Generalized Tangential Sphere Bound on the ML
Decoding Error Probability of Linear Binary Block
Codes in AWGN Interference

Shahram Yousefi and Amir K. Khandani

Abstract— Using the so-called Gallager’s first bound-
ing technique (involving a so-called Gallager region) and
within the framework of Tangential Sphere Bound (TSB)
of Poltyrev, we develop a general bound referred to as the
Generalized Tangential Sphere Bound (GTSB). The Gal-
lager region is chosen to be a general Hyper-Surface of Rev-
olution (HSR) which is optimized to tighten the bound. The
search for the optimal Gallager region is a classical problem
dating back to Gallager’s thesis in the early 1960’s. For
the random coding case, Gallager provided the optimal so-
lution in a closed form while for the non-random case the
problem has been an active area of research in information
theory for many years. We prove that for a sphere code the
optimum HSR within the proposed GTSB is a hyper-cone.
This will climax to the TSB of Poltyrev, one of the tightest
bounds ever developed for binary block codes, and there-
fore terminates the search for a better Gallager region in
the groundwork of the GTSB.

I. INTRODUCTION

HE problem of performance evaluation of linear binary

block codes with soft decision Maximum-Likelihood
(ML) decoding in Additive White Gaussian Noise (AWGN)
interference has long been a central problem in coding the-
ory and practice. In most of the cases, the derivation of a
closed-form expression for the bit or word error probabil-
ities is intractable. Thus, one usually resorts to bounding
techniques for the aforementioned probabilities.

The most commonly used upper bound on the error
probability of a digital communication system is the union
bound. Union bound which is in fact an inequality from
the class of Bonferroni-type [1, 2] inequalities in probabil-
ity theory, is quite accurate for high SNR’s while for other
SNR’s, it is a very loose upper bound.

The recent overwhelming attention given to the bound-
ing techniques for performance evaluation of codes is
mainly due to the introduction of some near-Shannon-limit
performing schemes [3-6]. In addition to simulations, these
schemes can be analyzed using the union bound which is
a very loose measure of performance for rates above the
cutoff rate of the channel [7]. Therefore, there is an in-
creasing demand for tighter bounds on the ML decoding of
such codes above the cutoff rate.

One of the first works devoted to the performance of bi-
nary codes at low signal-to-noise ratios is that of Posner [8]
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which mainly revolves around quantized channel, i.e., with
hard decision. A belated continuation to the work of Pos-
ner for the un-quantized channel output (soft decision) is
that of Chao et. al [9] which depends on the “global” geo-
metrical properties of the code.

Another important improvement to the union bound is
that of Hughes [10]. Hughes represented the complement
of the Voronoi region (all Voronoi regions are congruent
to each other for Slepian codes® [11,12]) as the union of
a set of truncated polyhedral cones. This work launched
a number of similar works with applications from linear
binary block codes to coded modulation and concatenated
codes both in AWGN and fading environments [14-16].

II. BOUNDS BASED ON (GALLAGER’S FIRST BOUNDING
TECHNIQUE

Many other bounds, as noted by Divsalar [17], “essen-
tially use a general bounding technique developed by Gal-
lager [5]”. In this method, Gallager bisects the error prob-
ability to joint probability of error and noise residing in
a region £ (referred to as the Gallager region) plus joint
probability of error and noise residing in the complement of
R; where R is a volume around the transmitted codeword.
Divsalar [17] refers to this as “Gallager’s First Bounding
Technique” (GFBT). In original Gallager’s work # is a
complicated region in R™.

For instance, the well-known Tangential Bound (TB) of
Berlekamp [18] uses Gallager’s first bounding technique
combined with union bound to provide a significantly tight-
ened bound than the conventional union bound at low
SNR’s. This is achieved by separating the radial and tan-
gential components of the Gaussian noise with a half-space
as the underlying Gallager region.

