E&CE 318: Introduction to Communication Systems Instructor: E. Yang

Final Exam, Fall 2000, December 13, 9:00 a.m.-12:00 noon.

University of Waterloo Dept. of E&CE

Special Instructions

- Time allowed: 3 hours.
- · Closed book & notes. No crib sheet is allowed.
- Answer all questions.
- · Justify your answers.
- Cheating will not be tolerated. Any instances of cheating will be handled according to university rules.

Problem 1 A modulating signal $f(t) = 20\cos 2000\pi t + 8\cos 4000\pi t$ is applied to a SSB-SC+ modulator operating at a carrier frequency of 10 kHz. Let $\phi_{SSB-SC+}(t)$ denote the resulting modulated signal.

- (a) (5 points) Determine the time-domain representation of $\phi_{SSB-SC+}(t)$.
- (b) (5 points) Sketch the line spectrum of $\phi_{SSB-SC+}(t)$.
- (c) (5 points) Compute the average power of $\phi_{SSB-SC+}(t)$.
- (d) (5 points) Repeat Parts (a) and (b) for the baseband complex envelope of $\phi_{SSB-SC+}(t)$.

Problem 2 A sinusoidal signal $f(t) = \cos 2000\pi t$ is used to frequency modulate a 500 kHz carrier signal; the resulting modulated signal is

$$\phi_{\rm FM}(t) = 100\cos(\pi \times 10^6 t + 3\sin 2000\pi t)$$

- (a) (5 points) Use Carson's rule to determine the bandwidth of $\phi_{\mathrm{FM}}(t)$.
- (b) (5 points) Sketch the waveform of $\phi_{FM}(t)$ in the time domain.
- (c) (5 points) Let $\phi_{PM}(t)$ be the output of a PM modulator in response to the input f(t). Suppose that the bandwidth of $\phi_{PM}(t)$ is the same as that of $\phi_{PM}(t)$, but the average power of $\phi_{PM}(t)$ is a doubling of the average power of $\phi_{PM}(t)$. Determine the time-domain representation of $\phi_{PM}(t)$.
- (d) (5 points) Sketch the waveform of $\phi_{PM}(t)$ in the time domain.

Problem 3 A baseband signal f(t) with bandwidth B Hz is used to frequency modulate a high frequency carrier signal with carrier frequency ω_c , where $\omega_c \gg 2\pi B$. The resulting

modulated signal is given by

$$\phi_{ ext{FM}}(t) = A\cos\left(\omega_c t + k_f \int_0^t f(au)d au\right)$$

- (a) (5 points) Under what condition can $\phi_{\text{FM}}(t)$ be regarded as an NBFM waveform?
- (b) (5 points) Let $\phi_{\text{DSB-SC}}(t)$ be the DSB-SC waveform corresponding to f(t) with the same carrier frequency ω_c . If $\phi_{\text{FM}}(t)$ can be regarded as an NBFM waveform, does it mean that the bandwidth of $\phi_{\text{FM}}(t)$ is less than that of $\phi_{\text{DSB-SC}}(t)$? Explain why?
- (c) (5 points) Sketch a diagram which can be used to generate an NBFM waveform.
- (d) (8 points) Suppose that $\phi_{\text{FM}}(t)$, which could be a WBFM waveform, is transmitted over a channel which distorts the carrier amplitude but keeps the angle information unchanged. Design a receiver which can recover f(t) from the received waveform. Explain how your receiver works.

Problem 4 Let X(t) be a WSS process. Apply X(t) to the input of a DSB-SC modulator which also introduces a random phase. The resulting output is

$$Y(t) = X(t)\cos(\omega_c t + \Theta)$$

where Θ is a random variable distributed uniformly over $(0, 2\pi)$ and independent of X(t).

- (a) (5 points) Is Y(t) a WSS process? Explain why.
- (b) (5 points) Determine the autocorrelation function of Y(t) in terms of $R_X(\tau)$.
- (c) (5 points) Determine the PSD of Y(t) in terms of $S_X(\omega)$.

Problem 5 The DSB-LC signal

$$\phi(t) = 4\cos(10^4\pi t) + 2\cos(10^3\pi t)\cos(10^4\pi t) \ v$$

is present with additive white noise whose power spectral density is 1 μ W/Hz. This signal plus noise is passed through an ideal low-pass filter with a bandwidth of 10 kHz. Assume that all resistance levels are 1 ohm.

- (a) (5 points) Compute the signal to noise ratio at the output of the low-pass filter.
- (b) (5 points) A synchronous detector is used to demodulate the above signal and any DC term is further blocked. Compute the signal to noise ratio at the out of the detector.

Problem 6 The signal $f(t) = 20\cos 100\pi t$ is sampled at the rate of $f_s = 75$ samples per second.

- (a) (5 points) Determine the spectrum of the resulting sampled signal.
- (b) (5 points) Determine the time domain representation of the output of the reconstruction filter with bandwidth $f_s/2$.
- (c) (2 points) What is the Nyquist rate for f(t)?