Duality

We have,
FUO} =Fw) = [ fit)eds
i (165)
-1 1 jwt
FHE@Y= 1) = 5= [ Plo)edo
Replacing ¢ by —t in the second relationship of (165), we obtain,
2nf(—t) = / Fw)e ™ dw (166)

By interchanging the role of ¢t and w in (166) and comparing the result with the first

relationship in (165), we obtain,
F{F(t)} = 2n f(~w) (167)

An example of such duality property is shown in Fig. 13.
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Figure 13: Duality of the Fourier transformation.
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o | Time scaling

F{f(at)} = / T flat)e (168)
Using the change of variable & = at, we obtain,
o0 : 1 w
- —jwz/a = hadl
f{f(at)}——/_oof(a:)e dz/a = aF<a> a>0 (169)

When a is negative, the limits of the integral are reversed when we apply the change

of the variable so that,

F{f(at)} = —éF (g) a<0 (170)
or in general, we have,
Firany = o (%) (17)

If a is positive and greater than unity, f(at) is a compressed version of f(t) and its
spectral density is expanded in frequency by 1/a. In this case, the magnitude of the

spectral density decreases and this is necessary to keep the total energy constant.

ft) Flw)
W1 AL/IO-\g bk L A—s/}l-o_ S beo
fCar) 2F(2w)
L Al/l:"’ Loy 1 - L Ll
Figure 14: Effect of time scaling on Fourier transformation.
.
F{f(t —to)} =7 (172)
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F{f(t—to)} = / Ft — to)e ¥t dt
Let ¢ = ¢ — t,.
Flft—t)} = [ fla)e ety
= g~ Iwh /_Oo Fz)e 2 dz

= P ()

Frequency shift l

F{f(t)eln*} =?
FLfWey = [~ fe)eiteitar
:/—OO f(t)e—j(w—wo)tdt

= F(w — UJO)
1 - ot
f(t) coswpt = -éf(t)[ej“"’ + eIt

1
F{f(t) cos(wot)} = 5[F(W + wo) + Fw — wp)]
Ar
(1)
A -
~T, 0 7, ! 5
f(1) cos wo !t ar

-A
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Figure 15: Frequency shifting property of multiplication by a sinusoid.



o | Differentiation and Integration '

FLEHO) =1 (179)
We have,
F0) = o [ Pl (180)
di‘lt () = %% [ Pl
- % _O; d%[F(w)ej“’t]dw (181)

1 feo :
= 5;[@ JwF(w)e’ dw

Comparing with the general definition of the Fourier transform, we obtain,

f{%ﬂw}zﬂm@u (182)

It is seen that the time differentiation enhances the high frequency components of

a signal.
Similarly, . )
f{ /_ i f(T)dT} = <o F(@) + 7F(0)3(w) (183)
where
Fo)= [~ f(t)a (184)

It is seen that the time integration suppresses the high frequency components of a

signal.

We want to compute the Fourier transform of a Trapezoidal pulse using
the differentiation property (refer to Fig. 16).

Computing the Fourier transform of th second derivative, we have,

(jw)?F(w) = i;._l- (e7207 — eivr — mdem 4 giter) (185)

or

A j2wT jwT —jwT j2wT
F(w) = Gl (€247 — €37 — 737 4 e327) (186)

After simplifying, we get,
F(w) = ArSa*(wt/2)[1 + 2 cos wT] (187)
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Figure 16: Trapezoidal signal and its derivatives.