Herzberg and Poltyrev [14] use GFBT to derive one of
the tightest upper bounds. R is chosen to be a hyper-sphere
with radius 7 and then the bound is tightened over . This
is referred to as the Sphere Bound (SB) of Herzberg et al.
They also apply their method to Block-Coded Modulation
(BCM) schemes communicated over AWGN channel. BCM
schemes involving MPSK (M-ary Phase Shift Keying) con-
stellations are analogous to binary codes along with BPSK
modulation as both are sphere signal sets, i.e., all the signal
points reside on the surface of a hyper-sphere and therefore
have the same energy.

The Tangential Sphere Bound (TSB) proposed for binary

LA Slepian signal set is a Geometrically-Uniform (GU) [13] and
equi-energy (sphere) signal set.



codes by Poltyrev [15] and for MPSK BCM schemes by
Herzberg et al. [16] also uses GFBT where ® is a conical
region. It is proven in [16] that the Berlekamp’s TB is not
tighter than TSB and de facto TSB is one of the tightest
bounds to-date.
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Fig. 1. Gallager regions: a) a half-space in the TB, b) a hyper-
sphere in the SB, c) a hyper-cone in the TSB, and d) a hyper surface
of revolution in the GTSB. z; is the azimuthal symmetry axis.

The tightening of the upper bounds on the ML decoding
error probability of binary block codes within the format of
the GFBT has been an evolutionary process: an evolution
of the Gallager region from a half-space in the TB (Fig.
1-a) to a sphere in the SB (Fig. 1-b) and eventually to
a cone in the TSB (Fig. 1-c). As it can be seen from
Fig. 1, the common point between all of these regions is
their azimuthal symmetry along the radial axis, namely z;
here. For sphere codes, this is essentially the axis joining
the transmitted signal on the surface of a sphere to the
center of the sphere at the origin. As a result, the cross
sections of the Gallager region along the symmetry azis
are spheres. The difference between these regions, however,
stems from the fact that the aforementioned cross sections
radii are different functions of z;; the best of which being
a linear function of z; in the TSB. However, the question
still remained unanswered as to what boundary or region
would result in the tightest bound in this formulation.

In this article, we extend the TSB to the so-called Gen-
eralized Tangential Sphere Bound (GTSB) by generalizing
the Gallager region to a generic one encompassing all of
the above cases. This will be a so-called Hyper Surface of
Revolution (HSR) [19,20] shown in Fig. 1-d and explained
in the following section.

Using variational calculus, we obtain the optimal Gal-
lager region within the resulting framework. This is shown
to be a a right circular hyper-cone which coincides with
the TSB of Poltyrev. This has long been an important
open problem going back to Gallager’s thesis since early
1960’s where within his first bounding technique, GFBT,
he introduced a function of observation space (denoted by
f(y) in the original work) to be optimized to tighten the
bound [5,7]. All other versions of the upper bounds based
on GFBT (even those with one or more optimization pa-
rameters) are only asymptotically tight for random codes
(as they achieve the capacity limits as n — oo). For non-
random codes, as the underlying Gallager regions (which
are optimized for random codes) are not optimum, the pro-
posed bounds are not tight [17]. Using variational calcu-
lus, Gallager found the optimum f(y) which was not in a
closed form but reduced to a closed form for random codes.
Divsalar [17] shows that the optimization of the Gallager
region within the GFBT is equivalent to that of f(y).

Albeit classically deemed an important problem, there
has not been any mathematical proof for the optimality
of the cone in the framework of the TSB. This proof is
doubly important thanks to the wide spread applications
of the TSB in various schemes. The convenience of relying
solely on the code spectrum besides its extra tightness for
lower rate codes, has made the TSB a good candidate for
longer codes such as Turbo codes and LDPC codes.

Sason and Shamai [21] elaborated on TSB and applied it
to parallel and serial concatenated Turbo codes using their
ensemble spectrum and also extended the bound from word
error probability to bit error probability. TSB has also
been applied to LDPC codes [22] as well as to block codes
communicated over interleaved fading channels [23].

