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Abstract| This paper describes two new �xed-rate

entropy-coded quantization methods for stationary memo-

ryless sources where the structure of code-words are derived

from a variable-length scalar quantizer. In the �rst method,

we formulate the quantization as a zero-one integer opti-

mization problem. We show that the resulting integer pro-

gram can be closely approximated by solving a simple linear

program. The result is a Lagrangian formulation which ad-

join the constraint (length) to total distortion. Unlike the

previous methods with a �xed Lagrangian multiplier (�xed-

slope, and variable rate output), we use an iterative algo-

rithm to optimize Lagrangian function while updating the

slope of the function until the cost constraint is satis�edwith

equality (ensure to be �xed-rate). In order to achieve some

part of packing gain, we combine the process of trellis en-

coding with that of quantizer shaping using linear program-

ming. This results in an iterative use of Viterbi algorithm

for optimizing the Lagrangian function. For the important

class of sources with a monotonically decreasing density, we

present another �xed-rate method with negligible complex-

ity. Numerical results show an excellent performance with

a small complexity for the proposed schemes as compared

to previously known methods.

I. Introduction

Optimum �xed-rate scalar quantizers, introduced by
Max [1] and Lloyd [2] (LMQ), minimize the average distor-
tion for a given number of reconstruction levels. LMQ per-
forms worse than the optimal Entropy Constrained Scalar
Quantizer (ECSQ) in the absence of channel noise. ECSQ
is known to perform close to the rate-distortion bound for
a large class of memoryless sources [3], [4]. Gish and Pierce
showed that the optimal ECSQ has uniformly spaced recon-
struction levels regardless of the source probability density
function [4].
The design of an entropy-constrained vector quantizer is

generally based on the minimization of the functional

J = D + �H

where D is the distortion between input and output, � is
the Lagrange multiplier, and H is the entropy of the out-
put. The problem of convex optimization in information
theory was �rst presented by Blahut [5]. The Blahut algo-
rithm for �nding the rate-distortion function is based on
minimizing a Lagrangian (adjoining the distortion and the
mutual information) where the Lagrangian multiplier is in-
terpreted as the slope of the hyper-plane supporting the
convex achievable region. Chou and et al., [6] presented an
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algorithm for the entropy constrained vector quantization
(ECVQ). Their implementation is similar to generalized
Lloyd algorithm [7]. The generalized Lloyd algorithm [7]
is a time consuming approach. In order to alleviate this
problem, Equitz [8] proposed a recursive algorithm, called
pairwise nearest neighbor (PNN). Recently, an entropy-
constrained version of the PNN design algorithm was pro-
posed by Garrido, Pearlman, and Finamore [9] and is called
entropy-constrained pairwise nearest neighbor (ECPNN).

All of these methods have a variable-rate output with its
concomitant di�culties. To take advantage of entropy cod-
ing, while avoiding the dis-advantages associated with con-
ventional methods based on using variable rate codes (in-
cluding error propagation and bu�ering problems), one can
use �xed-rate entropy-coded vector quantization (FEVQ).

The pyramid vector quantizer (PVQ), introduced by Fis-
cher (for Laplacian sources) [10], is a �xed-rate VQ in which
the code-vectors are located on the intersection of a cubic
lattice and a pyramid in N -dimensional space. For Lapla-
cian sources this quantizer is asymptotically optimal and
achieves the performance of ECSQ, but for other sources it
does not approach the ECSQ performance, even for large
N . Hung and et al., investigated the application of PVQ for
compressed image transmission over noisy channel, where
the �xed-rate quantization reduces the susceptibility to bit
error corruption [11]. They also proposed a new method
of deriving the indices of the lattice points of the multi-
dimensional pyramid and described how theses techniques
could also improve the channel noise immunity of general
symmetric lattice quantizer.

One class of schemes are based on selecting the N -fold
symbols with the lowest additive self-information (typical
set). This scalar-vector quantizer (denoted by SVQ) is
a �xed-rate vector quantizer derived from a variable-rate
scalar quantizer. A method for exploiting this structure
based on using a dynamic programming approach with
the states corresponding to the length of the code-words
is used by Laroia and Farvardin in [12]. The core idea in
the schemes of [12] is to use a state diagram with the tran-
sitions corresponding to the one-D symbols. This results in
a trellis composed of N stages where N is the space dimen-
sionality. Then, the Viterbi algorithm is used to �nd the
path of the minimum overall additive distortion through
the trellis. Reference [13] uses a di�erent approach to dy-
namic programming showing improvement with respect to
the schemes of [12]. The key point in [13] is to decompose



the underlying operations into the lower dimensional sub-
spaces. This decomposition avoids the exponential growth
of the complexity.
Trellis coded quantization (TCQ), introduced by Mar-

cellin and Fischer [14], is based on applying the Ungerboeck
notion of set partitioning to the partitions of a scalar quan-
tizer where a trellis structure is used to prune the expanded
number of quantization levels down to the desired encoding
rate.

