 8jy) = 1 and 6{) = 0, j = j,.

The cost associated with the jth element of A is denoted
as ¢(j). For an n-tuple input x, the distance of the ith com-
ponent of x to the jth element of 4 is denoted as dyj). The
overall distance and cost are equal to: ZE; 8() d{y) and =3,
847} (), respectively. Using these notations, the decoding
problem is formulated as:

n—1K-1
Minimise " 8;(5)di(3)
1==0 §=0
n—1 K-t
subject to D~ > 8:(5)e(s) + e = Crmaz $c >0
1=0 j§=0
K—1
si{) =1 Vi,
=0

6:i(7) =0,1 Vi j

(1)
where s, is the slack variable of the cost constraint. Each of
the equalities Z; §() = 1,7 =0, ..., n— L, is called an ‘indica-
tor constraint’.

Maximise zg subject to:

2.1 Relaxing the zero—-one constraint

The immediate problem in applying the simplex method to
solve eqn. 1 is that the variables §()) are restricted to be
integer numbers, or more specifically 0 and 1. In the con-
text of linear programming, this is called a zero-one pro-
gram. It is generally known that solving an integer program
is substantially more complicated than solving the underly-
ing linear program. Fortunately, in the present case, one
can relax the zero—one constraint using the following sim-
ple theorem:

Theorem: There is at least one and at most two basic varia-
bles corresponding to each indicator constraint.

Proof: To satisfy the equality, there should be at least one
basic variable corresponding to each indicator constraint.
Constdering that: (i} each indicator constraint is composed
of a disjoint set of variables, and (i) the number of basic
variables is equal to the number of indicator constraints
plus one (becanse we have just one extra consiraint, namely
the cost constraint), we conclude that there cannot be more
than two basic variables corresponding to any of them. An
indicator constraint with two basic variables is called an
‘essential indicator constraint’. The theorem says that the
number of essential indicator constraints is either zero or
one.

To solve the problem in eqn. 1, we just relax the zero—
one constraint and then apply the simplex search. The
standard form for the resulting LP is shown in Fig,. 1.

The constituent subsets are indexed by 0, ..., n — 1 (set-
index). The set-indices are shown in the upper row of
Fig. 1. The subset indexed by » will be defined later. The
rows in Fig. 1, which are indexed by 0, ..., » + 1 (row-
index), are generally denoted as the equality constraints.
The row-indices are shown in the first column of Fig. 1.
The indicator constraints are a subset of the equality con-
straints indexed by 2, ..., n + 1.

Using the previous theorem, we conclude that in the final
LP solution of the equation in Fig. 1, cither all the 87
variables are zero-one, or exactly two of them are between
zero and one. One of the following two cases may happen
in the final answer:

Case 1. If all the &(j} variables are zero—one, it means that
the cost constraint is satisfied with strict inequality. In this
case, the vector obtained by concatenaiing the nearest
points of different constituent subsets satisfies the cost con-
straint and is the optimum answer. By performing a simple
test before starting the search procedure, one can avoid the
computation associated with such cases.

Case 2: If there are two () variables with values between
zero and one, it means that the cost constraint is satisfied
with equality. In this case, we set one of these two variables
to zero and the other one to unity. The selection is achieved

o n—1 n
0] 80{0)do(0}+-6o(K —1)do(K~1)+ - dnu1 (0)dnor (0} 46y (K=1)dn_1 (K ~1)+20 =0
1{60(0)e(0) ++-So(K~1)e(K~1) 4 buca(00(0) 4orbpy (K —1)c(K—1) #5e SCmas
2 | 8a(0) +---8a{K—1) -1
n+l d,-1(0) +o (K —1) =1

where s, > 0 and 6;(j) > 0

Fig.1 Standard form for LP resulting from relaxing the zero—one constraint and then applying the simplex search to eqn. 1

276

IEE Proc.-Commun., Vol 146, Ne. 5, October 1999

such that the cost constraint is not violated. Obviously,
such a selection is always possible and it may result in a
slight sub-optimality in the final answer. Noting that this
sub-optimality is caused by the rounding of the linear pro-
gramming answer along only one dimension of a usually
very high-dimensional space, we neglect its effect.

In the following, we present an efficient LP solution for
the problem in Fig. 1.

2.2 Efficient simplex search for the underlying
linear program

The special features of the problem which are subsequently
used to reduce the search complexity are as follows:

(i) The set of the indicator constraints are non-overlapping
and involve variables with unity coefficients, and add up to
unity. This allows us to use a basis of a reduced size to per-
form the steps of the simplex search [5].

