• Duality

We have,

$$\mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$\mathcal{F}^{-1}\{F(\omega)\} = f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t}d\omega$$
(165)

Replacing t by -t in the second relationship of (165), we obtain,

$$2\pi f(-t) = \int_{-\infty}^{\infty} F(\omega)e^{-j\omega t}d\omega$$
 (166)

By interchanging the role of t and ω in (166) and comparing the result with the first relationship in (165), we obtain,

$$\mathcal{F}\{F(t)\} = 2\pi f(-\omega) \tag{167}$$

An example of such duality property is shown in Fig. 13.

Figure 13: Duality of the Fourier transformation.

• Time scaling

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(at)e^{-j\omega t}dt \tag{168}$$

Using the change of variable x = at, we obtain,

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(x)e^{-j\omega x/a}dx/a = \frac{1}{a}F\left(\frac{\omega}{a}\right) \quad a > 0$$
 (169)

When a is negative, the limits of the integral are reversed when we apply the change of the variable so that,

$$\mathcal{F}\{f(at)\} = -\frac{1}{a}F\left(\frac{\omega}{a}\right) \quad a < 0 \tag{170}$$

or in general, we have,

$$\mathcal{F}\{f(at)\} = \frac{1}{|a|} F\left(\frac{\omega}{a}\right) \tag{171}$$

If a is positive and greater than unity, f(at) is a compressed version of f(t) and its spectral density is expanded in frequency by 1/a. In this case, the magnitude of the spectral density decreases and this is necessary to keep the total energy constant.

Figure 14: Effect of time scaling on Fourier transformation.

• Time shift

$$\mathcal{F}\{f(t-t_0)\} = ? \tag{172}$$

$$\mathcal{F}\{f(t-t_0)\} = \int_{-\infty}^{\infty} f(t-t_0)e^{-j\omega t}dt$$
(173)

Let $x = t - t_0$.

$$\mathcal{F}\{f(t-t_0)\} = \int_{-\infty}^{\infty} f(x)e^{-j\omega(x+t_0)}dx$$

$$= e^{-j\omega t_0} \int_{-\infty}^{\infty} f(x)e^{-j\omega x}dx$$

$$= e^{-j\omega t_0} F(\omega)$$
(174)

• Frequency shift

$$\mathcal{F}\{f(t)e^{j\omega_0 t}\} = ? \tag{175}$$

$$\mathcal{F}\{f(t)e^{j\omega_0 t}\} = \int_{-\infty}^{\infty} f(t)e^{j\omega_0 t}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} f(t)e^{-j(\omega-\omega_0)t}dt$$

$$= F(\omega - \omega_0)$$
(176)

$$f(t)\cos\omega_0 t = \frac{1}{2}f(t)[e^{j\omega_0 t} + e^{-j\omega_0 t}]$$
 (177)

$$\mathcal{F}\{f(t)\cos(\omega_0 t)\} = \frac{1}{2}[F(\omega + \omega_0) + F(\omega - \omega_0)] \tag{178}$$

Figure 15: Frequency shifting property of multiplication by a sinusoid.

• Differentiation and Integration

$$\mathcal{F}\{\frac{d}{dt}f(t)\} = ? \tag{179}$$

We have,

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$
 (180)

$$\frac{d}{dt}f(t) = \frac{1}{2\pi} \frac{d}{dt} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{d}{dt} [F(\omega)e^{j\omega t}] d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} j\omega F(\omega)e^{j\omega t} d\omega$$
(181)

Comparing with the general definition of the Fourier transform, we obtain,

$$\mathcal{F}\left\{\frac{d}{dt}f(t)\right\} = j\omega F(\omega) \tag{182}$$

It is seen that the time differentiation enhances the high frequency components of a signal.

Similarly,

$$\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega) \tag{183}$$

where

$$F(0) = \int_{-\infty}^{\infty} f(t)dt \tag{184}$$

It is seen that the time integration suppresses the high frequency components of a signal.