Entropy-constrained TCQ [15,16] is based on using a dis-
tance measure which is a linear combination of the code-
word length and quantization distortion. This is a gen-
eralization of the entropy coded quantization method [6]
to include TCQ. Laroia and Farvardin combine the SVQ
idea [12] with TCQ and proposed a �xed-rate quantizer
which they call Trellis-based Scalar Vector Quantizer (TB-
SVQ) [17]. The resulting quantizer shows an excellent per-
formance assuming error free transmission.

In this paper, we propose an integer programming ap-
proach to �xed-rate entropy-coded vector quantization
(FEVQ) for stationary memoryless sources. We use a zero-
one integer optimization formulation for quantization prob-
lem, which was introduced in [18]. In order to solve the
resulting zero-one integer program, we approximated it to
a simple linear program. The result is a Lagrangian formu-
lation adjoining the distortion and length of codewords. In
order to achieve some packing gain, we combine the trellis
encoding [14] and the new proposed FEVQ. For the impor-
tant special case of a source with a monotonically decreas-
ing density, we present a second method with negligible
complexity,

The rest of article is organized as follows: Section II
contains a brief description of the linear program formu-
lation and the approach to solve this problem. Starting
from two initial points, we derive an equation to �nd a
chain of improving solution. The derivation is discussed in
detail. We show the resulting equation is in the form of
a Lagrangian function. In the end of the section, the idea

of �xed-rate entropy-constrained trellis-coded quantization
using linear programming is introduced. In the Section III,
we talk about a simple approach to �xed-rate quantization
of a special class of source with monotonically decreasing
source density. Finally, in Section IV, we conclude the pa-
per by presenting the numerical results and a comparison
between proposed methods with some other quantization
schemes.

II. Formulation of Encoding as a Linear

Program

Consider an N dimensional vector quantizer derived
fromN variable length scalar quantizers. Each scalar quan-
tizer consists of M partitions with reconstruction levels
(q1; q2; :::; qM), where q1 < q2 < ::: < qM , having self in-
formation of ~c = fc(1); c(2); :::; c(M )g. There is a variable-
length, binary, pre�x code associated with each quantizer,
where codeword corresponding to level qj has a length of
`(j).

To formulate the decoding problem as an integer pro-

gram, the jth partition of the scalar quantizer along the
ith dimension is identi�ed by a binary variable �i(j), i =
1; :::; N , j = 1; :::;M where �i(j) = 0; 1 and

P
j �i(j) = 1,

i = 1; :::; N . To select the element indexed by j0 along the
ith dimension, we set �i(j0) = 1 and �i(j) = 0, j 6= j0.
This results in,

Minimize

NX

i=1

MX

j=1

�i(j)di(j)

Subject to:

NX

i=1

MX

j=1

�i(j)c(j) + sc = Cmax; sc � 0;

PM

j=1 �i(j) = 1; 8i; �i(j) = 0; 1; 8i; j;

(1)

where sc is the slack variable of the cost constraint. Each
of the equalities

P
j �i(j) = 1, i = 1; :::; N , is called an

indicator constraint.
The immediate problem in solving (1) is that the vari-

ables �i(j) are restricted to be integer numbers (0 or 1). We
show that one can relax the zero-one constraint and then
round the result and this may only cause a small degrada-
tion in the quality of the solution. It [18] a solution based
on generalized upper bounding of linear programming is
suggested to solve Eq. 1. In the current article, we use an
improved solution method with a much lower complexity.
In addition, the proposed solution has an interpretation
in terms of the conventional Lagrangian method (where
the corresponding Lagrange multiplier is iteratively opti-
mized). This provides a natural framework to combine the
method with a trellis structure to achieve some extra pack-
ing gain.
To solve the resulting linear program, we �nd a chain

of improving solutions each expressed in terms of a lin-
ear interpolation between two intermediate solutions. The
interpolation coe�cients are computed such that the cost
constraint is satis�ed with equality. At each iteration, one
of the two points involved in the interpolation is updated
in a way that the resulting improvement in the objective
function is maximized. The updating is achieved by solv-
ing an LP problem which is solely subject to the indicator
constraints and has a trivial complexity.
Consider the solution x = fxi(j); i = 1; � � � ; N; j =

