University of Waterloo
 Department of Electrical and Computer Engineering
 E\&CE-318 - Communication Systems, W'96
 Final Examination

Instructor: A. K. Khandani
Time allowed: 3 hours.
NO AIDS ALLOWED except for one sheet (A4, double-sided) of formulas.
Attempt all the questions.
The marking scheme is shown in the left margin and [60] constitutes full marks.
(10) Problem 1: The output (modulated) signal from an AM modulator is:

$$
u(t)=5 \cos (1800 \pi t)+20 \cos (2000 \pi t)+5 \cos (2200 \pi t)
$$

1.1. Determine the modulating signal $m(t)$ and the carrier signal $c(t)$.
1.2. Determine the modulation index. Can the signal $m(t)$ be recovered using an envelope detector?
1.3. Determine the ration of the power in the side-bands to the power in the carrier.
(10)

Problem 2: A communication system operates in the presence of white noise with a two sided power spectral density $S_{a}(\omega)=10^{-14} \mathrm{~W} / \mathrm{Hz}$ and with a path loss of 20 dB . Calculate the minimum required band-width and the minimum required carrier power of the transmitter for a $10-\mathrm{KHz}$ sinusoidal input and a 40 dB output S / N ratio if the modulation is:

2.1. DSB-SC

2.2. SSB-SC
2.3. FM, with $\Delta f=10 \mathrm{KHz}$.
(10) Problem 3: The block diagram of a modulator is shown in Fig. 1, where $f_{1}=W / 2$ and $f_{2}=$ $f_{c}-(W / 2)$. Compute the output signal when the input is equal to: $m(t)=\cos \left(2 \pi f_{m} t\right)$ where $f_{m}<W$. What kind of modulation is this?

Figure 1: Related to problem 3.
(10) Problem 4: A VSB modulation scheme is shown in Fig. 2.
4.1. Show that the demodulator can recover the signal $m(t)$. What should be the band-width of the demodulator filter?
4.2. Assume that $m(t)=\cos (\pi W / 2)$ where W is defined in Fig. 2. Compute the modulated signal $u(t)$ and the output of the demodulator, $m^{\prime}(t)$.

Figure 2: Related to problem 4.
(10) Problem 5: Consider the PM modulation (with $k_{p}=1$) of the following periodic signal (of period T):

$$
m(t)=\left\{\begin{array}{cc}
-1 & 0 \leq t \leq T / 2 \\
1 & T / 2 \leq t \leq T
\end{array}\right.
$$

5.1. Determine the frequency spectrum of the resulting PM signal
5.2. What is the peak frequency and peak phase deviation.
(10) Problem 6: An angle modulation signal has the form:

$$
u(t)=10 \cos \left(2 \pi f_{c} t+3 \sin 2000 \pi t+4 \sin ^{2} 1000 \pi t\right)
$$

where $f_{c}=10 \mathrm{MHz}$.
6.1. Is this an FM or a PM signal? Explain.
6.2. Determine the average transmitted power.
6.3. Determine the modulation index, the peak-phase and the peak-frequency deviations.
6.4. What is the approximate band-width of the signal.
6.5. Give an expression for the frequency spectrum of the output signal.