(ii) There exists only a single extra constraint involving all
the variables (cost constraint). As already mentioned, the
immediate consequence of this feature is that one can relax
the zero—one constraint. In addition, this resulis ina 2 x 2
matrix for the reduced basis which is upper triangular with
a unity element in the left upper comer. It is very easy to
work with this matrix. Note that the original basis required
for a direct application of the revised simplex method
would be of size (# + 2) x (n + 2).

(iii) All the 1-D subspaces have the same set of values for
the costs associated with the points. This allows us to
reduce the complexity of the pricing out operation involved
in the simplex search.

To reduce the effective size of the basis for the simplex
search, one basic variable in each indicator constraint is
denoted as the key variable. If there are two basic variables
(corresponding to an essential indicator constraint), one of
them is selected arbitrarily. The basic variable of an essen-
tial indicator constraint which is not key is called the ‘non-
key basic variable’. In the following, we see how one can
perform the steps of the revised simplex search without
considering the effect of the key variables in an explicit
way.

Consider the system obtained by subtracting the column
corresponding 1o each key variable from every other col-
umn in their respective constituent subset. (By a ‘column’,
we mean the set of coefficients of a given 8{f) variable in
different rows of Fig, 1.) This operation is equivalent to a
linear change of variable and results in the so-called trans-
formed system,

It is easy to show that by applying this linear transforma-
tion, all the variables except the key variables maintain
their original values, and each key variable is replaced by a
new variable, which is equal to the sum of all the variables
in their respective constituent subset. Obviously, consider-
ing the original indicator constraints, the values of these
new variables in any feasible solution of the transformed
system is equal to one. These variables are deleted from the
new system by a direct substitution. This is equivalent to
subtracting the columns of the original system correspond-
ing to the key variables from the right hand side. In this
way, one can assume that the key variables are absent from
the system. This results in a reduced system. In summary,
we are dealing with three different systems: (i) the original
system, (if) the transformed system, which is obtained from
the original system by applying a change of variable, and
(ili) the reduced system which is obtained by deleting the
subset of variables which are known to have unity value
from the transformed system. Note that the basis for the

1EE Proc.-Commun., Vol. 146, No. 5. October 1999

reduced system, denoted as B, is composed of the basic var-
iables which are not key. The main idea is that the steps of
the revised simplex search can be carried out using just the
inverse B! of B, and the corresponding basic sofution of
the reduced system. This property is due to the fact that
one can easily reach from the basis of B to the original
basis of the un-reduced system (denoted as the un-reduced
basis of B). In the following, we explain the operation of
switching the basic variables.

First of all, it is easy to show that the variables to be
switched cannot belong to two different non-essential indi-
cator constraints. If the variables belong o the same non-
essential indicator constraint, we just change the corre-
sponding key variable (no pivoting is required). A more
complicated case occurs when the switching involves an
essential indicator constraint. In this case, if the switching is
1o be done with the corresponding non-key basic variable,
we just perform the ordinary pivoting operation. But, if the
switching is to be done with the key variable, we first
change the key variable with the non-key basic variable
and then perform the pivoting operation.

In our case, the basis B is of size 2 x 2. The basic variable
corresponding to the first basis of B is always z;. Assume
that the basic variable corresponding to the second basis of
B originates from the equality constraint with the row
index A. If we do not have any essential indicator con-
straint, this variable is equal to s, and A = 1. Otherwise, it is
equal to the non-key basic variable of the essential indica-
tor constraint and A =i + 2, where i = 0, ..., n — 1 is the
index of the corresponding constituent subset.

Expanding a 2-ID vector a = (ay, ;) on the un-reduced
basis of B results in an (z + 2)-dimensional vector, say E,
where F(0) = ag, E(1) = @) and E(A) = —a; if A= 1.

In the following, we have some definitions which facili-
tate formulation, and also the implementation of the algo-
rithm.
¢ Define the nth constituent subset to be composed of s,

+ Define K(i) € [0, K - 1] to contain the index of the key
variable corresponding to the ith indicator constraint, = 0,
k-1

« Define the vector of variables, v = {v;, i = 0, .., nK}, as:
WiK+p = 8{)fori=0,.,n-1,j=0, .., K-1, and w(nK)
= S

= Define B(i) to contain the index (in ») of the basic varia-
ble corresponding to the ith equality constraint, i = 1, ..., »
+ 1. The basic variable corresponding to the equality con-
straint indexed by i = 0 is always z,, which is not consid-
ered here.

¢ Define 8€ [0, n - 1] to contain the index of the essential
indicator constraint. If we do not have any essential indica-
tor constraint, then 8 = n.

We have: () 8 = | B(1YK], and (i) A = Lif B(1) = nK, A =
LB(1YK] + 2, otherwise.