1; � � � ;Mg and assume that the objective function value
and the cost associated with x are equal to,

D =

NX

i=1

MX

j=1

xi(j)di(j)

C =

NX

i=1

MX

j=1

xi(j)c(j);

(2)

respectively. We look at x as providing a tradeo� between
D and C. The main idea is to �nd a linear interpola-
tion between an appropriate set of such x's that: (i) the
cost constraint is satis�ed with equality, and (ii) the overall
tradeo� is optimized.
Consider a solution obtained by interpolating between

two points, say x1, x2, and assume that we try to improve



the solution by bringing a third point, say x
3, into the

interpolation procedure. The following LP problem is used
to compute the interpolation coe�cients:

Minimize: �1D1 + �2D2 + �3D3

Subject to: �1C1 + �2C2 + �3C3 = CMax

�1 + �2 + �3 = 1
(3)

where D1,D2,D3 and C1, C2, C3 are the objective function
and cost associated with points x1, x2, x3 respectively. As
the LP problem in (3) has two constraints, only two of the
corresponding �'s will be non-zero. This simplymeans that
it su�ces to use only two points for the interpolation. This
will be the case even if we try to provide an interpolation
among a larger number of such points.
For a given value of �3, the LP problem in (3) is equiv-

alent to:

Minimize: �1D1 + �2D2 + �3D3

Subject to: �1C1 + �2C2 = CMax � �3C3

�1 + �2 = 1� �3

(4)

Solving for �1, �2, we obtain,

�1 =
�CMax + �3C3 + (1� �3)C2

C2 � C1

and (5)

�2 =
CMax � �3C3 � (1� �3)C1

C2 � C1

: (6)

Substituting in (3), results in,

�1D1 + �2D2 + �3D3 = �3(D3 + �1C3 + �2)

+
(C2 �CMax)D1 + (CMax � C1)D2

C2 � C1

where,

�1 =
D1 �D2

C2 � C1

and �2 =
C1D2 � C2D1

C2 � C1

(7)

The term [(C2 � CMax)D1 + (CMax � C1)D2]=(C2 � C1)
in (7) is the best value of the objective function obtained
by interpolating between only x

1 and x
2. The point x3 is

selected to minimize the e�ect of the related term in (7).
This results in the following LP problem for the selection
of x3:

Minimize: D3 + �1C3 =

NX

i=1

MX

j=1

[di(j) + �1c(j)]x
3

i (j)

Subject to: Indicator constraints

(8)

where x3i (j) are the component of x3. Note that the LP in
(8) is decomposable, and consequently, has a trivial com-
plexity.
If the minimum value of (8) satis�es (D3 + �1C3)min +

�2 < 0, it means that the inclusion of x3 results in a de-
crease in the objective function value in which case the
iteration will continue. After this, the whole procedure is
repeated for the resulting two points until it merges to a

stationary condition which considering the linearity of the
function will be the global optimum solution of the linear
program.
In summary, given the points x1, x2, the algorithm com-

putes the value of �1 using (2), (7) and then �nds the opti-
mum solution of (8). Then, one of the two points x1 or x2

is updated and the procedure is repeated until no change
in the value of �1 in two subsequent iterations is observed.

A. Linear Programming Approach to Fixed-rate Entropy-

coded Trellis Coded Quantization

Consider an N -dimensional TCQ (N as a block length)
with � = 2� states. The corresponding scalar quan-
tizer is speci�ed by an alphabet (set of quantization level)
Q = fq1; q2; � � � ; q2Mg where M = 2m [14]. The quan-
tizer points is partitioned to 4 subsets, Sl, l = 1; 2; � � � ; 4,
where each subset consists of M=2 codewords. Given a
data sequence x, the Viterbi algorithm is used to �nd the
allowable sequence of output symbols x̂. The sequence of
output symbols chosen by the Viterbi algorithm can be
represented by the bit sequence specifying the correspond-
ing trellis path (sequence of subsets) in addition to the
sequence of m � 1 bit codewords to specify symbol from
chosen subsets (plus � bits specifying the starting state).
The entropy-constrained trellis coded quantizer (ECTCQ)

