1. A message signal $f(t)$ (with a bandwidth B) is transmitted using DSB-SC modulation; thus the transmitted waveform is given by $\phi(t) = f(t) \cos(\omega_c t)$. During transmission, the frequency and phase of the carrier signal are distorted, so that the received signal is $r(t) = f(t) \cos[(\omega_c + \Delta \omega_c) t + \psi]$. If the receiver local oscillator signal is $A_c \cos(\omega_c t)$:

(a) Show the functional block diagram of the demodulator. Find an expression for the output of the demodulator.

(b) If $\Delta \omega_c = 0$, find an expression for the total energy in the demodulator output, and plot the energy as a function of ψ for $\int_{-\infty}^{\infty} f^2(t) dt = 1$.

(c) Let $\psi = 0$, and describe the effect of the erroneous frequency reference. Sketch a typical Fourier transform of the demodulator output for $|\Delta \omega_c| < B$. Assume a shape for $F(\omega) = \mathcal{F}\{f(t)\}$.
2. A nonlinear element with the input-output relation \(v_o(t) = a v_i^2(t) + b v_i(t) \) is used in a DSB-LC modulator, where \(a > 0 \) and \(b > 0 \). The message signal is \(f(t) \) (\(|f(t)| \leq 1\)) with the Fourier transform \(F(\omega) \) (\(|F(\omega)| = 0 \) for \(|\omega| > 2\pi B_f\)). The output must have a form of \(A[1 + mf(t)] \cos(\omega_c t) \), where \(\omega_c \gg 2\pi B_f \).

(a) Draw a block diagram of the modulator with minimum configuration. Specify necessary parameters in the diagram.

(b) Describe how the modulator works by using mathematical expressions.

(c) Express \(m \) and \(A \) in terms of the parameters \(a \) and \(b \).

3. The carrier \(c(t) = 100 \cos(2\pi 10^6 t) \) volts is frequency modulated by the sinusoid signal \(f(t) = 2 \cos(2000\pi t) \) volts. The frequency sensitivity of the modulator is \(k_f = 3000 \) Hz/volt.

(a) Determine the modulation index \(\beta \).

(b) Determine the bandwidth of the FM signal using Carson’s rule.

(c) Determine the average power of the FM signal over a 1-ohm resistor.

(d) If the amplitude of \(f(t) \) is decreased by a factor of 2, how would your answers to parts (a)-(c) change?

(e) If the frequency of \(f(t) \) is increased by a factor of 2, how would your answers to parts (a)-(c) change?

4. A communication system operates in the presence of white noise with two-sided power spectral density \(S_n(f) = 0.25 \times 10^{-14} \) watts/Hz, and with total path loss of 100 dB. The input bandwidth is 15 kHz. For a 15-kHz sinusoidal input and for a 40-dB output S/N ratio, calculate the total transmitted power if the modulation is

(a) DSB-LC with \(m = 0.5 \) and with envelop detection.

(b) SSB-SC with coherent demodulation.

(c) FM with \(\Delta f = 30 \) kHz using frequency discriminator for demodulation.
5. A given preemphasis/deemphasis system is shown in Figure 1. The power spectral density of the additive noise is $S_n(f) = 2\exp(2\pi \times 10^{-4}|f|) \mu W/\text{Hz}$. The frequency transfer function of the deemphasis filter is designed to yield a white output noise spectral density over the frequency range $0 < f < 7.5 \text{ kHz}$.

(a) What is the magnitude frequency transfer function $H(f)$ of the preemphasis filter required to yield no overall net signal distortion (assuming that the input signal has a bandwidth of 7.5 kHz)?

(b) Calculate the SNR improvement (at the output of the system) obtained using this system over the frequency range $0 < f < 7.5 \text{ kHz}$ if $H(0) = 1$.

$$\text{Figure 1}$$

6. Consider a low-pass signal $g(t)$ having Fourier transform $G(f)$. It is to be sampled at the rate of $2f \leq 1/T_s \text{ Hz}$.

(a) Draw a diagram to illustrate the magnitude spectrum of the ideally sampled process

$$g_\delta(t) = \sum_{n=-\infty}^{\infty} g(nT_s)\delta(t - nT_s).$$

What is $G_\delta(f)$ and how is $g(t)$ recovered from $g_\delta(t)$?

(b) Draw a diagram to illustrate the magnitude spectrum of the flat-top sampled process

$$g_\Delta(t) = \sum_{n=-\infty}^{\infty} g(nT_s)\text{rect}(\frac{t - nT_s}{\tau})$$

for $\tau = T_s/2$, where

$$\text{rect}(\frac{t}{\tau}) = \begin{cases}
1, & |t| \leq \frac{\tau}{2} \\
0, & \text{otherwise}
\end{cases}$$

What is $G_\Delta(f)$ and how is $g(t)$ recovered from $g_\Delta(t)$?