The corresponding algorithm is explained in the follow-
ing. The inpui to the algorithm is the values of d{f) and the
output is the values of 5()) solving the equations inFig. 1.
The (i,))th element of B! is denoted as B, j).

Step 1. Start from the basic feasible solution where the
selected component for all the constituent subsets is the ele-
ment of the least cost. Initialise 55 to a 2 x 2 identity matrix.
The basic variable corresponding to the second column of
B is equal 1o s, resulting in A = 1 and @ = . Initialisc v to
the values taken by the variables. Initialise K such that the
key variable for all the constituent subsets is the element of
the least cost.

277

Step 2. Compute §) = B0, e, ¢y = B(1, De()) for j
=0,.,K-1

Step 3. Compute the 2-D vector b where 5(0) = B0,
DCas (1) = BYL, DC,r

Step 4. Compute p{) = dip + g fori=0,..,n-1,j=0,
..., K — 1. This is the inner product of the first row of B!
with the vector composed of the first two elements in each
column of the system given in Fig. 1.

Step 5. For each value of the set-index i =0, ..., » — 1, find
the index @; € [0, K - 1] such that w(e;) = ming()).

Step 6. Compute A; = yfw) — KB fori=0, ., n—1,
and A, = B0, 1.

Step 7. Compute the 2-D vector d, where d(0) = b(0) —
T wfKEL d() = b)) -2 K@)

Step 8. Find the set-index o such that A,=min; A, i =0, ...,
n, and assume that the variable resulting in min; p () in
step 5 (variable indexed by ¢, within the subset o) is
indexed in v by s. If o = n, then s = nK corresponding to
the slack variable s,.

Step 9. If' A= 0, exit (the optimum solution is found), Oth-
erwise, bring the variable indexed by s into the basis. This
is achieved in the following:

Step 10. Compute I', = gley) — fK(a)].

Step 11. Set D(0) = A, D(1) =T, and A, = 0.

Step 12, Expand D = {D(0), D(1)] on the unreduced basis
of B and if 0 = n, increase the component of the result
indexed by ¢ + 2 by unity [Note 1]. The final answer is
denoted as A,.

Step 13. Expand d on the unreduced basis of B, and

increase the components of the result indexed by 2, ..., n +
1 by unity. This final answer is denoted as b,

Step 14. Compute the index r of the variable to leave the
basis using
r = B(¢)

where

blyy) . b(é) .
) T A AGy T

41
(2)

Assume that this variable belongs to the constituent subset
indexed by p.

Step 15. If p = o and the corresponding constraint is not
essential (o = 8), change the key variable of the constraint,
update K(p) and d accordingly, set B(y} = s, go to step 8.

Step 16. If the variable to leave the basis is the key variable
of an essential indicator constraint, make the corresponding
non-key basic variable the key, update X(p) and & accord-
ingly, set B(y) = B(1), change the sign of B(1, 1), and
update D accordingly.
Step 17. Perform the pivoting operation by replacing B! by
PB, where
1 -2
P= [D(1) } (3)
0 =1
D(1)
set B(1) = sand 8 = g, update A {where L =1 if s = nK and
A = |s/K| + 2, otherwise), go to step 2.

Note 1: Recall that expanding a 2-D vector a = (ay,e;) on the unreduced basis
of B results in an {n + 2)<dimensional vector, say E, where E(0) = ap, E(1) = g,
and F(A) = —a if A= 1.

278

In some applications of shaping, the constituent subsets
are not the same. Examples of this case are in: (i) vector
quantisation (in the transform domain) of a correlated
source [6], and, (ii) constellation shaping over a non-flat
channel [7]. The algorithm given here can be easily modi-
fied in order to apply to the more general problem.

In the following, we discuss the application of the pro-
posed algorithm to the problem of fixed-rate entropy-coded
vector quantisation of a memoryless source.

3 Fixed-rate entropy-coded vector quantisation of a
memoryless source

3.1 Preliminaries

Consider the problem of quantising a source with a nonu-
niform probability density function. If the dimensionality
of the quantiser is not high enough, the entropy coding of
the output can result in a substantial decrease in the bit
rate. A straightforward entropy coding method presents us
with the problem of variable data rate. Also, if the bit rate
per quantiser symbol is restricted to be an integer, we are
potentially subject to wasting up to one bit of data rate per
quantiser output. A solution in a space of dimensionality »
is to code the r-fold Cartesian product of a scalar quan-
tiser, (More generally, one can consider the Cartesian prod-
uct of a set of quantisers with dimensionalities greater than
one. All the discussions presented here can be easily gener-
alised to the more general case.) To avoid having a variable
data rate, one can select a subset of the #-dimensional sym-
bols having some desirable property, and represent them
with code-words of the same length. In such a block-based
source coding scheme, as some of ihe elements in the #-fold
Cartesian product space are not allowed, the search for the
quantiser output can no longer be achieved independently
along the 1-D subspaces. The basic idea is to select the sub-
set of points in such a way that this process can be simpli-
fied.