is a trellis coded quantizer derived from a variable length
scalar quantizer. Assume that there is a variable-length,
binary, pre�x code associated to each subset1. Therefore,
each codeword is written as rk;l 2 Sk with k and l de-
noting the lth codeword in the kth subset. Corresponding
to each rk;l, there is binary string ck;l 2 C with length
lk;l (in bits). The codewords with the same �rst subscript
must be uniquely decodable (i.e., the corresponding repro-
duction levels of these index codewords are in the same
subset). The entropy-constrained trellis-coded quantizer
uses a Lagrange multiplier to adjoin the distortion mea-
sure to the constraint, and its objective is to minimize the
that functional while satisfying the trellis constraint. To

minimize the functional (J�) the encoder uses Viterbi al-
gorithm with trellis branches labeled with appropriate sub-
sets and the branch metric (the biased squared distortion
�(x; rk;l) = (x�rk;l)

2+�lk;l). The branch metric is sum of
two terms, one term is the squared error between the cur-
rent input and its closest codeword in the subset associated
with that branch, and the other is � times the length of the
index codeword corresponding to that closest reproduction
codeword.
For a �xed-rate entropy-constrained trellis-coded quan-

tizer, we have to impose a constraint on the total length
of codeword. Eq. 1 shows the formulation of �xed-rate
entropy-constrained quantizer suitable for applying the lin-
ear programming approach. The formulation of the �xed-
rate entropy constrained TCQ is derived by adding the
extra constraint regarding the trellis structure to Eq. 1. In
order to have the same rate as Eq. 1 we should take into
the account that � bits will be used to specify the starting

1These variable-length codes can also be designed for S1 [ S3 and
S2 [ S4 [16].



state . Therefore Eq. 1 will be modi�ed as follow;

Minimize

NX

i=1

MX

j=1

�i(j)di(j)

Subject to:

NX

i=1

MX

j=1

�i(j) � `(j) � Lmax � �

Trellis constraint & Indicator constraint

(9)

We still �nd a chain of improving solutions each expressed
in terms of a linear interpolation between two intermediate
solutions. Starting with two points, say x1, and x

2, we try
to improve the solution by bringing a third point, say x

3,
into the interpolation procedure. By following the same
procedure, from Eq. 1 to Eq. 7, we reach to a similar equa-
tion as Eq. 8. The updating is achieved by solving a new
LP problem which is subject to the trellis and indicator
constraints. This results in the following LP problem for
the selection of x3:

Minimize: D3 + �1C3 =

NX

i=1

MX

j=1

[di(j) + �1c(j)]x
3

i (j)

Subject to: Indicator and trellis constraints

(10)

Noting that the indicator constraint are decomposable, the
encoder uses the Viterbi algorithm to �nd the solution of
Eq. 10. In this case, the branch metric is the sum of two
terms, one term is the squared distance between the in-
put and the closest codeword to the input in the subset
associated with that branch, and the other is �1 times the
length of codeword (di(j) + �1c(j)). Therefore, given two
points x1, x2, the algorithm computes the value of �1, and
then using Viterbi algorithm �nds the solution of Eq. 10.
Then, one of the points x1 or x2 is updated. We continue
updating until no further change in value of �1 is shown.

III. Problem Formulation of decoding as an

integer program

In the following, we assume that if the length of the Hu�-
man codes corresponding to di�erent quantizer partitions
are ordered, then two subsequent values di�er in at most
one unit. This means that the structure of the Hu�man
code is decided for the quantizer. Following our earlier for-
mulation, for a given input vector a = (a1; � � � ; aN ), we
de�ne a discrete function R(lj ; aj) (lj is a discrete variable
and aj is a continuous one), which maps the jth compo-
nent of a, i.e., aj to the closest reconstruction level with
length of lj . The distortion associated with this mapping is
(aj �R(lj ; aj))

2. We de�ne a new function for the jth co-
ordinate called �(aj ; lj) = �(aj � R(lj; aj))

2. Using above
de�nitions, we can have the following formulation for a
�xed-rate entropy-coded quantization:

maxf�(a; l) : l 2 S; L(l) � LMaxg (11)

where S is the set of N -tuples of nonnegative integers of
allowed codeword lengths,

L(l) =

NX

j=1

lj

LMax > 0, and

�(a; l) =

NX

j=1

�(aj; lj)

