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Abstract— A method is proposed to reduce the complexity of
ML decoding for MIMO systems based on PSK constellation
with two transmit antennas. We use the feature that the points
of a PSK constellation form a finite group under complex
multiplication to substantially reduce the decoding complexity.
The proposed method of decoding is used for both BLAST
systems and a new full-rate full-diversity space-time code. The
proposed space-time code offers a high coding advantage and at
the same time allows for a simple decoding algorithm.

I. INTRODUCTION

Nowadays, demand for reliable high data rate wireless com-
munication is increasingly growing. Multiple Input-Multiple
Output (MIMO) systems, corresponding to using multiple an-
tennas at both sides of the wireless link, are widely recognized
as a solution for this demand. There are two methods of
signalling over MIMO channels: BLAST [1] and space-time
coding [2].

BLAST is a well-known method for high data rate commu-
nication over MIMO channels [1]. Although some suboptimal
decoding methods such as ZF-BLAST and MMSE-BLAST are
introduced in [1] [3], finding a reduced complexity optimal
BLAST decoding algorithm is still an open problem. In this
paper a new optimal decoding method for a BLAST system
with for two transmit antennas is presented. The complexity
of this method is considerably less than the complexity of the
exhaustive search. At first, we present our decoding method for
an r-PSK constellation, while later, the method is generalized
to other symmetric constellations like QAM.

On the other hand, space-time coding is a well-known
method to achieve space diversity as well as coding gain over a
MIMO system. Finding a low complexity optimal decoding for
space-time codes is a challenging problem. Some researchers
have addressed this problem by imposing some restrictions on
the code structure which facilitates the decoding operation at
the cost of a reduced coding gain. [2] [4].

In this paper, a new structure for full-rate full-diversity
space time code is introduced. This code is a superposition
of two families of matrices, where each of them forms a
finite group under complex multiplication. We show that the
decoding formulation derived for BLAST systems can be also
applied for the decoding of the proposed space-time scheme.
On the other hand, we will see that the coding advantage of
this structure is very high.

II. FORMULATION

In slow flat fading environment, a MIMO channel with 2
transmit and N receive antennas is modelled by

y =
√

ρ

2
Hx + v (1)

where y ∈ CN×1 denotes the received vector and x ∈ C2×1

denotes the transmitted vector, H ∈ CN×2 denotes the channel
matrix, and v ∈ CN×1 denotes additive, spatially and tem-
porally i.i.d white noise with complex gaussian distribution.
Transmitted vector x and noise vector v are normalized such
that ρ is the Signal to Noise Ratio(SNR) at each receive
antennas.

III. DECODING METHOD

In the following, we first present the proposed decoding
method for an r-PSK constellation, while later, the method is
generalized for other symmetric constellations.

In r-PSK modulation, transmitted vector is as follows,

xm,n = [θm, θn]T θ = exp(j
2π

r
) (2)

where m and n (0 ≤ m,n ≤ r − 1), are two transmitted
symbols.

To formulate the ML decoding, we have,

P (y|H,xm,n) =
1

πNT
exp(−d2

mn) (3)

where,

d2
mn = (y −

√
ρ

2
Hxm,n)∗(y −

√
ρ

2
Hxm,n) (4)

The goal of ML decoding is to find m and n to maxi-
mize P (y|H,xm,n) or minimize d2

mn. The straight-forward
approach for ML decoding is to calculate different values of
d2

mn for all possible values of m and n, and find the minimum
value of d2

mn using an exhaustive search. It is clear that the
complexity of such an exhaustive search is very high.

Let us define K, f(n), g(m) and h(m− n) as:

K = y∗y +
ρ

2
(h∗

1h1 + h∗
2h2) (5)

f(m) = −
√

ρ

2
(
y∗h1θ

m + h∗
1yθ−m

)
(6)
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Fig. 1. Trellis constructed based on code structure

g(n) = −
√

ρ

2
(
y∗h2θ

n + h∗
2yθ−n

)
(7)

h(m− n) =
ρ

2

(
h∗

2h1θ
(m−n) + h∗

1h2θ
−(m−n)

)
(8)

where h1 and h2 are the first and second columns of channel
matrix H .

Using these notations, it is easy to show that,

d2
mn = K + f(m) + g(n) + h(m− n) (9)

Considering that θr = θ0 = 1, it is easy to prove that
h(m − n) = h(m − n mod r). Thus, there are r different
values for each of f(m) , g(n), and h(m − n) where 0 ≤
m ≤ r − 1 and 0 ≤ n ≤ r − 1.

