
Problem �����

Consider the cosine wave

g�t� � A cos���f�t�

Plot the spectrum of the discrete�time signal g��t� derived by sampling g�t� at the times tn � n�fs� where

n � �������� � � � and

�i� fs � f� �ii� fs � �f� �iii� fs � �f�

Solution

g�t� � A cos���f�t�
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Problem �����

The signal

g�t� � �� cos����t� cos�����t�

is sampled at the rate �� samples per second�

�a� Determine the spectrum of the resulting sampled signal�

�b� Specify the cuto� frequency of the ideal reconstruction �lter so as to recover g�t��

�c� What is the Nyquist rate for g�t��

Solution

The signal g�t� is

g�t� � �� cos����t� cos�����t�
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Correspondingly the spectrum of the sampled version of g�t� with a sampling period Ts � ����s is given

by
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�b� the spectrum G�f� and G��f� are illustrated in Fig� ���� From this �gure we deduce that in order to

reconstruct the original signal g�t� from g��t�� we need to use a low�pass �lter with a cuto� frequency greater

than ���Hz but less than ���Hz�

�c� The highest frequency component of g�t� is ���Hz� Hence� the Nyquist rate of g�t� is ���Hz�
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Problem �����

A signal g�t� consists of two frequency components f� � ��� kHz and f� � ��� kHz in such a relationship

that they just cancel each other out when the signal g�t� is sampled at the instants t � �� T� �T� � � �� where

T � ���s� The signal g�t� is de�ned by

g�t� � cos

�
��f�t 


�

�

�

 A cos���f�t 
 ��

�nd the values of amplitude A and phase � of the second frequency component�

Solution

The signal at the sampling instants is

g�nT � � cos���f�nT 
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From ���� we deduce that A must be nonzero� Hence� � � ����� Accordingly� ��� simpli�es as

� sin�������� A sin������� � � ���

But sin������� � � sin������� and sin������� � 
 sin�������� To satisfy ���� we must therefore have

A � �

and the ambiguous sign �of �� must be negative� That is

� � ����

Problem �����





Let E denote the energy of a strictly band�limited signal g�t�� Show that E may be expressed in terms of

the sample values of g�t�� taken at the Nyquist rate� as follows�
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where W is the highest frequency component of g�t��

Solution

If g�t� is band�limited to �W � f � W � we may express it as�
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Problem �����

Consider a continuous�time signal g�t� of �nite energy� with a continuous spectrum G�f�� Assume that G�f�

is sampled uniformly at the discrete frequencies f � kFs� thereby obtaining the sequence of frequency samples

G�kFs�� where k is an integer in the entire range �� � k � �� and Fs is the frequency sampling interval�

Show that if g�t� is duration�limited� so that it is zero outside the interval �T � t � T � then the signal is

completely de�ned by specifying G�f� at frequencies spaced ���T hertz apart�

�



Solution

Since g�t� � � outside the interval �T � t � T � we may express the Fourier transform of g�t� as
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Expanding g�t� as a Fourier series� with period �T � we have
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We may thus state that

�� The signal g�t�� and therefore its spectrum G�f� is uniquely determined in terms of samples of G�f�

taken at the rate Fs � ���T �

�� Given the frequency samples fG�k��T �g� k � �������� � � �� the original spectrum G�f� can be recon�

structed without distortion�

Problem �����

�



The spectrum of a band�pass signal occupies a band of width �� kHz� centered around ���KHz� Find the

Nyquist rate for quadrature sampling the in�phase and quadrature components of the signal�

Solution

g�t� � gI�t� cos��� � ���t�� gQ�t� sin�� � ���t�

where gI�t� and gQ�t� are low�pass signals with a bandwidth�

W �
�

�
� �� � ��� kHz

The Nyquist rate for gI�t� and gQ�t� is therefore

�W � �� kHz

Problem �����

The signals

g��t� � �� cos�����t�

and

g��t� � �� cos���t�

are both sampled at times tn � n�fs� where n � �������� � � �� and fs � � samples per second� Show that

the two sequences of samples thus obtained are identical�

Solution

We note that

�� The Nyquist rate of g��t� is ��� Hz� hence� with a sampling rate of � Hz� the signal g��t� is under�sampled

by � Hz below the Nyquist rate�

�� The Nyquist rate of g��t� is � Hz� hence� with a sampling rate of � Hz� the signal g��t� is over�sampled

by � Hz above the Nyquist rate�

�� Although g��t� and g��t� represent sinusoidal waves of di�erent frequencies� by under�sampling g��t� and

over�sampling g��t� appropriately� their sampled versions are identical�

Problem �����
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Figure  shows the spectrum of a low�pass signal g�t�� The signal is sampled at the rate of �� Hz� and then

applied to a low�pass reconstruction �lter with cuto� frequency � Hz� Plot the spectrum of the resulting signal�

Solution
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Problem �����

This problem is aimed at investigating the fact that the practical electronic circuits will not produce a

sampling function that consists of exactly rectangular pulses� Let h�t� denote some arbitrary pulse shape so

�



that the sampling function c�t� may be expressed as

c�t� �
�X

n���

h�t� nTs�

where Ts is the sampling period� The sampled version of an incoming analog signal g�t� is de�ned by

s�t� � c�t�g�t�

�a� Show that the Fourier transform of s�t� is given by

S�f� � fs
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where G�f� � F 	g�t��� H�f� � F 	h�t��� and fs � ��Ts�

�b� What is the e�ect of using the arbitrary pulse shape h�t��

Solution

�a� The Fourier transform of the sampling function is
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The Fourier transform of the sampled signal is
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�b� Using an arbitrary pulse shape h�t� means that the sampled spectrum is no longer periodic� Instead�

each replica of G�f�� centered at f � k�Ts� is multiplied by a frequency dependent constant H�k�Ts�� However�

��



when the signal is reconstructed by a low�pass �lter� all replicas are removed� leaving� T��s H���G�f�� Thus�

except for a scaling factor� an arbitrary sampling function will not a�ect the reconstructed signal�

Problem �����

Twenty�four voice signals are sampled uniformly and the time�division multiplexed� The sampling operation

uses �at�top samples with � microsecond duration� The multiplexing operation includes the provision for

synchronization by adding an extra pulse of su�cient amplitude and also � microsecond duration� The highest

frequency component of each voice signal is ��� kHz�

�a� Assuming a sampling rate of � kHz� calculate the spacing between successive pulses of the multiplexed

signal�

�b� Repeat your calculation assuming the use of Nyquist rate sampling�

Solution

�a� The sampling period is Ts � ������ � ���s� There are �� channels and � sync pulse� Hence the time

allotted to each channel is

Tc �
Ts
�

� �s

The pulse duration is � �s� and so the time between pulses is ��s�

�b� Assuming the use of sampling at the Nyquist rate ���� kHz�� the sampling period is
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Correspondingly�
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