I1I. PRELIMINARIES

Consider a binary code C' = {cp, c1, ..., cox_1} with pa-
rameters (n, k, dmin), to be used along with BPSK mod-
ulation (antipodal signaling) on an AWGN channel. The
resulting signal set will be

S = {50, 51, -y Sgk_1}

where s; = m(¢;) € R™. For ¢; = (¢;1, ¢izy -, Cior_1),

m(c;) = (m(ei1), m(eiz), ..., m(e;ae_1))

where m(a) = VE;(2a — 1), a € {0,1}, and E; is the
symbol energy?. The resulting signal set is a sphere and
Slepian signal set. In particular for BPSK, denoting the
Euclidean distance between two signal points s; and s; by
d(si, s;) or simply &;;, we have:

(5227 = (52(81', Sj) = 4E5d(ci,6j) = 4REbd(Ci,Cj) (1)

where R = k/n is the binary code rate, E, is the infor-
mation bit energy, and d(, ) is Hamming distance. Assum-
ing AWGN interference, the output of the channel will be
a vector r = s; + n, where n is an n-dimensional vector

2Without loss of generality, Fs is chosen to be unity.



whose elements are independent zero-mean Gaussian ran-
dom variables with a variance of ¢2. Probability of word
error for communicating one of 2% messages in § through

an AWGN channel will be:

2k -1

Y P(E|si)P(si). (2)

=0

Py (F) =

If the resulting Geometrically-Uniform (GU) signal
set [13] is equi-probable, the ML optimum decoding rule
will actually reduce to minimum Euclidean distance de-
coding strategy and

Py (E) = P(E | si) 3)

where s; can be any signal point. We assume that sq,
signal corresponding to the all-zero codeword, c¢g, has been
transmitted.

IV. GENERALIZED TANGENTIAL SPHERE BoUND UsING
A HYPER-SURFACE OF REVOLUTION

GTSB is primarily based on the Gallager’s first bound-
ing technique. Given a transmitted signal, the word error
probability can be decomposed as in

P,(E)< P{E,r € R} + P{r ¢ ®} (4)

where 7 is the received signal vector and R, referred to
as the Gallager region, is an appropriate region around
the transmitted signal point. The choice of region R is
of utmost significance in this bounding method. Different
choices of this region have resulted in various different tight
bounds in different ranges of signal-to-noise ratio. Exam-
ples of the Gallager region which have resulted in the tight-
est bounds include spheres [14] and right circular cones [15].
Motivated by the sensitivity of the bounds on the choice of
Gallager region, we seek to find an optimum volume within
the discussed playground while keeping the bound analyt-
ically tractable. In general, to have a tight bound for all
ranges of signal-to-noise ratio, one would like to choose a
region R which is as close as possible-in geometrical sense-
to the Voronoi regions. Our general bound is primarily
for a sphere code of which all of the Voronoi regions are
polyhedral cones having a single vertex at the origin of the
n-space and extending infinitely in some direction [12,24].

At this point, as GTSB is developed geometrically, we
start with an introduction to the geometry (analytic) re-
quired for the bound to transpire. GTSB, similar to TSB,
is structured based upon the premise of multiple levels of
separation of noise components from the rest of the noise
vector, the first of which being the radial component of the
noise. This is the projection of the noise vector along the
500 (see Fig. 2). The simplicity of the TB, SB, and TSB
(and as we will see GTSB) is in fact due to the shape and
properties of the underlying Gallager regions. For this, only
geometrical bodies with azimuthal symmetry along this ra-
dial vector are sought (as in the aforementioned bounds).
In this fashion, the spherical symmetry of the Gaussian
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Fig. 2. Geometry of a surface of revolution: z = r(y) rotates about
the y axis to produce a surface with azimuthal symmetry along y.

noise would lend itself to the simplicity of the calculation
of the bound.