Example: We want to compute the Fourier transform of a Trapezoidal pulse using the differentiation property (refer to Fig. 16).

Computing the Fourier transform of th second derivative, we have,

$$(j\omega)^2 F(\omega) = \frac{A}{\tau} \left(e^{j2\omega\tau} - e^{j\omega\tau} - e^{-j\omega\tau} + e^{j2\omega\tau} \right)$$
 (185)

or,

$$F(\omega) = \frac{A}{(j\omega)^2 \tau} \left(e^{j2\omega\tau} - e^{j\omega\tau} - e^{-j\omega\tau} + e^{j2\omega\tau} \right)$$
 (186)

After simplifying, we get,

$$F(\omega) = A\tau \operatorname{Sa}^{2}(\omega\tau/2)[1 + 2\cos\omega\tau]$$
(187)

Figure 16: Trapezoidal signal and its derivatives.

4.5 Time convolution

Consider a system \mathcal{T} . The impulse response of \mathcal{T} is defined as,

$$\mathcal{T}\{\delta(t-\tau)\} = h(t,\tau) \tag{188}$$

Time-invariant system:

$$\mathcal{T}\{\delta(t-\tau)\} = h(t-\tau) \tag{189}$$

We know that a function f(t) can be written as,

$$f(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t-\tau)d\tau \tag{190}$$

The output of the system to this input is,

$$g(t) = \mathcal{T} \left\{ \int_{-\infty}^{\infty} f(\tau) \delta(t - \tau) d\tau \right\}$$

$$= \int_{-\infty}^{\infty} f(\tau) \mathcal{T} \{ \delta(t - \tau) \} d\tau$$

$$= \int_{-\infty}^{\infty} f(\tau) h(t, \tau) d\tau$$
(191)

Time invariant system:

$$g(t) = \int_{-\infty}^{\infty} f(\tau)h(t-\tau)d\tau \tag{192}$$

Definition of Convolution Integral:

$$f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau)h(t - \tau)d\tau$$
 (193)

Step response of linear, time-invariant system:

$$g(t) = h(t) * u(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau = \int_{-\infty}^{t} h(\tau)d\tau$$
 (194)

Basic result:

If,

$$\mathcal{F}{f(t)} = F(\omega) \quad \text{and} \quad \mathcal{F}{h(t)} = H(\omega)$$
 (195)

then,

$$\mathcal{F}\{f(t) * h(t)\} = F(\omega)H(\omega) \tag{196}$$

Proof:

$$\mathcal{F}\{f(t) * h(t)\} = \int_{-\infty}^{\infty} [f(t) * h(t)] e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) h(t - \tau) d\tau \right] e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(\tau) \left[\int_{-\infty}^{\infty} h(t - \tau) e^{-j\omega t} dt \right] d\tau$$

$$= \int_{-\infty}^{\infty} f(\tau) \mathcal{F}\{h(t - \tau)\} d\tau$$
(197)

We know that, $\mathcal{F}\{h(t-\tau)\}=H(\omega)e^{-j\omega\tau}$. Substituting, we get,

$$\mathcal{F}\{f(t) * h(t)\} = \int_{-\infty}^{\infty} f(\tau)H(\omega)e^{-j\omega\tau}d\tau$$

$$= H(\omega)\int_{-\infty}^{\infty} f(\tau)e^{-j\omega\tau}d\tau$$

$$= H(\omega)F(\omega)$$
(198)

Linear systems:

$$g(t) = f(t) * h(t)$$
 (199)
$$G(\omega) = F(\omega)H(\omega)$$

Assume that,

$$F(\omega) = |F(\omega)|e^{j\Theta_F(\omega)}$$

$$H(\omega) = |H(\omega)|e^{j\Theta_H(\omega)}$$

$$G(\omega) = |G(\omega)|e^{j\Theta_G(\omega)}$$
(200)

Then, we have,

$$|G(\omega)|e^{j\Theta_G(\omega)} = |F(\omega)|e^{j\Theta_F(\omega)}|H(\omega)|e^{j\Theta_H(\omega)}$$
(201)