The following algorithm can be used to solve this optimiza-
tion problem. First, we review the algorithm and then we
consider the necessary conditions for its optimality. In the
following, the superscript k is added to our notation to
specify the iteration index of the algorithm. The proce-
dure is as follows:
1. Start with the allocation l0 = 0.
2. k = 1.
3. l

k = l
k�1 + ej , where ej is the jth unit vector and i is

any index for which

�(aj; l
k�1
j + 1)� �(aj ; l

k�1
j )

is maximum.
4. If L(lk) > LMax, terminate; otherwise k ! k + 1 and
go to step 3.
The algorithm starts from a zero allocation. At each step,
one bit will be allocated to the coordinate which has the
most �(aj; l

k�1
j +1)��(aj ; l

k�1
j ) (result in the most reduc-

tion of total distortion). The procedure will be continued
til we spend all of the bits.
Theorem: If �(a; `) is concave and strictly increasing of

` then the procedure generates an optimal allocation (for
proof refer to [19]).
We derive a set of conditions on the quantizer structure

to assure the optimality of the incremental bit allocation.
These conditions can be easily integrated in the iterative
design algorithm for the quantizer design. We also present
a dynamic programming formulation for the optimum 1
bit allocation and show that in practice the dynamic pro-
gramming approach and and the simpler method based on
incremental distribution of bits result in the same solution
based on numerical results for a Gaussian source.

IV. Numerical Results

In the following, we present the numerical results for the
performance and the complexity of the proposed methods
for an i.i.d. Gaussian source. The quantization is mea-
sured in terms of the mean square distance. In all compar-
isons, the memory size is in byte (8 bits) per N dimensions
and the computational complexity is the number of addi-
tions/comparisons per dimension.
Table (I) shows the numerical results of the proposed

quantizers at di�erent bit rates. The �rst method is linear
programming with a constraint on total self information
(LP-H). This method has the best performance. After ap-
plying Hu�man code and imposing the constraint on length



instead of self information, the performance drops about
by 0:9 dB (LP-L,1D). This degradation will be smaller
for larger values of bits per dimension. This degradation
in SNR can be reduced by increasing the dimension or by
merging two or more dimensions and applying a Hu�man
code to the corresponding subspaces (refer to Table I). It
is observed that the SNR for the IP approach is very close
to LP-L. This means that the degradation in the quality
of solution caused by dropping the zero-one constraint is
negligible.

Tables (II) provides the numerical results corresponding
to �xed-rate entropy-coded trellis coded quantizer. First,
we assigned Hu�man code to one dimensional codewords
(FETCQ,1D). The results show about 1 dB improvement in
comparison with (LP-L). We merge two dimension together
and apply the Hu�man code for them (FETCQ,2D). The
results show about 0:3 dB improvement in comparison with
(FETCQ,1D).

In Table III we have a comparison between proposed
methods and the method presented in [12, 17]. We have

compared the quantizer under equal conditions i.e., the
length of codeword for the scalar quantizer codebook is
derived from Hu�man code. The proposed methods o�er
the same performance while the new approaches show a
substantial reduction in complexity. In term of compari-
son of proposed methods in this paper, although the IP has
a smaller complexity in comparison with LP, but the LP
has the advantage that it can be applied to trellis encoding
and achieve some packing gain.

Rate=2.5 bits/dimension, M=8

Dimension LP-H IP,1D LP-L,1D LP-L,2D
32 13.02 11.93 11.91 12.51
64 13.20 12.26 12.25 12.83
128 13.29 12.46 12.45 13.03
256 13.36 12.58 12.57 13.24
512 13.39 12.64 12.64 13.30

TABLE I

SNR (in dB) vs. dimension of quantizer for a Gaussian

source, 1D and 2D refer to using the Huffman code over 1

and 2 dimensional subspaces respectively.

Rate=2.5 bits/dimension M=8
Dimension FETCQ-1D FETCQ-2D

32 13.34 13.63
64 13.56 13.93
128 13.73 14.13
256 13.80 14.25
512 13.84 14.32

TABLE II

SNR (in dB) vs. dimension FETCQ using linear programming

approach using a four state trellis for a Gaussian source,

1D and 2D refer to using the Huffman code over 1 and 2

dimensional subspaces respectively.

Method Add Multiplies Memory SNR
Rate=3.5 bits/dimension M=16, N=32

IP 4.5 3 129 byte 18.06
LP 76 64 1.57 k-byte 18.06

SVQ [12] 736 16 3.9 k-byte 18.06

Rate=2.5 bits/dimension 2M=16, N=32
FETCQ (LP) 96 64 1.75 k-byte 13.56
TB-SVQ [17] 5776 16 15.5 k-byte 13.56

TABLE III

Comparison of proposed methods and references [12, 17], the

number of state is four.
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