One class of schemes discussed in the literature are based
on using a subset of points from a lattice (quantisation lat-
tice) bounded within the Voronoi region around the origin
of another lattice (shaping lattice) [1]. In this case, the
selected subset forms a group under vector addition mod-
ulo the shaping lattice, and the group property of lattices is
used to perform the decoding,

Another class of schemes are based on selecting the z-
fold symbols with the lowest additive self information. This
approach is traditionally denoted as the geometrical source
coding [8, 9]. In this case, the selected subset has a high
degree of symmetry, which can be used to substantially
reduce the search complexity. A method for reducing the
search complexity of such a quantiser based on using a
state diagram is given by Laroia and Farvardin [2]. Subse-
quently, Balamesh and Neuhoff [3] develop some comple-
mentary techniques to further reduce the complexity.

The core of the idea in the schemes of [2, 3] is to use a
trellis diagram with the transitions corresponding to the
space dimensions, and with the states corresponding to the
additive self information over these dimensions. This results
m a trellis composed of # stages. The states s and 5 + ¢ in
two successive stages are connected by a link corresponding
te the 1-D symbol(s) of self information ¢. Consequently,
the states in the kth stage, k = 1, ..., n, represent the accu-
mulative self information over the set of the first k dimen-
sions. The links connecting two successive stages are
labelled by the corresponding distortions. Then, the Viterbi
algorithm is used to find the path of the minimum overall
distortion through the trellis,

IEE Proc.-Commun., Vol 146, No. 5, October 1999

The straightforward approach to dynamic programming
is to assign an independent state to each possible value of
the self information at a given stage. Even for a moderate
value of the bit rate, the number of distinct states in »
dimensions can be impractically large. The solution is to
synthetically aggregate distinci states into a smaller
number. This is denoted as state-space quantisation, and is
the key point to the effectiveness of any dynamic program-
ming approach. In [2], the self-information associated with
the 1-D symbols is rounded to rational numbers with a
common denominator. In [3], to reduce the complexity
with respect to [2], these are rounded to integer numbers.

The method developed in [4] is alse based on dynamic
programming. However, unlike [2, 3], which are based on a
component by component analysis, in [4], the recursive
structure used in the dynamic programming is built in a
hierarchy of stages, where each stage involves the Cartesian
product of two lower-dimensional subspaces. This results in
several benefits over the conventional approaches to the
dynamic programming as used in [2, 3]. Although for mod-
erate values of » (say n = 32) this approach is quite effec-
tive, for larger values of » the decoding complexity becomes
Impractical.

3.2 Decoding problem and its relationship with
the zero—one programming

Consider a2 memoryless source and a scalar quantiser com-
posed of X partitions. In the r-fold Cartesian product of
this quantiser, we obtain K", n-dimensional partitions. The
final vector quantiser is selected as a subset of the n-dimen-
sional partitions composed of 7T elements. The a-dimen-
sional reconstruction vectors are denoted as v, i =0, ..., T—
1. For a given source vector x, the quantisation rule is to
find the reconstruction vector #; which has the minimum
square distance to x.

Assume that the induced self-information and the
expected value of the symbols mapped to the jth 1-D parti-
tion are equal fo o)) and r;, respectively. The self-informa-
tion associated with a 1-I> point is considered as the cost
associated with that point. The selection rule for the »-
dimensicnal symbols is to keep the points with the lowest
overall additive cost. The n-dimensional reconstruction vec-
tors are obtained by concatenating the corresponding 1-D
reconstruction levels, namely . The search operation is for-
mulated as
n—1
> (e —rk)
i=0
n—1
Z C(k,j) S Cmaz (4)
=0
where k; is the index of the point selected along the ith
dimension. The optimisation problem in eqn. 4 can be eas-
ily expressed in terms of the original problem in Fig. 1 by
re}zalacing the values of the costs, and by setting d{j) = (x; —
e

3.3 Computing the cardinality of the quantiser

A difficult task in dealing with a high-dimensional quan-
tiser is to compute the corresponding cardinality. To do
this, we divide the range of costs associated with the recon-
struction levels into a set of uniformly spaced partitions,
called the cost-layers. This is achieved in the 1-D subspaces
(resulting in the 1-D cost layers) and alse in the n-dimen-
sional space (resulting in the n-dimensional cost layers).
The costs of the points within a given 1-D cost-layer are
approximated with the corresponding mid-value. This

Minimise

subject to

IEE Proc.-Commun., Vol. 146, No. 5, October 1999

allows us to replace the costs by integer numbers. Then, we
compute the n-fold convolution of a sequence with the ele-
ments corresponding to the number of poinis in the subse-
quent 1-D cost-layers. The use of the convolution relies on
the additivity property of the cost. The elements of the final
sequence are approximately equal to the number of points
i the subsequent n-dimensional cost layers. The effect of
the constraint on cost is incorporated by truncating this
sequence. In practice, to obtain precise results, we have
graduaily increased the number of 1-D cost layers until the
relative changes in subsequent computations becomes neghi-
gible.