Definition: A surface of revolution is a surface gener-
ated by rotating a 2-dimensional curve about an axis [25].

Examples of surfaces of revolution include cone, cylin-
der, hyperboloid, paraboloid, and sphere. The important
characteristic trait of all these-consequential in our work-is
their azimuthal symmetry [19]. This translates to having
sphere cross sections along the symmetry axis. This last
property can be easily extended algebraically to higher di-
mensions.

In n-dimensional space, the following expression alge-
braically describes a body with azimuthal symmetry along
the z,, axis in Cartesian coordinates:

Bt eyt tang =) (5)
where 7(.) is an arbitrary function characterizing the cross
sections [20].

The body defined in (5) will be referred to as a Hy-
per Surface of Revolution (HSR) whose azimuthal (sym-
metry/rotation) axis is z, [26]. For a simple right circu-
lar n-cone, with z, as its axis and its apex at the origin,
r(zn) = az,; where a is a constant scaling the solid angle
of the n-cone [16,21]. r(z,) = a (« a constant) corre-
sponds to a hyper-cylinder. A paraboloid is a surface of
revolution of a parabola with the general r(z,) = v/|az,|

(a a constant). Sphere accepts the formulation in (5) with

r(zn) = Va? — o,

Many of the other tight bounds developed for binary codes
also use geometrical bodies fitting into the general frame-
work of the (5) such as those in [14-16] which use conical
or spherical regions.

|z, | < af, a = constant.

V. EXPANSION OF THE BOUND

From this point on, we consider the transmitted signal
point, s, as the origin of the n-space. Separating the radial
component of noise z; from the rest of the noise vector, one
can expand the word error probability P, (F) as such:

+o0
P, (FE) = / P(E|z1)fs, (21)dz1, (6)

— 00



where f,,(z1) is the zero-mean Gaussian probability den-
sity function (pdf) with a variance of oZ.

We choose the Gallager region ® to be an HSR with an
azimuthal axis z; (see Fig. 3) and a general function r(.)
to be optimized shortly. Within this groundwork with a
euclidean weight enumerating (ewe) function

ewe(w) = ZAjwaj (7

where A; is the number of signal points at a Euclidean

distance of ; = 24/d; from sq. Thus, we have:

> A
E:Bi(21)<Ir(21)] (8)
P(Eyler,y < *(:1)) + Ply > r*(:1)) }

P(F|z1) < min
( |1>_,_(Zl){

where y = Y°"_, z? is a random variable with Chi-square

distribution with (n — 1) degrees of freedom [27] and FEj
is the error event that the received vector r is closer to s
(assuming dy = d(cg, co)), than the transmitted so, that is,

By = {[lr — s[| < [Ir = soll[so} (9)

and fg(z1), as seen in Fig. 3, is the projection of the per-
pendicular bisector hyper-plane between sqg and s onto the
z1 — 7z plane, that is, the straight line

\/ﬁ—zl
JE-1

Bk (z1) is in fact the only entity in the development of the
bound that solely applies to sphere constellations, hence,
making the bound limited to the equi-energy signal sets.

B (1) = (10)

3ro/2
40

Fig. 3. Geometry of the general tangential sphere bound. The z; — 25
plane is defined by the three points: origin (o), so, and sg.

Now, by further separating the tangential component of
noise zz (22 L z1) from the complete noise vector we have,

P(EBg|z1,y < 7%(z1)) = P(B(z1) < 22 < |r(21)],
y1 <1%(z1) — 23)

(11)

where y; is a Chi-square distribution with (n—2) degrees of
freedom. Therefore, the overall bound in (6) can be written
as

Ir(z1)]
(45 [ faule):
ﬁk(zl)

400

rey<ind [ |

— 00

by

k:Br(z1)<|r(z1)]

r?(z1)=2;

+o0

[t dz) + [ ] e}
’ e (12)

where 2z as well as z1 is a zero-mean Gaussian random
variable with a variance o2.