Ignoring the constant part K, for minimizing f(m)+g(n)+
h(m − n), we can use Viterbi algorithm over the trellis
structure shown as an example for the case of 8-PSK in Fig. 1.
In this figure, k = [(m− n) mod r].

Another effective ML decoding method with less com-
plexity is as follows: Let us sort f(m) and g(m) in the
increasing order and specify the corresponding arguments as
m0,m1 . . . mr−1 and n0, n1 . . . nr−1, i.e.,

f(m0) ≤ f(m1) ≤ . . . ≤ f(mr−1) (10)

and,
g(n0) ≤ g(n1) ≤ . . . ≤ g(nr−1) (11)

We define two sets, named the potential set and the final
set. Each set has r entries corresponding to different values
of [(m− n) mod r]. The kth entry of the final set, 0 ≤ k ≤
r − 1, is the best pair of (m,n) in terms of the minimization
of f(m) + g(n) such that k = [(m − n) mod r]. The kth

entry of the potential set, 0 ≤ k ≤ r − 1, is the best pair of
(m,n) in terms of the minimization of f(m)+g(n) such that
k = [(m − n) mod r] until then, and for those values of k
that are not yet in the final set. The final set will be gradually
filled using the following algorithm:

For 0 ≤ α ≤ 2(r − 1), starting from α = 0,
1) Find Sα = {(i, j)|i + j = α, 0 ≤ i ≤ r − 1, 0 ≤ j ≤

r − 1}.
2) Find (i, j) ∈ Sα that minimize f(mi) + g(nj).

3) Set k = [(mi − nj) mod r]. Compare (mi, nj) with
the pair in kth row of potential set, if any, in terms of
f(m) + g(n) and put the best one in kth row of final
set (if kth row of final set is not filled yet).

4) For other pairs of (i, j) ∈ Sα, compute k = [(mi − nj)
mod r] and compare f(mi) + g(nj) with the related
value in the kth row of the potential set. Put the better
of these two values in the kth row of the potential set.

5) If the final set is not filled yet, set α ← α + 1 and go
to step 1.

6) If the final set is not filled yet and α < 2(r − 1), set
α← α+1 and go to the step 1, else fill the empty rows
of final set with potential set.

7) Compute f(m)+g(n)+h(m−n) for pairs in the final set
and select the pair that minimize f(m)+g(n)+h(m−n).

Simulations show that the truncation of the algorithm in
α = r − 1 does not considerably affect the code performance
(probability of the additional error is less than 10−6).

The idea behind the algorithm is as follows: If (i, j) ∈ Sα

minimize f(mi) + g(nj) and k = [(mi − nj) mod r], then
there is no (i′, j′) ∈ Sα′ , (α < α′) such that k = [(mi′ −nj′)
mod r] and f(mi) + g(nj) > f(mi′) + g(nj′).

In addition to PSK constellation (closed under addition of
phases), similar ideas can be applied to QAM constellations.
In the case of QAM, it is easy to break down the constellation
into a number of PSK-type subsets such that each subset is
closed under addition of phases. In this case, in the Carte-
sian product of such QAM constellations (corresponding to
different antennas), we obtain a number of elements that can
be decoded separately using the above techniques (each such
element is the Cartesian product of some PSK-type subsets
where each subset corresponds to a different antenna). For
example, in 16QAM constellation, we can classify all the
points into 4 individual sets A, B, C, and D as shown in
Fig. 2. In this case, we can rewrite the transmitted vector as
follows,

x = [αiθ
m, αjθ

n]T θ = exp(j
2π

r
) (12)

where
0 ≤ i, j,m, n ≤ 3 (13)

and αi and αj determine which subset is selected and, m and
n determine which points in each subset are selected. Based
on this formulation, we can use the same decoding algorithm,
after some small modifications.

IV. COMPLEXITY

In this part, we review the complexity of the proposed
decoding method and compare it with the complexity of the
exhaustive search. In MIMO systems with N receive antennas
and r-PSK constellation, it is easy to show that the complexity
of the exhaustive search is equal to 20Nr2. On the other hand,
the complexity of the proposed method is 1.5r2+24rN that is
considerably less the complexity of the exhaustive search. For
typical values of r and N , the complexity of proposed method
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Fig. 2. Classification of 16QAM into 4 subsets

is about 5 to 10 times less than complexity of the exhaustive
search.

The complexity can be further reduced by noting that only
the function f() and g() are dependent on the received signal
value, namely y (the rest is computed once for the entire
frame.)