3.4 Numerical results

The algorithm given in Section 2.2 is applied to the quanti-
sation of a memoryless Gaussian source with respect to the
square distance distortion measure. The results are verified
against the results obtained using a general purpose linear
programming package. The values of the space dimension
up to 512 are tested. In general, the number of iterations of
the simplex search is quite small (of the order of a few
tens). The majority of the iterations do not need pivoting.
The overall complexity is substantiatly lower than the com-
plexity of the methods based on dynamic programming as
discussed in [2-4]. At the same time, the performance is
better because: (i) no quantisation of the state space is
involved, and (ii) one can use much larger values of the
space dimensionality.

The quantiser along each dimension is optimised using a
standard iterative method (Lloyd-Max quantiser). The 1-D
costs are selected as the resulting values for the self-infor-
mation. Then, the constraint on the cost is applied to the »-
fold Cartesian product of the 1-ID subspaces, and the
reconstruction levels are re-adjusted using a similar iterative
procedure. In doing this, the quantisers along different
dimensions are always kept the same. A sequence of 6 x
10° Gaussian random numbers is used to design the quan-
tisers, and a different sequence of the same length is used to
test them.

The bounds on SNR are computed as 2°*/(ne/6), where
22R i3 the optimum SNR of a Gaussian source for a rate of
R bits per dimension, and the factor m/6 is the maximum
gain obtainable through (spherical) packing.

010 :
0.06 :
YT S
0.02

0.04 0.025
0.03 0.020
: : 0.015
0.010
001 Ey 0.005
o : 0 . .
0 1 20 30 40 0 20 40 60

4 d

Fig.2 Probability distribution of the frequency per block of different opera-
tioz?s involved i the proposed method (n = 128, K= 8 point/D, R = 2.5 bils’D)

a Total number of iterations

b Total number simple exchanges of key and non-key variables

¢ Total number of exchanges of key and non-key variables done priot to a pivoting
d Total number of pivotings

279

3.4.1 Performance and complexity of the pro-
posed method: We first discuss a procedure to decrease
the peak computational complexity while keeping the deg-
radation in performance negligible. Fig, 2 shows the prob-
ability distribution for the frequency per block of different
operations involved in the algorithm (n = 128, K = 8
points/D, R = 2.5 bits/D). Tt is seen that among the three
main operations shown in Fig. 2b-d the curve correspond-
ing to the pivoting operation has a broader tail. Noting this
fact, we impose a constraint on the maximum number of
allowed pivots per block to some value, say M, Tt is gen-
erally observed that by imposing this constraint, the peak

computational complexities decrease, while the correspond-
ing average values and the performance do not change sub-
stantially.

Figs. 3 and 4 and Table 1 show examples of the per-
formance and complexity of the proposed method for # =
32, 64, 128, 256, 512, R = 2.5 bits/D, and K = 8, 12, 16
points/D. Referring to Fig. 4, it is observed that the com-
plexity of the proposed method has a linear increase with
respect to the quantiser dimension. As a specific example,
for n = 512, using 16 points per dimension and for a rate of
2.5 bits/dimension, we need about 325 additions, 469 com-
parisons 0.24 divisions, and 0.95 multiplications per dimen-

Table 1: Complexity and performance of the proposed quantisation scheme for R = 2.5 bits/D

n K My A, (P) A (P As (P An (Pn} Ny SNR, dB
32 8 8 23 (72 24 (64 019 (1120 038 (2250 128 13.12
32 8 10 24 (85) 24 (72} 020 (1380 0.40 (275 128 13.13
32 8 24 (129) 24 (100) 020 {2.25) 0.40 (450) 128 1314
64 8 12 31 (95 44 (96) 048 (0.81) 036 (1.62) 256 13.20
64 8 14 32 (10m 44 (105) 0.9 (094 037 (1.88) 256 1322
64 8 o a2 (180) 45 (153) 019 (169 038 (338) 256 1324