4.5 Time convolution

Consider a system 7. The impulse response of T is defined as,

T{o(t—7)} = h(t,7)

Time-invariant system:
T{é(t —7)}=h(t—71)

We know that a function f(¢) can be written as,

/ F(r)o(t —7)d

The output of the system to this input is,

o) =T{[" #r)é(e—ryir}

oo

= F(O)T{o(t — 7)}dr

8

flr

8

Time invariant system:

(188)

(189)

(190)

(191)

(192)



Definition of Convolution Integral:‘

&)« h(t) = [~ f(r)h(t —7)dr
Step response of linear, time-invariant system:

9(t) = hit) xu(t) = [~ hiryule —r)dr = [ h(r)dr

[Basic result:]
If,
F{f(t)} = F(w) and F{h(t)} = H(w)
then,
F{f(t)* h(t)} = F(w)H(w)
Proof:

o0

FLf(t) = h(t)} [f(t) * h(t)]e™"dt

I
P

— 0

oo

[ sonte -]
[ a7 pte =)o at] ar

— 0o

1
T

T F()F{h(t — T)}dr

o

We know that, F{h{(t — 1)} = H(w

e~97. Substituting, we get,

~—

FU® b} = [ f(r)Hw)e?dr

= H(w)/“o:o f(r)e T dr

Linear systems:

(193)

(194)

(195)

(196)

(197)

(198)

(199)



f(1) —= h(t) - g(r)

Flwo)= Hw) [ Gw)

Assume that,

H(w) = |H(w)|ei®n®) (200)

Then, we have,

(G()ee) = |F(w)|e®r ] (o) (201)
This results in,

G(w)| = [F(w)|[H(w)|

(202)
Og(w) = OF(w) + On(w)
o | Frequency Convolution]
If,

F{A{)} = Fi(w),  F{ft)} = F(w). (203)

then,
FUAD A} = 5 [F() * Fy(w) (204)
Fi(w) % Fy(w) = /_ Z Fy(u) Fy(w — u)du (205)

Proof: Similar to the case of the time convolution shown earlier.
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4.6 Some convolutional relationships
4.6.1 Graphic interpretation of convolution
The convolution,

9(t) = ) * o) = [ A folt = 7)dr (206)

can be computed using the following steps:
1. Replace t by 7 in fi(¢) resulting in f(7).

2. Replace t by —7 in f,(t) resulting in fo(—7). This folds the function f, about the

vertical axis.

3. Translate the entire frame of f,(—7) by an amount of ¢. For negative ¢ the shift is
towards the negative 7 axis (and for positive ¢ towards the positive 7 axis). This

results in the function fo(¢t — 7).

4. At any given relative shift ¢, compute the integral,
| At - rydr (207)
An example of these steps is shown in Fig. 17

4.6.2 Causality

For h(t) causal:

[o®)

gt) = FO) < h(t) = [ F(r)(t = r)dr (208)

— 00

Note that h(t —7) =0, if t — 7 < 0 (7 > t). Reflecting this fact in (208), we obtain,

o(t) = 1) < h(t) = [ f(r)h(e = 7)ir (209)

For f(t), h(t) causal, we have h(t —7) = 0,if t —7 < 0 (7 > t) and f(¢) =0, if t < 0.
Reflecting these facts in (208), we obtain,

o(t) = 7(2) = hlt) = [ )bl = 7)dr (210)
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Figure 17: Graphic interpretation of the convolution of a rectangular and a triangular

pulse.
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4.6.3 Commutative law

f1(8) * f2(t) = fa(t) * f1(2)
Proof:
Fi(w)Fy(w) = Fa(w)Fi(w)

4.6.4 Distributive law

Ji() = [fo(t) + fa(t)] = fu(t) * fa(t) + fi(t) * £5(2)
Proof:
Fi(w)[Fy(w) + F3(w)] = Fi(w)Fy(w) + Fi(w) Fs(w)

4.6.5 Associative law

Fi(t) = [f2() x fs(t)] = [f1(t) * fa(t)] * fa(2)
Proof:
Fi(w)[Fy(w) F3(w)] = [Fi(w) Fa(w)] Fs(w)

4.7 Convolution involving singularity functions

w(t) % h(t) = /_o; w(r)h(t — 7)dr = /0°° h(t — 7)dr

Let £ =t — 7, then,
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