V. APPLICATION IN SPACE-TIME CODING

In this part, we introduce a new structure for block space-
time code over two transmit antennas and two symbol periods.
This space-time coding scheme is full rate, full diversity with
high coding advantage. We will show that the problem of the
decoding of the proposed method can be simplified in the
same manner as described earlier for the case of the BLAST
systems. The structure of this code for r-PSK modulation is
as follows:

Cm,n = Am + DAn ∈ C2×2 m,n = 0, 1, . . . , r − 1 (14)

where

A =
[

θ1 0
0 θk

]
D =

[
0 θs

1 0

]
(15)

and

θn = exp(j
2π

r
n) (16)

and m and n are the information symbols.
In table I, the best values for k and s for r-PSK (4 ≤ r ≤

32) to have the highest coding advantage are listed.

k s

4PSK 1,3 1,3
8PSK 3 1,3,5,7
16PSK 7 2,6,10,14
32PSK 7,23 3,5,11,19,21,27,29

TABLE I

CODE STRUCTURE FOR r-PSK

Note that this code is a superposition of two matrices: Am

and DAn that both of them form a finite group, similar to

points of PSK constellations. As we will see latter, this simi-
larity leads us to a similar decoding formulation of decoding.

Coding advantage is one of the well-known metrics to
evaluate performance of the different space-time codes struc-
tures [2]. Simulations show significant improvement for the
coding advantage of the proposed scheme as compared with
the Alamouti code [4]. Also, the proposed scheme achieves a
coding advantage very close to that of the Damen code [5].
Recall that the latter scheme uses an algebraic structure to
construct non-orthogonal codes with large coding advantage.
The decoding method of the Damen code is based on sphere
decoding which is generally a complex operation.

As an example, in four bits throughput, the coding advan-
tage of the proposed scheme is about 4.7 dB larger than that of
the Alamouti code and is very close to the coding advantage
of the Damen code. Figures 3 and 4 show the SER curves of
the Alamouti code, the Damen code, and the proposed scheme
for 3 and 4 bits throughput. These figures show more than 2dB
and 5dB improvement in coding gain in three and four bits
throughput, compared with the Alamouti code. Also, fig. 4
shows that the performance of the proposed scheme is very
similar to the Damen code.

In the following, we show that the decoding problem of this
scheme has the same formulation with the previous problem.
Again, to formulate the ML decoding for this code, we have,

P (Y |H,Cm,n) =
1

πNT
exp(−d2

mn) (17)

where Y is the matrix corresponding to the received signal,
and,

d2
mn = tr

[
(Y −

√
ρ

M
HCm,n)(Y −

√
ρ

M
HCm,n)∗

]
.

(18)
Now, let us redefine K, f(n), g(m) and h(m− n) as,

K = tr
{

Y Y ∗ + 2
ρ

2
HH∗

}
(19)

f(m) = −
√

ρ

2
tr{HAmY ∗ + Y A−mH∗} (20)

g(n) = −
√

ρ

2
tr{HDAnY ∗ + Y A−nD∗H∗} (21)

h(m− n) =
ρ

2
tr{HAm−nD∗H∗ + HDAn−mH∗}. (22)

Using these notations, we can show that,

d2
mn = K + f(m) + g(n) + h(m− n) (23)

Recall that Ar = A0 = I2×2, so similar to (9), h(m−n) =
h(m− n mod r).

Comparing (9) and (23), it is easy to see that Euclidian
distance in BLAST system and this structure of space-time
code has the same format. As a result, the introduced decoding
method is applicable for this space-time scheme as well.
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VI. CONCLUSION

In this paper, a new low-complex ML decoding method for
MIMO channels based on PSK constellation with two transmit
antennas is introduced. The proposed method of decoding
is applied for both BLAST system and a new full-rate full-
diversity space-time code.

We use the feature that the points of a PSK constellation
form a finite group under complex multiplication to substan-
tially reduce the decoding complexity. Also it is shown that
similar ideas can be applied to other symmetric constellations
by breaking down the constellation into a number of PSK-type
subsets.

A new full diversity full rate block space-time code is
introduced. This code is a superposition of two families of
matrices, where each of them forms a finite group under
complex multiplication. We show that the problem of the
decoding of the proposed method can be simplified in the
same manner as described earlier for the case of the BLAST
systems. Simulations show significant improvement for the
coding advantage of the proposed scheme as compared with
Alamouti code. Also, the proposed scheme achieves a coding
advantage very close to that of the Damen code. Recall that
the latter scheme uses an algebraic structure to construct non-
orthogonal codes with large coding advantage. The decoding
method of the Damen code is based on the sphere decoding
which is generally a complex operation.
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Fig. 3. Symbol-Error-Rate for two transmit and two receive antennas-
3 bit PCU
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Fig. 4. Symbol-Error-Rate for two transmit and two receive antennas-
4 bit PCU
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