*128 8 20 49 (142 85 (160} 0.18 (0.66) 036 {1.62} 512 13.26

*128 8 25 50 (172) 86 (181 018 (0.81} 0.38 {1.62} 512 13.29
128 8 52 (281) 87 (255) 020 (138 039 (2750 512 13.31
128 12 25 78 (228) 107 (233) 023 (081} 070 (244 768 1332
12861 12 30 79 (268) 108 (263) 024 (097} 071 [291) 768 1334

128 12 = 124 (437) 141 (381)
128 16 25 113 (284) 135 (285)
128 16 30 114 (334) 136 (325)
128 16 o 164 (645) 175 (492)
256 8 25 9 71} 162 (245}
256 8 30 83 {201} 165 (266)
256 8 35 86 (231) 168 (286}
256 8 40 88 (262} 170 (307}
256 8 0 91 (502} 173 (467}
256 12 35 136 {307} 206 (357}
256 12 40 141 (347) 210 {387}
256 12 45 143 (388) 212 (417}
256 12 50 145 (428) 214 {447)
256 12 o 145 (660) 215 {623)
256 16 35 165 (383) 232 (427)
256 16 40 188 (433) 234 (469)
256 16 45 181 (484) 253 (506)
256 16 50 196 (534) 256 (546)
256 16 o 300 (824 337 (176)
512 8 50 182 (321) 328 (472)
512 8 60 157 (381) 333 (613)
512 8 o 167 (742) 342 (754)
512 12 75 275 (627} 423 (717)
512 12 95 278 (787 428 (841)
512 12 o 282 (1212) 430 (1158)
512 6 75 325 (783} 469 (866)
512 16 95 360 (983} 497 {1024
512 16 o 361 (1224) 498 (1216)

041 {1.62} 123 (4.88) 768 13.36
0.28 {(0.81) 1.14 {3.25) 1024 13.35
0.29 {097} 116 {3.88) 1024 13.37
0.44 (1.62) 178 {6.50} 1024 13.38
0.17 {0.41) 0.3¢4 (0.81) 1024 13.28
0.18 (0.48) 0.36 (0.97) 1024 13.32
0.19 (0.56) 037 (1.12) 1024 13.34
0.19 {0.64) 038 (1.28) 1024 13.36
0.20 {1.27) 0.40 (2.53) 1024 13.37
0.23 {0.58) 0.69 (1.69) 1536 13.35
0.24 {(0.64) 0.72 {1.92) 1636 13.38
024 (0.72) 0.73 (2.18} 1636 13.40
0.25 {0.80) 0.74 {2.39) 1536 13.41
0.26 (1.25) 0.75 (3.75) 1536 13.42
0.22 {0.56) 0.80 (2.25) 2048 13.39
0.23 (0.64) 0.81 (2.56) 2043 13.41
0.26 (0.72) 1.06 (2.88) 2048 13.42
0.27 (0.80) 1.09 (3.19) 2048 13.42
0.43 (1.25) 174 (5.00) 2048 13.43
0.18 {0.40) 0.36 (0.80) 2048 13.36
0.19 {0.48) 0.37 (0.95) 2048 13.39
0.20 (0.95) 0.40 (1.89) 2048 13.41
0.25 (0.59) 0.75 (1.78) 3072 13.42
0.26 (0.76) 0.77 (2.25) 3072 13.44
0.25 (1.16) 0.76 (3.49) 3072 13.44
0.24 (0.59) 0.95 (2.38) 4096 13.45
0.26 (0.76) 1.06 (3.00) 4086 13.46
0.26 (0.94) 1.06 (3.75) 4086 13.46

n'is the space dimension; K is the number of points per dimension; M,;, is the maximum number of allowed
pivots per block; A, A, Ay An, are the respective average numbers of additions, comparisons, divisions and
multiplications per dimension; F,, P, Py P, are the corresponding peak values; and M, is the number of
memory locations. The bound on SNR obtained from the rate-distorticn curve is 13.52dB [Note 2].

* indicates the two specific examples considered in Section 3.4.2

280

IEE Proc.-Commun., Vol. 146, No. 5, October 1999

sion to achieve SNR = 13.45dB (the bound obtained from
the rate-distortion function is 13.52dB [Note 2)). The corre-
sponding peak values are equal to 783 additions, 866 com-
parisons, 0.59 divisions, and 2.38 multiplications per
dimension. In studying the numerical results, we should
keep in mind that in general the gain obtained through the
entropy coding of a Gaussian source, and consequently the
relative changes in the corresponding values, are not very
large numbers. However, it is well known that for sources
having a density function with a sharper peak and broader
tail (like Laplacian) the corresponding numbers will be
larger.