This results in,

$$|G(\omega)| = |F(\omega)||H(\omega)|$$

$$\Theta_G(\omega) = \Theta_F(\omega) + \Theta_H(\omega)$$
 (202)

• Frequency Convolution

If,

$$\mathcal{F}\{f_1(t)\} = F_1(\omega), \quad \mathcal{F}\{f_2(t)\} = F_2(\omega).$$
 (203)

then,

$$\mathcal{F}\{f_1(t)f_2(t)\} = \frac{1}{2\pi} [F_1(\omega) * F_2(\omega)]$$
 (204)

$$F_1(\omega) * F_2(\omega) = \int_{-\infty}^{\infty} F_1(u) F_2(\omega - u) du$$
 (205)

Proof: Similar to the case of the time convolution shown earlier.

4.6 Some convolutional relationships

4.6.1 Graphic interpretation of convolution

The convolution,

$$g(t) = f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$
 (206)

can be computed using the following steps:

- 1. Replace t by τ in $f_1(t)$ resulting in $f_1(\tau)$.
- 2. Replace t by $-\tau$ in $f_2(t)$ resulting in $f_2(-\tau)$. This folds the function f_2 about the vertical axis.
- 3. Translate the entire frame of $f_2(-\tau)$ by an amount of t. For negative t the shift is towards the negative τ axis (and for positive t towards the positive τ axis). This results in the function $f_2(t-\tau)$.
- 4. At any given relative shift t, compute the integral,

$$\int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau \tag{207}$$

An example of these steps is shown in Fig. 17

4.6.2 Causality

For h(t) causal:

$$g(t) = f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau)h(t-\tau)d\tau$$
 (208)

Note that $h(t-\tau)=0$, if $t-\tau<0$ $(\tau>t)$. Reflecting this fact in (208), we obtain,

$$g(t) = f(t) * h(t) = \int_{-\infty}^{t} f(\tau)h(t - \tau)d\tau$$
 (209)

For f(t), h(t) causal, we have $h(t - \tau) = 0$, if $t - \tau < 0$ $(\tau > t)$ and f(t) = 0, if t < 0. Reflecting these facts in (208), we obtain,

$$g(t) = f(t) * h(t) = \int_0^t f(\tau)h(t-\tau)d\tau$$
 (210)

Figure 17: Graphic interpretation of the convolution of a rectangular and a triangular pulse.

4.6.3 Commutative law

$$f_1(t) * f_2(t) = f_2(t) * f_1(t)$$
(211)

Proof:

$$F_1(\omega)F_2(\omega) = F_2(\omega)F_1(\omega) \tag{212}$$

4.6.4 Distributive law

$$f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t)$$
(213)

Proof:

$$F_1(\omega)[F_2(\omega) + F_3(\omega)] = F_1(\omega)F_2(\omega) + F_1(\omega)F_3(\omega)$$
(214)

4.6.5 Associative law

$$f_1(t) * [f_2(t) * f_3(t)] = [f_1(t) * f_2(t)] * f_3(t)$$
(215)

Proof:

$$F_1(\omega)[F_2(\omega)F_3(\omega)] = [F_1(\omega)F_2(\omega)]F_3(\omega) \tag{216}$$

4.7 Convolution involving singularity functions

$$u(t) * h(t) = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau = \int_{0}^{\infty} h(t-\tau)d\tau$$
 (217)

Let $x = t - \tau$, then,

$$u(t) * h(t) = \int_{-\infty}^{t} h(x)dx \tag{218}$$

$$f(t) * \delta(t - t_0) = \int_{-\infty}^{\infty} f(\tau)\delta(t - \tau - t_0)d\tau = f(t - t_0)$$
(219)

$$\delta(t - t_0) * \delta(t - t_1) = \int_{-\infty}^{\infty} \delta(\tau - t_0) \delta(t - \tau - t_1) d\tau = \delta(t - t_0 - t_1)$$
 (220)