Theorem 1: The bound in (12) is minimum for an r(z;)
which is a linear function of (21 — /7).

Proof: Defining:

+oo |r(zl)|
Pirte) = 4 [k:ﬁk(zﬂ%w (4e- [ Falea)

Br(z1)

r?(z1)—23 +o0

[t -dz)+ [ g Gada,
0 r2(z1)

(13)

a stationary point is obtained if dF[r(z1) + €h(z1)]/0¢|c=0
is zero for all choices of h(z1) [28]. Straightforward manip-
ulations result in:

2

) e
kiBr(z1)<|r(z1)]

/ sin”_30d9} — F(’}?)

r* (1)
202

(14)

27" =2(2, ) exp (- ) h(zl)le(zl)}dzl = 0.

The equation in (14) will be satisfied for all h(zy) if the

3 ﬁk(»’h)
fraction e

is independent of zy. This will require the

function r(z1) to have the linear form r(z1) = ro(z1 — v/n)
(where 7 is a constant) and the optimization equation will
reduce to:

[

T (22
> Ak-/sin"_?’ada = w (15)

. (27

keS|SO
where
6, = cos™! dik (16)
k= ré(n—dg) |’

|

In other words, the optimum Gallager region is a cone
whose apex is at the origin and its main axis is along the



radial component of the noise. It should be noted that
(15) corresponds to the result of Poltyrev [15]. Also, the
summation upper limit in the optimization equation (15)
is only valid for the upper nappe of the cone. For the
lower nappe, Bx(z1) is negative and, therefore, the inequal-
ity Bk (z1) < 0 < |r(z1)] is satisfied by all existing Hamming
weights of the code from 1 to n. As the lower nappe proba-
bility has only marginal effect on the total error probability,
the optimization in (15) will be sufficient for all values of
Z1.

For linear binary block codes, this is a mathematical
proof for what intuition would suggest. The Voronoi re-
gion of a transmitted codeword for a BPSK modulation
binary code is the region surrounded by at most (28 — 1)
hyper-planes all going through the origin at least 2v/din
apart from the communicated point of the constellation.
This is a polyhedral cone with a single vertex at the origin
of the n-space and unboundedly extending in one (radial)
direction. This provides an intuitive explanation as to why
the optimum Gallager region is a cone. This observation
is not as straightforward as it may seem for non-binary
codes. We emphasize that the application of the GTSB
is not limited by any means to linear codes or binary al-
phabets or GU constellations. In fact, the only property
of the scheme necessary for the bound is its being equi-
energy (sphere code) which is required to keep the value
of Bk(z1) valid as provided in (10). The bound in (12)
applies to any sphere constellation with a given ewe(w)
function (which may depend on the center under consider-
ation). This includes codes over non-binary alphabets, such
as MPSK BCM schemes, as well as those which are not GU.
In the latter, while the signal set is still equi-energy, one can
use the proposed method to evaluate the error probability
given a particular transmitted signal point; provided that
the Euclidean spectrum centered at that point is available.

VI. CONCLUSIONS

Tightening of the caps on the ML decoding error prob-
ability of binary codes from the TB of Berlekamp to the
TSB of Poltyrev has been an evolutionary process: an evo-
lution of the Gallager region from a half-space in the TB to
a sphere in the SB and finally to a cone in TSB, essentially,
closing the gap between the Gallager and Voronoi regions.

The question still remained whether or not changing the
boundaries of the Gallager region from a first-order func-
tion of the radial component of noise to any other function
would be beneficiary to the tightness of the cap. This work
extends the aforementioned boundary to any general one
and proves that for a sphere code one cannot do better than
a cone. This terminates the search for a better Gallager re-
gion and therefore a tighter bound within the format of the
GTSB/TSB.
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