135 ' ; T ! z

13471

13.2

13.1 i i i H :
0 100 200 300 400 500 600

dimension

Fig.3 Quanisation SNR of a Gaussian sorce for a bii rate of R = 2.5 bits/
D as a function of dimensionality, n = 32, 64, 128, 256, 512

The bound on SNR obiained from the rate-distortion curve is 13.52 dB. The three
solid curves correspond to having X = 8, 12, 16 point/D> (from bottom to top). The
dashed curves correspond to n = 128, 236, 512, K = & points/'D and are obtained by
limiting the maximum number of alJowed pivots per block to M, = 25, 40, 60 (for
the curve designated by *), and to M,,;, = 20, 30, 50 (for the curve d&elgnaled by x)

7 T T

number of multiplications
(including divisions) per dimension

0 100 200 300 400 500 600

1500

1000

500 b+ e

number of additions
(including comparisons) per dimension

o]

0 100 200 300 400 500 600
dimensicn

Fig.4 Average and peak values Jor the computeational complexity of the pro-
posed quaniisation scheme in conjunction with a Gaussian sowrce (n = 128, K =

& points/D, R = 2.5 bityD)

The dashed curves correspond to # = 128, 256, 512 and are obtained by limiting the
maximum number of allowed pivots per "block to M. = 25, 40, 60 (for the curve
designated by *), and to M,,;, = 20, 30, 50 (for the cufve designated by x})

Note 2: This is indeed distortion bound minus 1.53dB to account for the lack
of packing.

IEE Proc.-Commun., Vol 146, No. 5, October 1999

Table 2 shows similar results for n = 128, R = 1.5 bits/D,
and K = 4, 8 points/D. It may look surprising that in
Table 2 the values of SNR obtained are larger than the
bound computed from the rate-distortion function (7.64
against 7.5 [Note 2]). The reason behind this phenomenon
lies in the concentration property of high dimensional
spaces. As the space dimension increases, the points con-
centrate on a thin layer of the space with the value of total
cost close to C, 4.

Table 2: Complexity and performance of the proposed quan-
tisation scheme for n = 128, R = 1.6 bits/D

K APy A Fd Ay (P Ay (P SNR, dB
4 11 019) 18 (22} 0.03 {0.09) 004 (0.12) 762
8 44 (78) 38 (62) 0.18 (0.34) 040 (077} 764

K is the number of points per dimension; A, A. Ay An, are the
respective average numbers of additions, comparisocns, divisions
and multiplications per dimension; and Py, F,, Py P, are the corre-
sponding peak values

For the points on this outer layer, most of the nearest
neighbours are absent, This is due to the fact that for a
small change in the total cost, say A, the number of points
with the cost in the range [C,,;, G + AJ is much larger
than the number of points with the cost in the range [C,,,,.
- A, Cuu) This absence of the neighbouring points
enhances the quantisation capability of the remaining set.
This effect is especially pronounced when the bit rate is
low.

Table 3: Complexity and performance of the methods based
on dynamic programming (R = 2.5 bits/D)

n K Ky Ngx10® Nyx10° Npx10% Ny, x 10° ggm
32 8 64 025 1.00 075 0.08 13.00
32 8 128 052 2.08 156 0.7 13.12
64 8 64 047 1.88 141 030 13.09
64 8 128 096 3.84 288 0.61 13.18
128 8 64 090 3.60 270 115 13.03
128 8 128 183 7.32 5.49 2.34 13.21
¥128 8 256 3.64 146 109 488 13.26
*128 8 512 7.28 281 218 9.32 13.29
128 12 64 027 1.62 135 035 11.71
128 12 128 056 3.36 280 072 12.88
128 12 266 1.08 6.48 540 138 13.00
128 12 512 218 13.1 10.9 2.79 13.19
128 16 512 134 10.7 938 17 13.09

n is the space dimension; K is the number of points per dimension;
Ky is the number of distinct values used to round the costs; N; is
the number of states; N, N, are the respective numbers of addi-
tions and comparisons per dimension; and N, is the number of
memory locations (words of RAM])

* indicates the two specific examples considered in Section 3.4.2

3.4.2 Comparison with the conventional method:
We have studied the performance and the complexity of
the dynamic programming approach for the case when the
number of distinct (uniformly spaced) values used to round
the 1-D costs is equal to Ky = 64, 128, 256, 512. This
rounding of costs is the basic ingredient for the method
based on dynamic programming. The result of this study is
shown in Table 3. In comparing the proposed method with
the method based on dynamic programming, we concen-
trate on R = 2.5 bite/D and K = 8 points/D. Referring to
Table 3, it is observed that by increasing the number of

281

points per dimension, the complexity of the method based
on dynamic programming substantially increases and soon
becomes unmanageable. This means that by using a small
number of points per dimension in our comparison,
namely K = 8, we are indeed acting to the advantage of the
dynamic programming method. Comparing Table 1 and
Table 3, it is observed that the proposed method results in
a reduction in the complexity of the order of a few tens to a
few hundred times. In the following, we present two spe-
cific examples (denoted by an asterisk in Tables 1 and 3)
for the sake of comparison.

For n = 128, K = 8 points/D and R = 2.5 bits/D, we need
on average about 50 (or 49) additions, 86 (or 85) compari-
sons, 0.19 {or 0.18) divisions, and 0.38 (or 0.36) multiplica-
tions per dimension to achieve SNR = 13.29 (or 13.26) dB
(the bound obtained from the rate-distortion function is
equal to 13.52dB [Note 2]). The corresponding peak values
for the computational complexity are equal to 172 (or 142)
additions, 181 {or 160) comparisons, (.81 (or 0.66) divi-
sions, and 1.62 (or 1.31) multiplications per dimension. The
corresponding entries are underlined in Table 1. In the
dynamic programming approach, by quantising the self-
information of the points along each dimension to 512 (or
256) different values, we obtain SNR = 13.29 (or 13.26} dB
and the complexity per dimension of the decoder is equiva-
lent to the Viterbi decoding of a trellis with about 7.28 x
10° (or 3.64 x 10°) states. This requires about 29.1 x 10° (or
14.6 x 10%) additions, 21,9 x 103 (or 10.9 x 10%) compari-
sons per dimension. The corresponding entries are under-
lined in Table 3. In addition to this large computational
complexity, the method based on dynamic programming
also needs a large amount of RAM to keep track of the
surviving paths through the trellis. In this specific example,
this adds up to about 9.32 x 10° (or 4.66 x 10°) words of
RAM. Note that in the proposed method the RAM is
mainly used to store the distances, and is equal to nK/2
words of memory. For the example discussed here (n =
128, K = 8), this is only 512 words of RAM.

282

4 Summary

We have presented an efficient algorithm for computing the
nearest point of a Cartesian product set, with a constraint
on an additive cost for the case when the distance measures
have an additivity property. This problem is formulated as
a zero—one program. The problem has some special fea-
tures which enables us to remove the zero-one constraint,
and to substantially reduce the complexity of the underly-
ing lingar program,

The proposed decoding algorithm has application in the
decoding of a shaped quantiser, the optimum bit allocation
problem, or more generally any problem dealing with allo-
cation of a limited number of resources to a number of cus-
tomers with an additive objective function, and the
decoding of a shaped constellation. We have presented
numerical results related to the problem of quantiser shap-
ing showing substantial reduction in complexity with
respect to the previously known methods.

5 References

I EYUBOGLU, M.V,, and FORNEY, G.D.: ‘Lattice and trellis quan-
tisation with lattice- and trellis-bounded codebooks - high-rate theory
for memoryless sources’, JEEE Trans. Inf. Theory, 1993, TT-39, pp.
46-59

2 LAROIA, R., and FARVARDIN, N.: ‘A structured fixed-rate vector
quantizer derived from variable-length scalar quantizer — Pact I mem-
oryless sources’, [EEE Trans. Inf. Theory, 1993, IT-39, pp. 851-867

3 BALAMESH, A.S., and NEUHOFF, D.L.: ‘Block-constrained meth-
ods kof fixed-rate, entropy coded, scalar quantisation’, unpublished
worl

4 KHANDANL AK.: ‘A dynamic programming approach to fixed-
rate entropy-coded vector quantization’, IEEE Trans. Inf Theory,
1996, IT-42, pp. 1298-1303

5 DANTZIG, GB., and VAN SLYKE, R.M.: ‘Generalised upper
bounding techniques’, J. Comput. Syst. Sci, 1967, pp. 213-226

6 JEONG, D.G., and GIBSON, J.D.: “Uniform and piecewise uniform
lattice vector quantization for memoryless Gaussian and Laplacian
sources’, IEEE Trans. Inf. Theory, 1993, 39, pp. 786-804

7 KASTURIA, S., ASLANIS, J.T., and CIOFFI, I M.: ‘“Vector coding
for partial response channels’, IEEE Trans. Inf. Theory, 1990, IT-36,
pp. T41-762

8 SAKRISON, D.J.: ‘A geometrical treatment of the source encoding of
a Gaussian random variable’, IEEE Trans. Inf. Theory, 1968, IT-14,
pp. 481486

9 FISCHER, T.R.: ‘Geometric source coding and vector quantization’,
IEEE Trans. Inf. Theory, 1989, IT-35, pp. 137-145

IEE Proc.-Commuun., Vol. 146, No. 5, October 1999

